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Module VI: Binary Decision Diagram 

Lecture I: Binary Decision Diagram:Lecture I: Binary Decision Diagram:

Introduction and construction



• Model checking algorithm

– Polynomial in the size of state machine and the 

length of the formula

• Problem with model checking• Problem with model checking

– State space explosion problem





Binary Decision Diagrams (BDD)

• Based on recursive Shannon expansion

f  =  x fx + x’ fx’

• Compact data structure for Boolean logic

can represents sets of objects (states) encoded as 

Boolean functions

• Canonical representation

reduced ordered BDDs (ROBDD) are canonical



Shannon Expansion

f = ac + bc

f  =  x fx + x’ fx’

fa’ = f(a=0) = bcfa’ = f(a=0) = bc

fa = f(a=1) = c + bc

f  =  a fa + a’ fa’

= a(c+bc) + a’(bc)



Binary Decision Tree (BDT)

• Binary Decision Trees are trees whose non-

terminal nodes are labeled with Boolean 

variables x, y, z, …. and whose terminal nodes are 

labeled with either 0 or 1. labeled with either 0 or 1. 



Binary Decision Tree (BDT)

• Each non-terminal node has two edges, one 

dashed line and one solid line.

• Dashed line represents 0 and solid line 

represents 1.





Binary Decision Tree

a  b  c    f

0  0  0   0
0  0  1   0
0  1  0   0

f = ac + bc

Truth Table → BDT

0  1  0   0
0  1  1   1
1  0  0   0
1  0  1   1
1  1  0   0
1  1  1   1

Truth table



Binary Decision Tree

Truth Table → BDT

1 edge

0 edgea  b  c    f

0  0  0   0
0  0  1   0

f = ac + bc
a

f

0  0  1   0
0  1  0   0
0  1  1   1
1  0  0   0
1  0  1   1
1  1  0   0
1  1  1   1

Truth table Decision tree

10 0 0 1 0 10

b

c

b

c c c



Binary Decision Diagram

• A Binary Decision Diagram (BDD) is a finite DAG 

with an unique initial node, where 

– all terminal nodes are labeled with 0 or 1 

– all non-terminal nodes are labeled with a Boolean – all non-terminal nodes are labeled with a Boolean 

Variable. 

– Each non-terminal node has exactly two edges from 

that node to others; one labeled 0 and one labeled 1; 

represent them as a dashed line and a solid line 
respectively



X

0 1

10

B0
B1

Binary Decision Diagram

B0 representing the Boolean constant  0 

B1 representing the Boolean constant  1 

Bx representing the Boolean variable x

Bx



Shannon Expansion → BDD

• fa’ = f(a=0) = bc = g

f = ac + bc

a

f

• fa = f(a=1) = c + bc = h g= bc h= c + bc

f  =  x fx + x’ fx’



Shannon Expansion → BDD

• fa’ = f(a=0) = bc = g

b

f = ac + bc

a

f

• fa = f(a=1) = c + bc = h

• g = (bc) = 0

g= bc h= c + bc

b

f  =  x fx + x’ fx’

b

0

• gb’ = (bc)|b=0 = 0

• gb = (bc)|b=1 = c

• hb’ = (c+bc)|b=0 = c

• hb = (c+bc)|b=1 = c

b

c

1



Binary Decision Tree and  Diagram

f = ac + bc

a

f

b

g= bc h= c + bc

b

a

f

b

0

b

c

110 0 0 1 0 10

b

c

b

c c c

From Truth Table From Shannon Expression



BDD Reduction Rules -1

Eliminate duplicate terminals

If a BDD contains more than one terminal 0-node, 

then we redirect all edges which point to such 

a 0-node to just one of them. 

Similarly, we proceed for nodes labeled with 1.



BDD Reduction Rules -1

Eliminate duplicate terminals

If a BDD contains more than one terminal 0-node, 

then we redirect all edges which point to such 

a 0-node to just one of them. 

Similarly, we proceed for nodes labeled with 1.

f
f

10 0 0 1 0 10

a

b

c

b

c c c

f

10

a

b

c

b

c c c



BDD Reduction Rules -2

Eliminate redundant nodes 

(with both edges pointing to same node)

f

f = a’ g(b) + a g(b) = g(b)

(fa + fa’ = 1)

b

g

a

b

g



BDD Reduction Rules -3

Merge duplicate nodes

• Nodes must be unique

a a

f1 f2

a

f

f1 = a’ g(b) + a h(c) = f2 f = f1 = f2

a a

b c

hg

a

b c

g h



BDD Construction

• Reduced BDD

1 edge

0 edgea  b  c    f

0  0  0   0
0  0  1   0

f = ac + bc
a

f

0  0  1   0
0  1  0   0
0  1  1   1
1  0  0   0
1  0  1   1
1  1  0   0
1  1  1   1

