NPTEL Phase-II Video course on

Design Verification and Test of Digital VLSI Designs

Dr. Santosh Biswas Dr. Jatindra Kumar Deka IIT Guwahati

Module V: Verification Techniques

Lecture I: Introduction to Model Checking

Verification Technique: Model checking

• Process of Model Checking:

- Modeling
- Specification
- Verification Method

Model checking

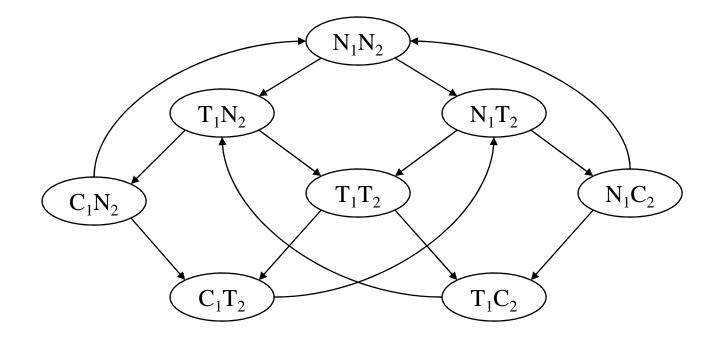
- Example: Mutual Exclusion
 - When concurrent processes share a resource (e.g. file or database record), it may be necessary to ensure that they do not have access to it at the same time.
 - Identification of critical section

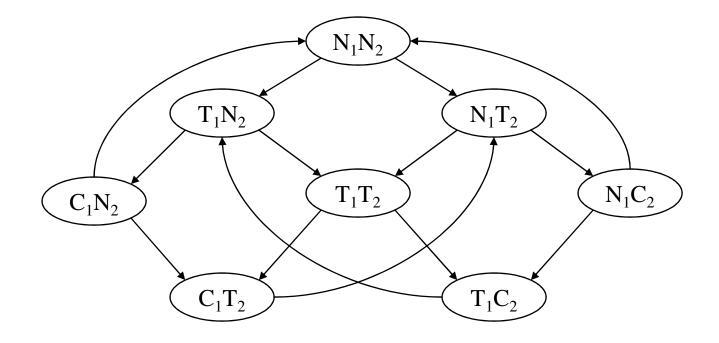
Model checking

- Example: Mutual Exclusion
 - When concurrent processes share a resource (e.g. file or database record), it may be necessary to ensure that they do not have access to it at the same time.
 - Identification of critical section
 - How to model the system
 - What are the specifications

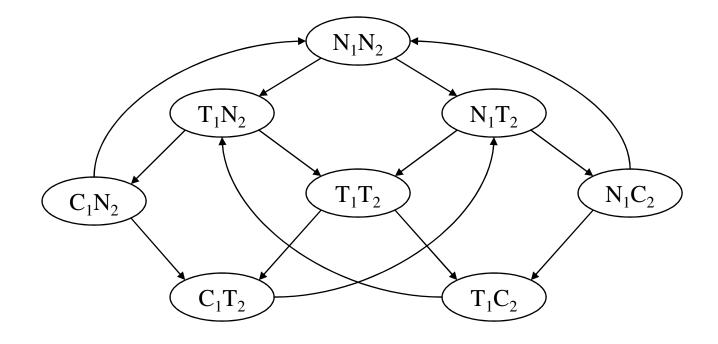
- Two process mutual exclusion for shared resources
- Each process has three states
 - Non-critical (N)
 - Trying (T)
 - Critical (C)

