
Design Verification and Test of
Digital VLSI Circuits
NPTEL Video Course

Module-IX
Lecture-I

Introduction to Automatic Test Pattern
Generation (ATPG)
and ATPG Algebras

Introduction

•In a circuit some faults are “easy to test” and some others are
“difficult to test”.

•Algorithm to estimate the “easy to test faults” and the ones that
are “difficult to test”.

•Fault simulation algorithms are used to determine test patters for
easy to test faults and for the others, sensitization–propagation -
justification approach is used.

•Automatic test pattern generation (ATPG) using sensitization–
propagation -justification approach.

•Basics of ATPG and ATPG algebras.
•D-algorithm--the basic and first ATPG algorithm developed.

ATPG: Introduction

•ATPG stands for automatic test pattern generation.
•Procedure involves generation of input patterns that can ascertain
presence or absence of fault(s) at some location(s) in a circuit.
(i) fault simulation and (ii) sensitization–propagation –justification.

These techniques are based on Boolean logic manipulations and are

most widely used.
• ATPG technique that requires thermal imaging technique.

• Images of the silicon (of the circuit) and then drawing
conclusions based on temperature profile of various regions
of the silicon.

• For example, when a net say A, has stuck-at-0 fault and
primary inputs are applied such that net A gets 1, then
temperature in A will be abnormally higher, due to high
short circuit current.

ATPG: Introduction

The advantage is, we need not have to worry about propagating the
effect of the fault to primary outputs, as all internal points are
observable in terms of temperature profile.

So, sensitization is enough to generate a test pattern.

However, the instrumentation cost for thermal imaging is high.
So, widely used ATPG algorithms are based on logic manipulations.

ATPG algebra

•Boolean algebra comprising of 0 and 1, is used for studying
behavior of digital circuits.
•Circuits with fault: Boolean algebra will not suffice to represent
signal values
•I1=1,I2=1 detects s-a-0 fault at the output, we need to mark O1 as
1/0-indcating that under normal condition O1 is 1 and under fault it
is 0.
•mark O1 as 0/1--indicating that under normal condition O1 is 0 and
under fault it is 1.
•a single bit (0 or 1) is not enough for representing and studying
circuits with fault.

I1

I2

G1

O1 (s-a-1)

0

0

0/1 (Normal: 0, Fault: 1)
I1

I2

G1

O1 (s-a-0)

1

1

1/0 (Normal: 1, Fault: 0)

(a) 1/0 is required to represent

 the detection of fault

(b) 0/1 is required to represent

 the detection of fault

Roth’s five value algebra

Symbol Implication Normal

Circuit

Faulty

Circuit

0 (0/0) 0 0

1 (1/1) 1 1

X (X/X) X X

D (1/0) 1 0

(0/1) 0 1

Example to illustrate Roth’s five value algebra

I1

I2

G1

O1 (s-a-1)

0

0

D (Normal: 0, Fault: 1)

I1

I2

G1

O1 (s-a-0)

1

1

D (Normal: 1, Fault: 0)

I1

I2

G1

O1

0

X

X (Normal: X, Fault: X)

(s-a-1)

Example illustrate operations in Roth’s five value algebra

 1 AND D = D; 1 AND 1/0 involves two computations—(i) 1 AND 1=1,

(ii) 1 AND 0=0.

 0 OR = ; 0 OR 0/1 involves two computations—(i) 0 OR 0=0, (ii) 0

OR 1=1.

 =D; NOT(0/1) involves two computations—(i) NOT(0)=1, (ii)

NOT(1)=0.

When one input is X in logical operation then output is also X, if others inputs are

non controlling; else output is determined by the controlling input. Some

examples are given below

 X AND 1 =X; 1 is non controlling in AND logic

 X AND 0 =0; 0 is controlling in AND logic

Types of ATPG algorithms

•Exhaustive
Testing by “exhaustive” technique implies applying all input combinations and
checking for “functional” correctness. Exhaustive testing techniques are not used
in ATPG because of complexity.

•Random
Random ATPG basically involves three steps:

•Generate a random pattern
•Determine how many faults are detected by the random pattern (fault
simulation)
•Continue the above two steps till no (or few) new faults are detected by the
random pattern.

•Deterministic ARPG techniques.

•Symbolic difference
• Path sensitization.