Truth table Decision tree

10 0 0 1 0 10

b

c

b

c c c



BDD Reduction

f = ac + bc

a

f

a

f

10 0 0 1 0 10

b

c

b

c c c

10

b

c

b

c c c

1. Merge terminal nodes



BDD Construction – cont’d

a

b b

f f

a

b b

a

b

f = (a+b)c

10

b

c

b

c c c

10

b

c

b

c

10

b

c

2. Merge 

duplicate nodes

3. Remove redundant 

nodes
Reduced BDD



BDD Construction – cont’d

a

b

f = (a+b)c

a

f

BDD constructed by Shannon Expression

10

b

c

Reduced BDD

b

0

b

c

1

3. Remove redundant 

nodes



Reduced BDDs

A BDD is said to be reduced if none of the 

reduction rules R1-R3 can be applied (i.e., 

no more reductions are possible)

10

a

b

c



AND1

AND2

c

a

b

d

ab

cd

ab+cd

AND2d





Bf

0 1

BDD Bf for Boolean function f



Bf

B'f

0 1

1 0

BDD B’f for Boolean function f’BDD Bf for Boolean function f



Bf

Bf.g

 

Bf

Bf+g

0 1

Bg

01

0 1

Bg

BDDs for f+g and f.g





Questions

1. Do we get any advantage in using BDT.

2. While constructing the BDD, is it required to

start from BDT.

3. The definition of BDD does not restrict the

occurrence of a variable in any number of times

in a path. Show that it may lead to

inconsistency with an example.

4. Is reduced BDD of any function is unique.





Shannon Expansion → BDD

• fa’ = f(a=0) = bc = g

f = ac + bc

• fa = f(a=1) = c + bc = h

• g = (bc) = 0

f  =  x fx + x’ fx’

a

• gb’ = (bc)|b=0 = 0

• gb = (bc)|b=1 = c

• hb’ = (c+bc)|b=0 = c

• hb = (c+bc)|b=1 = c 10

b

c



Shannon Expansion → BDD

• fb’ = f(b=0) = ac = g

c

f = ac + bc

b

f

• fb = f(b=1) = ac + c = h

• g = (ac) = 0

g= ac h= ac + c

c

f  =  x fx + x’ fx’

c

0

• gc’ = (ac)|c=0 = 0

• gc = (ac)|c=1 = a

• hc’ = (ac+c)|c=0 = 0

• hc = (ac+c)|c=1 = 1

c

a

1
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Module VI: Binary Decision Diagram 

Lecture II: : Ordered Binary Decision DiagramLecture II: : Ordered Binary Decision Diagram



Binary Decision Diagram 

• Construction of BDD• Construction of BDD

• Reduced BDD



Binary Decision Diagram 

• Occurrence of variables• Occurrence of variables

• Ordering of variables



Binary Decision Diagram

• A Binary Decision Diagram (BDD) is a finite DAG 

with an unique initial node, where 

– all terminal nodes are labeled with 0 or 1 

– all non-terminal nodes are labeled with a Boolean – all non-terminal nodes are labeled with a Boolean 

Variable. 

– Each non-terminal node has exactly two edges from 

that node to others; one labeled 0 and one labeled 1; 

represent them as a dashed line and a solid line 
respectively



Ordering of Variables

X

y Z

X y x

0 1



Ordering of Variables

X

y Z

• Evaluation Path

• Consistent

• Inconsistent

X y x

0 1



Ordered BDDs (OBDDs)

• Let [x1, x2, …., xn] be an ordered list of 

variables without duplication and let B be a 

BDD all of whose variables occur somewhere 

in the list.in the list.

• We say that B has the ordering [x1, x2, …., xn] if 

all variable labels of B occur in that list and, 

for every occurrence of xi followed by xj along 

any path in B, we have i < j.



OBDDs

X1

X2

X3

X3

X4

X5

10

BDD with variable ordering [x1, x2, x3, x4, x5]



OBDDs

X5

X4

X3
X3

X1

X2

10

BDD with variable ordering [x5, x4, x3, x2, x1]



Reduced Ordered BDDs (ROBDDs)

Not a Ordered BDD.

Not a Reduced BDD.
a

b c

f

10

b

c

c

c b b



Impact of the chosen variable ordering

• In general the chosen variable ordering makes 

a significant difference to the size of the OBDD 

representing a given function.



Impact of the chosen variable ordering

• Consider the Boolean function

– f = (x1 + x2).(x3 + x4).(x5 + x6)….(x2n-1 + x2n)



Impact of the chosen variable ordering

• Consider the Boolean function

– f = (x1 + x2).(x3 + x4).(x5 + x6)….(x2n-1 + x2n)

• If we chose the variable ordering [x1, x2, x3, x4, • If we chose the variable ordering [x1, x2, x3, x4, 
….], then we can represent this function as an 
OBDD with 2n+2 nodes.