• Initially both processes are in the Non-critical state --- $N_1 N_2$

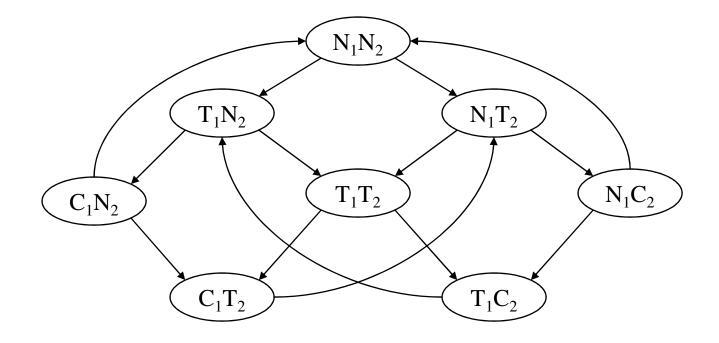




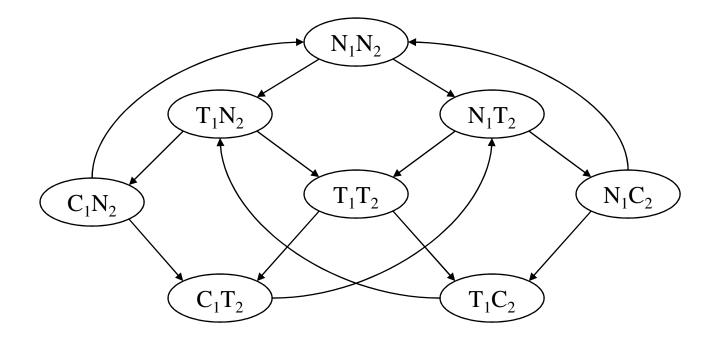
Reachable states



Total Number of states



Kripke structure



AG EF $(N_1 \wedge N_2)$

No matter where you are there is always a way to get to the initial state

Some Properties

Safety: only one process to be in its critical section at any time.

Liveness: Whenever any process wants to enter its critical section, it will eventually be permitted to do so.

Some Properties

Non-blocking: A process can always request to enter its critical section.

No strict sequencing: Processes need not enter their critical section in strict sequence

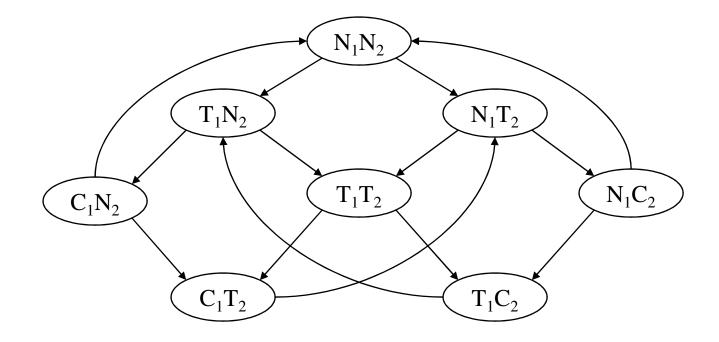
Some CTL Properties

Safety: only one process to be in its critical section at any time.

$$\mathsf{AG} \neg (\mathsf{C}_1 \land \mathsf{C}_2)$$

Liveness: Whenever any process wants to enter its critical section, it will eventually be permitted to do so.

 $AG(t_1 \rightarrow AFc_1)$



AG \neg (c₁ \land c₂)

 $AG(t_1 \rightarrow AFc_1)$

Some CTL Properties

Non-blocking: A process can always request to enter its critical section.

No strict sequencing: Processes need not enter their critical section in strict sequence

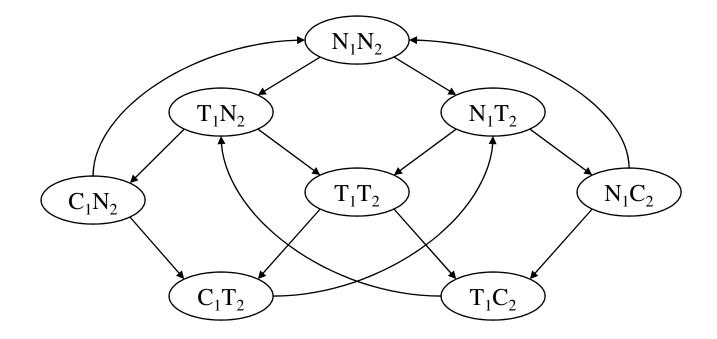
Some CTL Properties

Non-blocking: A process can always request to enter its critical section.

 $AG(n_1 \rightarrow EXt_1)$

No strict sequencing: Processes need not enter their critical section in strict sequence

 $\mathsf{EF}(\mathsf{c}_1 \land \mathsf{E}[\mathsf{c}_1 \mathsf{U} (\neg \mathsf{c}_1 \land \mathsf{E}[\neg \mathsf{c}_2 \mathsf{U} \mathsf{c}_1])])$



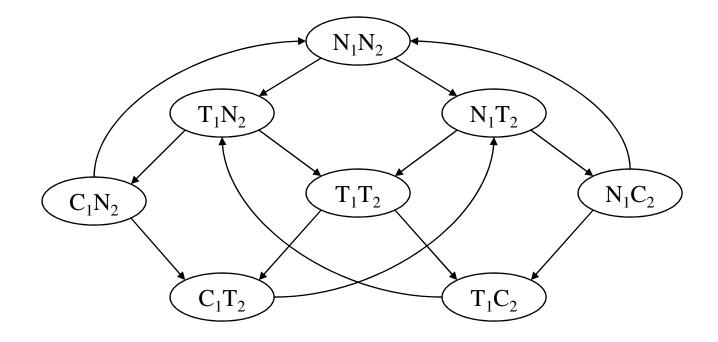
 $AG(n_1 \rightarrow EXt_1)$

 $\mathsf{EF}(\mathsf{c}_1 \land \mathsf{E}[\mathsf{c}_1 \mathsf{U} (\neg \mathsf{c}_1 \land \mathsf{E}[\neg \mathsf{c}_2 \mathsf{U} \mathsf{c}_1])])$