Symbolic difference Based ATPG

ATPG by symbolic difference is basically based on well-known Shannon’s expansion

theorem. Let us explain this by an example. Consider an arbitrary Boolean function

as 1 2(, ,..)nf x x x . By Shannon’s expansion rule, the function can be expanded about any

variable 1x say, as 1 2(, ,..)nf x x x = 1 2 1 2. (0, ,..) . (1, ,..)n nx f x x x f x x .

I1

I2

Ik

In

O1

O2

Ol

Om

F

Block diagram of a circuit with a fault at point F

Symbolic difference Based ATPG
Let the following Boolean functions hold

 1 2(, ,..)F ng f I I I be the function for the Boolean value at net F (in terms of

all the inputs)

 1 2(, , ,..), 1i i no f g I I I i m   be the functions for output lines
1 to mO O , under

failure at point F. It may be noted that without fault all the output lines

are functions of the inputs. With the failure, the output lines are functions

of the inputs and the Boolean value at point F.

Now, Boolean difference, or Boolean partial derivative, of the circuit

block output ,1if i m  with respect to g is:

1 2 1 2(1, , ,..) (0, , ,..)i
i n i n

f
f I I I f I I I

g


 



For detecting s-a-0 fault at location F, we need

1. 1 2(, ,..) 1F ng f I I I 

2.   1 2 1 2,1 (1, , ,..) (0, , ,..) 1
j

j n j n

f
j j m f I I I f I I I

g

 
       

 

Symbolic difference Based ATPG

Similarly, for detecting s-a-1 fault at location F, we need

1. 1 2(, ,..) 0F ng f I I I 

2.   1 2 1 2,1 (1, , ,..) (0, , ,..) 1
j

i n i n

f
j j m f I I I f I I I

g

 
       

 

Unfortunately, due to high complexity the Boolean difference is not an

efficient way to compute test patterns for large circuits.

Path Sensitization Based ATPG
ATPG by path sensitization method is generally applied for “difficult to test
faults” and comprises three phases.

Fault sensitization: In this step a stuck-at fault is activated by setting the
signal driving the faulty net to an opposite value from the fault value.

Fault propagation: In this step a path is selected from the fault site to some
primary output, where the effect of the fault can be observed for its
detection.

Line justification: In this step the signals in (internal) nets or some primary
inputs, which were assigned for fault sensitization/propagation, are
justified by setting (remaining) primary inputs of the circuit.

In the second and third steps, a conflict may occur, where a necessary
signal assignment contradicts some previously-made assignment. When
conflicts occur we need to take a new alternative path for fault propagation
and see if all signals can be justified.

Path Sensitization Based ATPG: Example

a

b=1

c

d

e

f

g
h

i j
s-a-0

D

D

D

D

(a) Sensitization by b=1

Propagation by path e-f-g-h

a

b=1

c

d=1

e

f

g
h

i j
s-a-0

D

D

D

D

(b) Justification j=0

j=D, if c=1 and j=1 if c=0

 (conflict at j)

0D

Path Sensitization Based ATPG: Example

a

b=1

c

d

e

f

g
h

i j
s-a-0

D D

D

(a) Sensitization by b=1

Propagation by path i-j-g-h

(b) Justification d=1,c=1,f=0,a=0

 (Successful)

D

a=0

b=1

c=1

d=1

e

f

g
h

i j
s-a-0

D D

D

D

0

Questions and Answers

Question: Using path sensitization and Routh’s algebra generate test pattern for the s-a-0
fault in the circuit given below:

Answer: To sensitize the fault, 1 is to be applied at the output of the AND gate. Also, there
is only one path for fault propagation-- fault location to E. Now, to justify we need to apply
a 0 at the second input of the OR gate. This leads to a collision. For justification we need a
0 in the second input of the OR gate and to sensitize the fault B is to be 1, which makes the
second input of the OR gate a 1. This is illustrated in the figure below in terms of Routh’s
algebra.
 A

B

E

s-a-0

A=1

B=1

E

s-a-0

D

D
0

(Conflict)

Questions and Answers

Answer: Now, since there is no other alternative path for fault propagation, this
fault is not testable. In fact the answer is true. This fault is not testable. This
example actually illustrates another utility of ATPG algorithm—finding
redundancy in circuits. If we observer carefully, function represented by this
circuit is: E=A.B+B. This can be simplified as B(A+1), which is B. So these two gates
are redundant. So, if ATPG by path sensitization discovers that a fault is not
testable, then there is redundancy in the circuit.

A

B

E

s-a-0

Thank You

Design Verification and Test of
Digital VLSI Circuits
NPTEL Video Course

Module-IX

Lecture-II and III

D-Algorithm

Introduction

•Roth’s D-Algorithm [1] in depth, which is the first formal algorithm
for ATPG.