• If we chose the variable ordering [x1, x3, x5, …., 
x2n-1, x2, x4, x6, …, x2n], the resulting OBDD 
requires 2n+1 nodes.



OBDDs

x4

x2

x3

x1

x6

1

x5

0

f = (x1 + x2).(x3 + x4).(x5 + x6)



OBDDs

x3 x3

x1

x5 x5 x5x5

0 1

x2x2

x6

x4
x4

x2

x2

f = (x1 + x2).(x3 + x4).(x5 + x6)



Reduced ODBBs (ROBDDs)

A BDD is said to be reduced if none of the 

reduction rules R1-R3 can be applied (i.e., no 

more reductions are possible)

A OBDD is said to be reduced OBDD (ROBDD) if 

none of the reduction rules R1-R3 can be 

applied (i.e., no more reductions are possible)



Algorithm reduce

• The algorithm reduce provides the ROBDD of 

a given OBDD.

• If the ordering of B is [x1, x2, …, xl], then B has 

at most l+1 layers.at most l+1 layers.

• The algorithm reduce traverses B layer by 

layer in a bottom-up fashion.



Algorithm reduce

• We assign an integer label id(n) to each node 

of B.

• Id(n) equals to id(m) iff, the subOBDDs with 

root nodes n and m denote the same Boolean root nodes n and m denote the same Boolean 

function.



Algorithm reduce

• Given a non-terminal node n in a BDD, we 

define lo(n) to be the node pointed to via the 

dashed line from n.

• Dually, hi(n) is the node pointed to via the • Dually, hi(n) is the node pointed to via the 

solid line from n.



Algorithm reduce

• Labeling of terminal nodes:

– Assign the first label (say #0) to the first 0-node 
it encounters.

– All other terminal 0-nodes denote the same – All other terminal 0-nodes denote the same 
function as the first 0-node and therefore get 
the same label.

– Similarly, the 1-nodes all get the next label (say 
#1) 

• Reduction Rule (eliminate duplicate 
terminals)



Algorithm reduce

• Labeling of non-terminal nodes (Given an xi

node n and already assigned integer labels 

to all nodes of a layer > i):

– If the label id(lo(n)) is same as id(hi(n)), then 

we set id(n) to be that label we set id(n) to be that label 

– (Reduction Rule:, Redundant nodes).



Algorithm reduce

• Labeling of non-terminal nodes (Given an xi

node n and already assigned integer labels 

to all nodes of a layer > i):

– If there is another node m such that n and m 

have the same variables x , and id(lo(n)) = have the same variables xi, and id(lo(n)) = 

id(lo(m)) and id(hi(n)) = id(hi(m)), then we set 

id(n) to be id(m). 

– (Reduction Rule, duplicate nodes) 



Algorithm reduce

• Labeling of non-terminal nodes (Given an xi

node n and already assigned integer labels 

to all nodes of a layer > i):

– Otherwise, we set id(n) to the next unused 

integer label.integer label.



Algorithm reduce

X

Y
Y

Z Z

10 1 0 1

Z

10



Algorithm reduce

X

Y
Y

Z Z

10 1 0 1

Z

10

#0 #0 #0#1 #1 #1 #1



Algorithm reduce

X

Y
Y

Z Z

10 1 0 1

Z

10

#0 #0 #0#1 #1 #1 #1

#2 #2 #2



Algorithm reduce

X

Y
Y

#2
#3

Z Z

10 1 0 1

Z

10

#0 #0 #0#1 #1 #1 #1

#2 #2 #2



Algorithm reduce

X

Y
Y

#2
#3

#4

Z Z

10 1 0 1

Z

10

#0 #0 #0#1 #1 #1 #1

#2 #2 #2



Algorithm reduce

X

Y
Y

#2
#3

#4

Z Z

10 1 0 1

Z

10

#0 #0 #0#1 #1 #1 #1

#2 #2 #2
n

m

id(lo(n)) = id(lo(m))

Id(hi(n)) = id(hi(m))

Merge of duplicate node



Algorithm reduce

X

Y
Y

#2
#3

#4

p

id(lo(p)) is same as id(hi(p))

Removal of redundant node

Z Z

10 1 0 1

Z

10

#0 #0 #0#1 #1 #1 #1

#2 #2 #2
n

m

id(lo(n)) = id(lo(m))

Id(hi(n)) = id(hi(m))

Merge of duplicate node

Removal of redundant node



Algorithm reduce

X

Z

Y
#2

#3

#4

10

#0 #1

Reduced Ordered BDD (ROBDD)



Reduced Ordered BDDs (ROBDDs)

• The reduced OBDD, representing a given 
function f, is unique. 