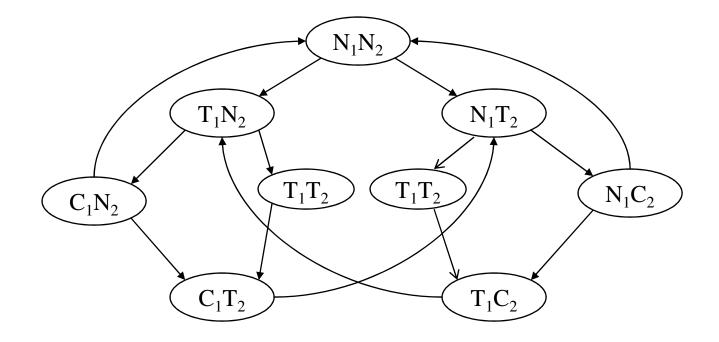
- Observation
 - $-AG \neg (c_1 \wedge c_2)$
 - $-\operatorname{AG}(t_1 \rightarrow \operatorname{AFc}_1)$
 - $AG(n_1 \rightarrow EXt_1)$
 - $EF(c_1 \wedge E[c_1 \cup (\neg c_1 \wedge E[\neg c_2 \cup c_1])])$

- Observation
 - $-AG \neg (c_1 \wedge c_2)$
 - $-\operatorname{AG}(t_1 \rightarrow \operatorname{AFc}_1)$
 - $AG(n_1 \rightarrow EXt_1)$
 - $EF(c_1 \wedge E[c_1 \cup (\neg c_1 \wedge E[\neg c_2 \cup c_1])])$

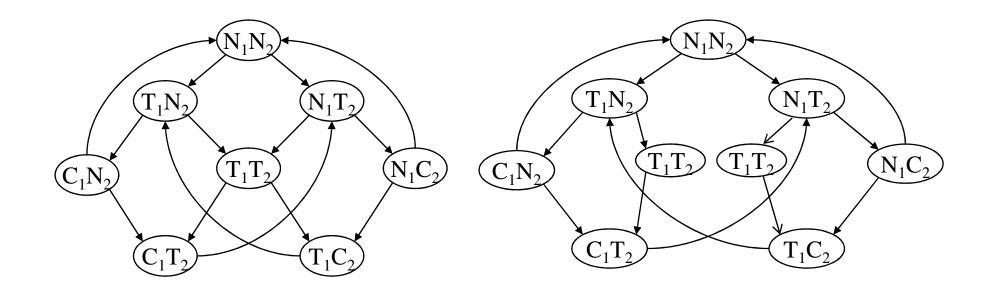
One property is not true: $AG(t_1 \rightarrow AFc_1)$



 $AG(t_1 \rightarrow AFc_1)$



 $AG(t_1 \rightarrow AFc_1)$



Model checking algorithm

Model Checking Algorithm

Given the model '*M*', the CTL formula Φ and a state s_0 of *S* as input

Model checking algorithm generates answer 'yes' (M, $s_0 \models \Phi$ holds), or 'no' (M, $s_0 \models \Phi$ does not hold).

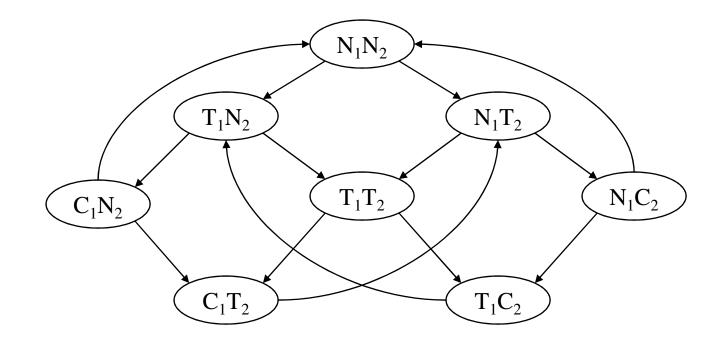
Model Checking Algorithm

Given the model '*M*' and a CTL formula Φ as input.