•Uses Routh’s algebra, which is suitable for ATPG using the
“sensitize-propagate-justify” approach.

•Basic definitions and procedures required in D-algorithm.

•Issues in D-algorithm, and how they were addressed in some
advanced algorithms.

D-Algorithm: Definitions and procedures

Definition 1: Singular cover

Singular cover of a logic gate is the minimal set of input signal
assignments needed to represent essential prime implicants in the
Karnaugh map of the logic gate, both for the case 0 and case 1.

Table shows singular cover for 2 input AND and 2 input OR gate.

AND Inputs

 A B

Output OR Inputs

A B
Output

0 X 0 1 X 1

X 0 0 X 1 1

1 1 1 0 0 0

D-Algorithm: Definitions and procedures

Definition 2: D-frontier
The D-frontier comprises gates whose output value is X and at least
one of its input is . This implies that, any gate in D-frontier can
be used for fault propagation.

 or D D

a=X

b=1

c=X

d=X

e

i X

s-a-0

D

X

D

f

g
h

j

D-Algorithm: Definitions and procedures

Definition 2: D-frontier
The basic idea is, X at the inputs can be appropriately selected so
that can be propagated to the output of the gates.

In other words, faults can be propagated only through gates in the
D-frontier.

 Once the fault is propagated the gate is deleted from the D-
frontier list.

 or D D

D-Algorithm: Definitions and procedures

Definition 3: Unique D-Drive

If there is only one gate in D-frontier, then fault effect has to be
propagated through that gate. This situation is called unique D-
drive.

D-Algorithm: Definitions and procedures

Definition 4: J-frontier
The J-frontier comprises gates whose output value is known (0 or 1)
but its inputs are not yet computed (or not yet implied by its
inputs). In other words, output of a gate in the J-frontier is known,
but inputs are not yet computed. This implies that, any gate in J-
frontier can be used for justification.

a=X

b=1

c=X

d=X

e

i

X

s-a-0

D

D
D

f

g
h

j

D-Algorithm: Definitions and procedures

•Assume that it was decided that fault effect D be propagated via j.
•So, j=D by forward implication.
•Also, f=0 for propagating D to g.

•Now, the encircled gate is in the J-frontier, because the output is
known as 0 and its inputs are X, which can be decided in
justification step.

•The basic idea is, X at the inputs can be appropriately selected so
that output is justified. In other words, during justification gates in
J-frontier can only be considered. Once the inputs are justified, the
gate is deleted from the J-frontier list.

D-Algorithm: Definitions and procedures

Procedure 1: Implication
The implication procedure comprises 3 steps

1. Compute all the values of the signals that can be determined
uniquely from already given signal values (of some nets). If
many choices are available, for example as in singular cover,
any one of them can be considered.

2. Maintain J-frontier and D-frontiers
3. Check for consistency and stop in case of inconsistency (i.e.,

contradictory signal values are implied by the implication
procedure).

Basically, implication procedure is similar to a simulation process
where values of all nets (and finally primary outputs) are
determined starting from primary inputs.

D-Algorithm: Simulation and Implication

Simulation Implication

All the signal values are determined

uniquely

All signals may not be determined uniquely

Value assignment moves from

inputs to outputs of a circuit

Signal assignments propagate both towards

primary inputs and primary outputs. For example,

to test a s-a-1 fault at net l say, we need to have

implication in two directions (i) backwards, to

primary inputs to make l=0 and (ii) forward, to

primary outputs to propagate D.

There is no inconsistency Inconsistency may arise, when for a given net l

(which is not the fault location) different signal

values (0 or 1) need to be assigned.

D-Algorithm: Simulation and Implication

D-Algorithm: Simulation and Implication

D-Algorithm: Simulation and Implication

The second gate has output of 0 and so by singular cover we
have two options for assigning values to the inputs; the two
options are shown in the right side.

 It may be noted that we could have also kept another option
where both the inputs are kept 1. However, this is avoided
because if both inputs are fixed then flexibility gets reduced
and chances of inconsistency increases.