• That is to say, let B1 and B2 be two reduced 
OBDDs with compatible variable ordering. If B1

and B represent the same Boolean function, and B2 represent the same Boolean function, 
then they have identical structure.

• The order in which we applied the reductions 
does not matter.

• OBDDs have a canonical form, their unique 
ROBDDs.



Reduced Ordered BDDs (ROBDDs)

Let B1 and B2 are the BDDs of Boolean function 

f1 and f2.

The orderings of B1 and B2 are said to be 

compatible if there are no variables x and y compatible if there are no variables x and y 

such that x comes before y in the ordering 

of B1 and y comes before x in the ordering of 

B2.





Application of BDDs

• Test for Absence of redundant variables

– If the value of a Boolean function f(x1,x2,…xn) 

does not depend on the value xi, then any 

ROBDD which represents f does not contain any 

x -node.xi-node.



Application of BDDs

• Test for semantic equivalence

– Bf and Bg are the ROBDD representation of two 

functions f and g respectively with compatible 

variable ordering.

– f and g denote the same Boolean function if, 

and only if, the ROBDDs have identical 

structure.



Application of BDDs

• Test for Validity 

– Consider  the ROBDD of a Boolean function 

f(x1,x2,…xn).

– f  is valid if, and only if, its ROBDD is B1. – f  is valid if, and only if, its ROBDD is B1. 



Application of BDDs

• Test for Implication ( f →→→→ g)

– We can test whether f implies g by computing 

the ROBDD of (Bf ∧ ¬ Bg) 

– f implies g if, and only if, the resultant ROBDD – f implies g if, and only if, the resultant ROBDD 

of (Bf ∧ ¬ Bg) is B0



Application of BDDs

• Test for Satisfiability 

– A Boolean function f(x1,x2,…xn) is satisfiable if it 

computes 1 for at least one assignment of 0 and 

1 values to its variables.

– The function f  is satisfiable if, and only if, its 

ROBDD is not B0. 



Question

• Apply the algorithm reduce 

X
1

x2 x2

x3 x3

0 01 1



Question

• Apply the algorithm reduce 

X
1

x2 x2

x3 x3

0 01 1#1#0#1#0



Question

• Apply the algorithm reduce 

X
1

x2 x2

x3 x3

0 01 1

#2#2

#1#0#1#0



Question

• Apply the algorithm reduce 

X
1

x2 x2

x3 x3

0 01 1

#3 #2

#2#2

#1#0#1#0



Question

• Apply the algorithm reduce 

X
1

#4

x2 x2

x3 x3

0 01 1

#3 #2

#2#2

#1#0#1#0



Algorithm reduce for BDDs

• Merge all nodes which have same label and 

redirect the incoming and outgoing edges 

accordingly.

X
1

#4
X

1
#4

x2 x2

x3 x3

0 01 1

#3 #2

#2#2

#1#0#1#0

x2

x3

0 1#1#0

#2

#3Reduce



Question

• Consider the following function 

– f(x,y,z) = xz + xz’ + x’y

Is it independent of any variables.



Question

• Consider the following function 

– f(x,y,z) = xz + xz’ + x’

Is it independent of any variables.

Test for validityTest for validity



Question
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Module VI: Binary Decision Diagram 

Lecture III: : Operation on Ordered Binary Decision Lecture III: : Operation on Ordered Binary Decision 
Diagram



Operation on BDD 

• f+g

• f.g



Operation on BDD



Operation on OBDD

To perform the binary operation on two 

ROBDD’s Bf  and Bg,  corresponding to 

Algorithm apply

ROBDD’s Bf  and Bg,  corresponding to 

the functions f  and g respectively, we 

use the algorithm apply(op, Bf  , Bg). The 

two ROBDDs Bf   and Bg  have

compatible variable ordering. 



Operation on OBDD

Algorithm apply

Application of apply(op, Bf  , Bg) will 

give a OBDD. The ordering of the 

resultant BDD is same as B or B but it resultant BDD is same as Bf  or Bg but it 

may not be the reduced one. After 

constructing the resultant BDD, we may 

apply the reduce algorithm to get the 

ROBDD. 



Operation on OBDD



Operation on OBDD

The function apply is based on the 

Shannon’s expansion for f and g: 

. [0 / ] · [1/ ]

. [0 / ] · [1/ ]

f x f x x f x

g x g x x g x

= +

= +   . [0 / ] · [1/ ]g x g x x g x= +   

From the Shannon’s expansion of f and 

g : 

 

     .( [0 / ]  [0 / ])  .( [1/ ]  [1/ ])f op g x f x op g x x f x op g x= +  



Operation on OBDD

This is used as a control structure of 

apply which proceeds from the roots of 

Bf and Bg downwards to construct nodes Bf and Bg downwards to construct nodes 

of the OBDD Bf op Bg.  

 

Let rf be the root node of Bf and rg be the 

root node of Bg. 



Operation on OBDD

1. If both rf and rg are terminal nodes 

with labels lf and lg, respectively  

Algorithm apply(op, Bf, Bg)

compute the value lf op lg and the 

resulting OBDD is B0 if the value is 0 

and B1 otherwise. 



Operation on OBDD

In the remaining cases, at least one of the 

root nodes is a non-terminal.  

If both nodes are xi-nodes (i.e., non-

terminal of same variable), terminal of same variable), 

create an xi-node n (called rf,rg) with 

a dashed line to apply (op, lo(rf), 

lo(rg)) and a solid line to apply(op, 

hi(rf), hi(rg)).  



Operation on OBDD

 If rf  is an xi-node, but rg is a terminal 

node or an xj-node with j > i, 

create an xi-node n (called rf ,rg)  with 

a dashed line to apply(op, lo(r  ), r ) a dashed line to apply(op, lo(rf ), rg) 

and a solid line to apply(op, hi(rf ), 

rg). 



Operation on OBDD

 If rg  is an xi-node, but rf is a terminal 

node or an xj-node with j > i, 

create an xi-node n (called rf ,rg)  with 

a dashed line to apply(op, lo(r  ), r ) a dashed line to apply(op, lo(rg ), rf) 

and a solid line to apply(op, hi(rg ), 

rf). 



Operation on OBDD

X1

X2

X1

X3

+

R1

R3

R2 S2

S1

X3

X3

X4

10

X4

10

+

R7R6

R5

R4

S5S4

S3

Variable ordering: [x1, x2, x3, x4]



Operation on OBDD

(R1,S1)(R1,S1)

(R3,S2)
(R2,S4)

x1



Operation on OBDD

X1

X2

X1

X3

+

R1

R3

R2 S2

S1

X3

X3

X4

10

X4

10

+R3

R7R6

R5

R4

S5S4

S3

Variable ordering: [x1, x2, x3, x4]



Operation on OBDD

 If rf  is an xi-node, but rg is a terminal 

node or an xj-node with j > i, 

create an xi-node n (called rf ,rg)  with 

a dashed line to apply(op, lo(r  ), r ) a dashed line to apply(op, lo(rf ), rg) 

and a solid line to apply(op, hi(rf ), 

rg). 



Operation on OBDD

(R1,S1)

x1

(R4,S4)

(R3,S2)
(R2,S4)

(R5,S3)

(R5,S4)

(R7,S5)

x2

x3



Operation on OBDD

X1

X2

X1

X3

+

R1

R3

R2 S2

S1

X3

X3

X4

10

X4

10

+R3

R7R6

R5

R4

S5S4

S3

Variable ordering: [x1, x2, x3, x4]



Operation on OBDD

(R1,S1)

(R ,S )

x1

(R4,S4)

(R3,S2)
(R2,S4)

(R5,S3)

(R6,S4)

(R5,S4)

(R7,S4) (R6,S4) (R7,S4)

(R7,S5)

(R6,S4) (R7,S5)

x2

x4 x5

x3

x6



Operation on OBDD

(R1,S1)

(R ,S )
(R2,S4)

x1

(R4,S4)

(R3,S2)
(R2,S4)

(R5,S3)

(R6,S4)

(R5,S4)

(R7,S4) (R6,S4) (R7,S4)

(R7,S5)

(R6,S4) (R7,S5)

x2

x4

0 1

x5

0 1

x3

x6

1

0 1



Operation on OBDD

X1

X2

X3

X4

10



Operation on OBDD

The Boolean formula obtained by replacing 

Algorithm restrict

The Boolean formula obtained by replacing 

all occurrences of x in f by 0 is denoted by 

f[0/x].  

The formula f[1/x] is defined similarly.  

The expressions f[0/x] and f[1/x] are called 

restriction of f. 



Operation on OBDD

restrict(0, x, Bf) 

For each node n corresponding to x, 

remove n from OBDD and redirect 

incoming edges to lo(n)  incoming edges to lo(n)  

restrict(1, x, Bf) 

For each node n corresponding to x, 

remove n from OBDD and redirect 

incoming edges to hi(n)  

 



Operation on OBDD

Sometimes we need to express relaxation 

of the constraint on a subset of variables. 

 

If we relax the constraint on some 

variable x of a Boolean function f, then f

could be made true by putting x to 0 or to 

1. 



Operation on OBDD

We write ( .x f∃ ) for the Boolean function 

f with the constraint on x relaxed and it 

can be expressed as: 

. [0 /  ] [1/  ]x f f x f x∃ = +  

i.e., there exists x on which the constraint 

is relaxed. 