D-Algorithm: Simulation and Implication

s-a-1X

X

X

X
s-a-1X

X

D

X

Step-0

Step-1 (unique D-drive)

s-a-10

X

D

X

Step-2 (Backward implication)

s-a-10

X

D

D

Step-3 (Propagate D through D-Frontier)

D-frontier

s-a-10

0

D

D

Step-4 (Backward Implication)

D
-A

lg
o

ri
th

m
:

Fo
rw

ar
d

 I
m

p
lic

at
io

n
 a

n
d

 D
-f

ro
n

ti
er

1

D
X

a

D-frontier={a}

D

1
X

a

D-frontier={a}

D

1
1

a

J-frontier={}

1

D
D

a

D-frontier={}

0

D
X

a

D-frontier={a}

0

D
D

a

D-frontier={}

1

1
X

a

1

1
1

a

D-Algorithm: Definitions and procedures

Procedure 2: X-path
An X-path is a path of consecutive nets in a circuit all of whose
values are X. Let A be a gate in a D-frontier. The faults on the inputs
of A can be propagated to a primary output O only if there is an X-
path from A to O. In Figure below there is only one X-path from a to
output—a-c-d.

X

D

1

1

X

1

a

b
c

X

0

0
0

0

d

X

e

f

g

h

D-Algorithm

Input: Circuit netlist and one stuck at fault with its location.

Output: Primary input values and expected values at the primary outputs

Step-1: Initialize all the signal values of the circuit to X.

Step-2: Sensitize the fault location, i.e., if s-a-0 is the fault, apply D in the fault

location, else if s-a-1 is the fault, apply D in the fault location.

Step 3: Determine/update gates in D-frontier and J-frontier, due to signal changes

from X to 0,1, D or D . If there is no gate in D-frontier and D / D has not

reached any primary output, backtrack().

Design Verification and Test of
Digital VLSI Circuits
NPTEL Video Course

Module-IX

Lecture-III

D-Algorithm

D-Algorithm

Step-4: If D / D has not reached any primary output, propagate D / D

through one of the gates in the D-frontier.

Step-5: Use forward and backward implications to determine as many

signal values as possible. backtrack() in case of an inconsistency.

Step-6: If D / D has reached any primary output and the primary inputs

have received values by backward implications, stop; the values of the

primary inputs comprise the test pattern. Else, go to Step-3.

D-Algorithm

The module backtrack(), works as follows.

Step-1: Determine the last choice (of alternatives) taken in selection of

gates in D-frontier or signal values in forward/backward implications,

where another new alternative is available. Take any one of the other

alternative. If no choice is left, report non testable fault and return.

Step-2: Undo all steps (i.e., propagation of D / D and forward/backward

implications), from the current signal values to point where another

alternative is attempted. Return.

D-Algorithm: Example
Example of simple digital circuit with a s-a-0 fault

b=X

c=X

d=X

f

g

h
i

j
s-a-0

e=X

k

XX

X
X

X
X

3

1

2

4
5

a=X

f

g

h
i

j
s-a-0

k

XX

X
X

X
X

3

1

2

4
5

D-Algorithm: Example
Sensitizing the fault location and computation of J- and D-frontier

f

g

h
i

j
s-a-0

k

D

XX

X
X

X
X

3

1

2

4
5

J-frontier = {1}

D-frontier = {2,3}

b=X

c=X

d=X

e=X

a=X

D-Algorithm: Example
Backward implication at gate-1

f

g

h
i

j
s-a-0

k

D

XX

X
X

X
X

3

1

2

4
5

Backward Implication (Gate 1, a=1,b=1)