Operation on OBDD

The exists algorithm can be implemented 

Algorithm exists

in terms of the algorithms apply and 

restrict as 

.  ( ,  (0, , ),  (1, , ))
f f

x f apply restrict x B restrict x B∃ = +  



Operation on OBDD

The exists operation can be easily 

generalized to a sequence of exists 

operations   

 

Algorithm exists

 

1. 2.............. .x x xn f∃ ∃ ∃

.  





Question

• Consider the following function

f = x1’x2x4 + x1x2’x3 + x1x2’x3’x4 + x1x2

Construct the ROBDD for f: Bf

restrict(0, x4, Bf) and restrict(1, x4, Bf)

exists(x4, Bf)



Question

x1

x3

x2 x2

0 1

x4

x3

f = x1’x2x4 + x1x2’x3 + x1x2’x3’x4 + x1x2



Question

x1

x2

x1

x2 x2

0 1

x3

restrict(0,x4,Bf)

f = x1’x2x4 + x1x2’x3 + x1x2’x3’x4 + x1x2

0 1

x4

x3



Question

x1

x2

x1

x2 x2

0 1

restrict(1,x4,Bf)

f = x1’x2x4 + x1x2’x3 + x1x2’x3’x4 + x1x2

0 1

x4

x3



Question

x1

x3

x2

x1

x2

0 1
0 1

restrict(0,x4,Bf) restrict(1,x4,Bf)

f = x1’x2x4 + x1x2’x3 + x1x2’x3’x4 + x1x2

Exists x4 f = apply(+, restrict(0, x4, Bf), restrict(1,x4,Bf))



Question



Question

x1

x2

0 1

x2



Question

• Show that the formula ∃x.f depends on all 

those variables that f depends upon, except 

x.

• If f computes to 1 with respect to a valuation 

v, then ∃x. f  computes 1 with respect to the 

same valuation.

those variables that f depends upon, except 

x.

• If f computes to 1 with respect to a valuation 

v, then ∃x. f  computes 1 with respect to the 

same valuation.
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Module VI: Binary Decision Diagram 

Lecture IV: Ordered Binary Decision Diagram for Lecture IV: Ordered Binary Decision Diagram for 
State Transition Systems



State Transition System

s0 s1

s2

s3



State Transition System

s0 s1

s2

s3

the states s0, s1, s2 and s3 can be distinguished 

using two state variables, say x 1 and x 2.  



State Transition System

s0 s1

0 1 2

1 1 2

{ }

{ }

{ }

s x x

s x x

s x x

=

=

=
s2

s3

the states s0, s1, s2 and s3 can be distinguished 

using two state variables, say x 1 and x 2.  

2 1 2

3 1 2

{ }

{ }

s x x

s x x

=

=



State Transition System: set of states

• Set of states



State Transition System: set of states
s0 s1

s2

s3

0 1 1 2 1 2

0 2 1 2 1 2

0 3 1 2 1 2

{ , }

{ , }

{ , }

{ , }  

s s x x x x

s s x x x x

s s x x x x

s s x x x x

= +

= +

= +

= + s2
3

1 2 1 2 1 2

1 3 1 2 1 3

2 3 1 2 1 3

0 1 2 1 2 1 2 1 2

0 1 3 1 2 1 2 1 3

0 2 3 1 2 1 2 1 3

0 1 2 3 1 2

{ , }  

{ , }  

{ , }  

{ , , }

{ , , }

{ , , }

{ , , , }

s s x x x x

s s x x x x

s s x x x x

s s s x x x x x x

s s s x x x x x x

s s s x x x x x x

s s s s x x x

= +

= +

= +

= + +

= + +

= + +

= + 1 2 1 2 1 3x x x x x+ +

0 1 2

1 1 2

2 1 2

3 1 2

{ }

{ }

{ }

{ }

s x x

s x x

s x x

s x x

=

=

=

=



State Transition Diagram: set of states

• Set of states is represented by Boolean 

expression.

• OBDDs are used to represent Boolean 

expression.expression.





State Transition Systems: set of states

x1

x2 x2

x1

x2

0 1 0 1

ROBDD for {s1, s2}

x1’x2 + x1x2’
ROBDD for {s0, s2, s3}

x1’x2’ + x1x2’ + x1x2



State Transition Systems: Set of states

• Set operation:

– Union, Intersection, etc

• S1 and S2 are two sets. 



State Transition Systems: Set of states

• Set operation:

– Union, Intersection, etc

• S1 and S2 are two sets. 

• B and B are the OBDD representation of • BS1 and BS2 are the OBDD representation of 

sets S1 and S2 respectively.

• Union of S1 and S2 is apply(+, BS1, BS2)

• Intersection of S1 and S2 is apply(.,BS1, BS2)



State Transition system: transition

• Transition of a system can be viewed as an 

ordered pair (sp, sn)

– sp: present state

– sn: next state  – sn: next state  



State Transition system: transition

• Transition of a system can be viewed as an 

ordered pair (sp, sn)

– sp: present state

– sn: next state  – sn: next state  

– If n variables are used to represent the current 

state

– We Need another n variables to represent the 

next state

1 2 3 4, ,  , ,.....,
n

x x x x x

1 2 3 4
' , ' ,  ' , ' ,....., '

n
x x x x x



State Transition System: Transitions

s0 s1

0 1 2

1 1 2

{ }

{ }

{ }

s x x

s x x

s x x

=

=

=
s2

s3

the states s0, s1, s2 and s3 can be distinguished 

using two state variables, say x 1 and x 2.  

2 1 2

3 1 2

{ }

{ }

s x x

s x x

=

=



State Transition System: Transitions
s0 s1

s3

Next state variables: x1’ and x2’

s2

s3

0 1 2

1 1 2

2 1 2

3 1 2

{ }

{ }

{ }

{ }

s x x

s x x

s x x

s x x

=

=

=

=



State Transition system: transition



State Transition system

• State transition system can be represented by 

Boolean expression.

• OBDD is used to represent Boolean 

expression.expression.



Verification: Model Checking 

• Model of the system: Kripke structure

– Set of states

– Transitions

– Labeling function– Labeling function

• Specification/Property: CTL

• Verification Method: Model Checking method



Model Checking

• Graph traversal algorithm

• State space explosion problem

• OBDD can be used to represent kripke

structurestructure

– State transition system

– Labeling function





Model Checking

• Symbolic Model Checking



CTL Model Checking

Temporal Operator:

AF p

- If any state s is labeled with p, label it with AF p

- Repeat: label any state with AF p if all successor states - Repeat: label any state with AF p if all successor states 
are labeled with AF p until there is no change.



Symbolic Model Checking

• Requirements:

– Find the predecessor state(s) of a state or a set of 

states



Symbolic Model Checking

• To find the predecessor states, we define two 

functions:

– Pre
∃
(X): takes a subset X of states S and return the 

set of states which can make a transition into X.set of states which can make a transition into X.

– Pre
∀

(X): takes a subset X of states S and return the 

set of states which can make a transition only into 

X.



Symbolic Model Checking

Pr ( ) { | ', ( '   ' )}e X s S s s s and s X
∃

= ∈ ∃ → ∈

Pr ( ) { | ', ( '  and ' )}e X s S s s s s X= ∈ ∀ → ∈Pr ( ) { | ', ( '  and ' )}e X s S s s s s X
∀

= ∈ ∀ → ∈



Symbolic Model Checking

y1
y3

x1x2

y4

y2

x3

SUBSET x



Symbolic Model Checking

• Important relationship between Pre
∃
(X) and 

Pre
∀

(X):

Pre (X) = S - Pre (S - X)Pre
∀

(X) = S - Pre
∃
(S - X)

S: Set of all states

X: Subset of S





Symbolic Model Checking

y1
y3

x1x2

y4

y2

x3

SUBSET x

Transition System: Represented by ROBDD

Subset X: Represented by ROBDD



Question

• Draw the state transition diagram of MOD-6 

counter.

– Give a binary encoding to the states

– Give the Boolean expression for the transition – Give the Boolean expression for the transition 

system

– Indicate the labeling function





Question

• Consider the microwave oven controller and 

give the state encoding. What is the Boolean 

expression for the state transition diagram.



Question

Start

¬ Start

¬ Close

¬ Heat

¬ Error

Start ¬ Start Start

Start

Start

¬ Close

¬ Heat

Error

Start

¬ Start

Close

¬ Heat

¬ Error

Start

Start

Close

Heat

¬ Error

Start

Start

Close

Heat

¬ Error

Start

Start

Close

¬ Heat

¬ Error

Start

Start

Close

¬ Heat

Error
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Module VI: Binary Decision Diagram 

Lecture V: Symbolic Model CheckingLecture V: Symbolic Model Checking



Symbolic Model Checking

• Represent the transition systems with ROBDD

• Set of states can be represented by ROBDD



Symbolic Model Checking

• Basis of Model Checking

– Graph Traversal algorithms

– Need to find the predecessor states of a given 

state or a set of statesstate or a set of states



Symbolic Model Checking



Symbolic Model Checking

• Important relationship between Pre
∃
(X) and 

Pre
∀

(X):

Pre (X) = S - Pre (S - X)Pre
∀

(X) = S - Pre
∃
(S - X)

S: Set of all states

X: Subset of S





Symbolic Model Checking

Procedure for Pre
∃
(X)

Given,

– BX: OBDD for set of states  X.