J-frontier = {}

b=1

c=1

d=X

e=X

a=X

D-Algorithm: Example
Selection of gate-2 as D-frontier

Possible D-frontier = {2,3}, select 2 for D propagation

Modified D-frontier ={2}

f

g

h
i

j
s-a-0

k

D

XD

X
X

X
X

3

1

2

4
5

b=1

c=1

d=X

e=X

a=X

D-Algorithm: Example
Propagation of D and implications

f

g

h
i

j
s-a-0

k

D

DD

X
X

X
X

3

1

2

4
5

Propagate D through D-frontier and Backward Implication

Modified D-frontier ={4}

b=1

d=X

e=X

a=1

c=1

D-Algorithm: Example
Propagation of D, implications and J-frontier

a=1

b=1

c=1

d=X

f

g

h
i

j
s-a-0

e=X

k

D

DD

X
0

D
X

3

1

2

4
5

Propagate D through D-frontier and Backward Implication

Modified D-frontier ={5}

J-frontier={3}

D-Algorithm: Example
Backward implication

a=1

b=1

c=1

d=1

f

g

h
i

j
s-a-0

e=X

k

D

DD

1
0

D
X

3

1

2

4
5

Backward Implication

Modified J-frontier={}

D-Algorithm: Example
Inconsistency in net j

a=1

b=1

c=1

d=1

f

g

h
i

j
s-a-0

e=X

k

D

DD

1
0

D
X

3

1

2

4
5

Backward Implication

Require output of gate 1 to be 1, which is D

So INCONSTANCY, BACKTRACK

1

D-Algorithm: Example
Backtrack by considering gate-3 for D propagation

a=X

b=1

c=1

d=X

f

g

h
i

j
s-a-0

e=X

k

D

XX

D
X

X
X

3

1

2

4
5

Select the other gate-3 from D-frontier ={2,3}

Modified D-frontier ={3}

D-Algorithm: Example
Propagation of D and implications

Propagate D through D-frontier and Backward Implication

Modified D-frontier ={4}

a=X

b=1

c=1

d=1

f

g

h
i

j
s-a-0

e=X

k

D

XX

D

D

X
X

3

1

2

4
5

D-Algorithm: Example
Propagation of D, implications and D and J-frontier changes

a=X

b=1

c=1

d=1

f

g

h
i

j
s-a-0

e=X

k

D

0X

D

X

3

1

2

4
5

Propagate D through D-frontier and Backward Implication

Modified D-frontier ={5}

J-frontier={2}

D

D

D-Algorithm: Example
Inconsistency in net f

Backward Implication

Modified J-frontier={}

Inconsistency at net f

a=X

b=1

c=1

d=1

f=1

g

h
i

j
s-a-0

e=X

k

D

0

D
0

X

3

1

2

4
5

D

D

D-Algorithm: Example
Backtrack by considering a=0, f=X for backward implication for g=0

Backward Implication

Modified J-frontier={}

a=0

b=1

c=1

d=1

f

g

h
i

j
s-a-0

e=X

k

D

0X

D
0

X

3

1

2

4
5

D

D

D-Algorithm: Example
Backward implication for e=1 and successful test pattern generation

Propagate D through D-frontier and Backward Implication

Modified D-frontier ={}-Error propagated to PO

No inconsistency,

Test patten a=0,b=1,c=1,d=1,e=1,

Expected output-- if normal =1, if s-a fault =0

a=0

b=1

c=1

d=1

f

g

h
i

j
s-a-0

e=1

k

D

0X

D
0

3

1

2

4
5

D

D

D

Why advanced ATPG algorithms:
PODEM and FAN

If we observe the steps in the D-algorithm we can notice that it has three basic

points

 Sensitize the fault location (i.e., D/ D in the fault net)

 Propagation of D/ D to a primary output, using any gates in D-frontier

 Use any values of signals as per forward and backward implications, to get

the values of primary inputs, which sensitize the fault and propagate it to an

output.

At any point, backtrack is required in case D-frontier is exhausted or an

inconsistency is found.

Why advanced ATPG algorithms:
PODEM and FAN

So it may be stated that D-algorithm provides all the steps required for ATPG,

however, says nothing about which of the alternatives are to be taken for

propagation of D/ D or values of signals as per forward and backward implications.

In other words, the algorithm does not prioritize among the options available in

case of propagation of D/ D or signal assignment during implications. Also, in case

of backtrack, information regarding the reason for inconsistency is not used for

future selection of alternatives.

Why advanced ATPG algorithms:
PODEM and FAN

 So the advanced algorithms basically improve D-algorithm by providing a guided

choice of alternatives based on several testability measures namely,

 After a fault is sensitized, if there are more than one gate in the D-

frontier, then choice can be made based on conditions like,

o The shortest path (in terms of number of gates) from the fault site

to a primary output is to be taken

o The path having gate inputs (other than the one used for fault

propagation) with low values of CC1 and CC0 (SCOAP values)

are preferred than the ones with higher values.

 If more than one signal values are possible for nets after implication,

consider the one that will result in low CC1 and CC0 values.

 Use the reasons for inconsistency for future selection of alternatives

Questions and Answers

Question 1: Using D-algorithm show that the circuit given below is un-testable:

A

B

E

s-a-0

Answer

A=X

B=X

F=X

s-a-0

c=D
d=X

e=X

D-frontier ={2}

J-frontier ={1}

1

2

Questions and Answers

Answer

A=1

B=1

F=D

s-a-0

c=D
d=1

e=X

D-frontier ={}

Backward Implication

1

2

A=1

B=1

F=D

s-a-0

c=D
d=1

e=0

Backward Implication

Inconstancy

1

2