– B
�

: OBDD for transition relations.– B
�

: OBDD for transition relations.

Procedure,

– Rename the variables in BX to their primed 
versions; call the resulting OBDD BX’.

– Compute the OBDD for exists(x’ , apply(•, B→, BX’)) 
using the apply and exists algorithms.



Symbolic Model Checking

– Rename the variables in BX to their primed 

versions; call the resulting OBDD BX’.



Symbolic Model Checking

– Compute the OBDD for exists(x’ , apply(•, B→, BX’)) 

using the apply and exists algorithms.





CTL Model Checking

Function SATEX(p)

/* determines the set of states satisfying EXp */

local var X,Y

beginbegin

X := SAT(p)

Y := {s0 ∈ S | s0 → s1 for some s1 ∈ X}

return Y

end



Symbolic Model Checking

EX(Bф): 

Bф:OBDD for set of states where ф is true. 

// Analogous to X := SAT  (ф); // Analogous to X := SAT  (ф); 

B
�

:OBDD for transition relation.  

Return Pre
∃  (Bф). // Analogous to  Y:= {s ∈ 

S | exists s', ( s � s' and s' ∈ X)};  

Evaluation of Pre
∃
(X)



Symbolic Model Checking



CTL Model Checking

Function SATAF(p)

/* determines the set of states satisfying AFp */

local var X, Y

begin

X :=S,  Y := SAT(p), 

repeat until X = Yrepeat until X = Y

begin

X:=Y

Y := Y ∪ {s | for all s' with s → s' we have s' ∈ Y}

end

return Y

end



CTL Model Checking



Symbolic Model Checking

AF(Bф): 

Bф:OBDD for set of states where ф is true.// Analogous 

to “Y := SAT (ф)”;  

B
�

:OBDD for transition relation. 

BX : OBDD for all states of the system. // Analogous to 

“X:=S”;   

repeat until BX=Bφ // Analogous to “Repeat until X=Y” 

BX :=Bφ  // Analogous to “X := Y;” 

Bφ:=apply(+, Bφ, Pre
∀  (Bφ)) // Analogous to “Y:= Y U  { 

s ∈ S | for all s', (s� s' implies s' ∈ Y)}” 

end 

return Bφ 

 
Pre

∀
(X) = S - Pre

∃
(S - X)





CTL Model Checking

Function SATEU(p,q)

/* determines the set of states satisfying E(p U q) */

local var W,X,Y

begin

W := SAT(p), X := S, Y := SAT(q)

repeat until X = Y

beginbegin

X := Y

Y := Y ∪ (W ∩ {s | exists s' such that s → s' and s' ∈ Y}

end

return Y

end



CTL Model Checking



Symbolic Model Checking
EU(Bψ1, Bψ2): 

BX: OBDD for all states of the system. // Analogous to 

“X := S 

Bψ1:OBDD for set of states where ψ1 is true. // Analogous 

to “W := SAT (ψ1);”  

Bψ2:OBDD for set of states where ψ2 is true. // Analogous 

to“Y:=SAT(ψ2);”  to“Y:=SAT(ψ2);”  

B
�

:OBDD for transition relation. 

repeat until Bx =Bψ2  

   Bx:= Bψ2 // Analogous to “X :=Y;” 

   Bψ2:= apply(+, Bψ2, apply(•, B ψ1, Pre
∃ (Bψ2))) // 

Analogous to “Y := YU  (W I  { s     ∈ S | exists s', ( s � s' 

and s' ∈ Y)});” 

end 

return Bψ2 





Tools

• CUDD

– CU Decision Diagram Package

– University of Colorado at Boulder

• nuSMV• nuSMV

– Extension of SMV, the first model checker based 

on BDD

• SPIN

– LTL model checker developed at BELL labs





System Design Verification

• Model of the system

– Kripke structure (kind of FSM)

• Specification

– Specification language (like CTL)– Specification language (like CTL)

• Verification Method

– Model Checking



System Design Verification

• Model Checking Algorithms

– Polynomial algorithm

– Method can be easily automated

– It provides counter example– It provides counter example

• Problem with model checking

– State space explosion problem

• Symbolic Model Checking

– Use of OBDDs to content the state space explosion 
problem



Question

• We have discussed system model for

– Elevator controller

– Microwave oven controller

• Specification and verification of• Specification and verification of

– Traffic light controller

– Controller for ATM

• Use of tools

– nuSMV and SPIN



Design Cycle: Digital Systems

• Specification

• Design

• Verification

• Implementation

• Testing• Testing

• Installation/marketing

• Maintenance



The Course: Digital VLSI Design

• This course is about Digital VLSI Design

• This course consists of three parts

– Design

– Verification– Verification

– Test