Model checking algorithm provides all the states of model M which satisfy Φ

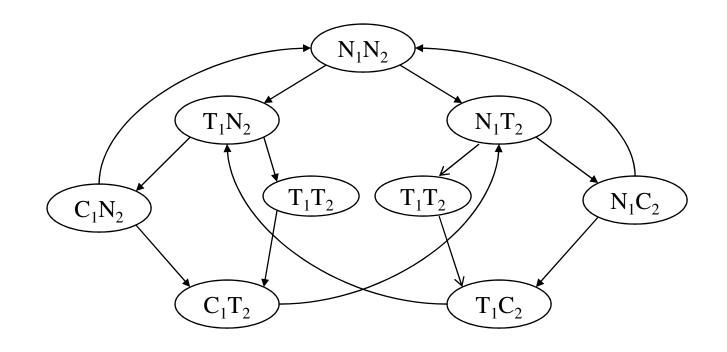
Questions

- Checking for liveness property.
 - $-\operatorname{AG}(t_1 \rightarrow \operatorname{AFc}_1)$



Questions

• Second modeling of mutual exclusion is also a over simplified model.



NPTEL Phase-II Video course on

Design Verification and Test of Digital VLSI Designs

Dr. Santosh Biswas Dr. Jatindra Kumar Deka IIT Guwahati

Module V: Verification Techniques

Lecture II: Model Checking Algorithms

Verification Technique: Model checking

• Process of Model Checking:

- Modeling
- Specification
- Verification Method: Model Checking Algorithm

Model Checking Algorithm

Given the model '*M*' and a CTL formula Φ as input.

Model checking algorithm provides all the states of model M which satisfy Φ

Model Checking Algorithm

Given the model '*M*' and a CTL formula Φ as input.

Model checking algorithm provides all the states of model M which satisfy Φ

Labeling Algorithm

Labeling Algorithms

CTL model checking algorithm basically works by iteratively determining (i.e., labeling) states which satisfy a given CTL formula.

The basic input/output of labeling algorithm are as follows:

INPUT : A CTL model '*M*' = (*S*, \rightarrow , *L*) where S is the set of states, \rightarrow is the transition relation and L is the labeling function and a CTL formula Φ .

OUTPUT : The set of states of M which satisfy Φ .

Labeling Algorithm

- The adequate set of temporal operators for CTL is AF, EU and EX.
- First, we write the given formula Φ in terms of the connectives AF, EU and EX along with other logical connectives and truth value T.
- Suppose ψ is a subformula of Φ and states satisfying all the immediate subformulas of ψ have already been labeled.

• Formula and subformula:

```
Function SAT(\Phi)
        /* determines the set of states satisfying Ø */
 Begin
      Case
        Ø is —: retune S
         Ø is ⊥: return Ø
        \emptyset is atomic: return {s \in S | \emptyset \in L(S) }
        \emptyset is \neg \emptyset_1: return S - SAT(\emptyset_1)
        \emptyset is \emptyset_1 \land \emptyset_2: return SAT (\emptyset_1) \cap SAT (\emptyset_2)
        \emptyset is \emptyset_1 \vee \emptyset_2: return SAT (\emptyset_1) U SAT (\emptyset_2)
        \emptyset is \emptyset_1 \rightarrow \emptyset_2 : return SAT (\neg \emptyset_1 \lor \emptyset_2)
        \emptyset is AX \emptyset_1 : return SAT (\negEX \neg\emptyset1)
        \emptyset is EX \emptyset_1 : return SAT<sub>EX</sub> (\emptyset_1)
        \emptyset is A(\emptyset_1 \cup \emptyset_2) : return SAT(\neg (E [\emptyset_2 \cup (\neg \emptyset_1 \land \neg \emptyset_2)] VEG\neg \emptyset_2))
        \emptyset is E(\emptyset_1 \cup \emptyset_2):return SAT<sub>EU</sub> (\emptyset_1, \emptyset_2)
        \emptyset is EF \emptyset_1 : return SAT (E(T U \emptyset_1))
        \emptyset is EG(\emptyset_1):return SAT (E(T U \emptyset_1)
        \emptyset is AF \emptyset_1 : return SAT<sub>AF</sub> (\emptyset_1)
        \emptyset is AG \emptyset_1: return (\negEF \neg \emptyset_1)
      end case
    end function
```

- Atomic proposition
 - p: label state s with p if $p \in L(s)$
- Logical connectives
 - $p \land q$: label s with $p \land q$ if s is already labeled with p and q

Temporal Operator:

EX p

Label any state with EX p if one of its successor is labeled with p

Function SAT_{EX}(p)

/* determines the set of states satisfying EXp */
local var X,Y

begin

$$\begin{split} X &:= SAT(p) \\ Y &:= \{s_0 \in S \mid s_0 \rightarrow s_1 \text{ for some } s_1 \in X\} \\ \text{return } Y \end{split}$$

end

Temporal Operator:

AF p

- If any state s is labeled with p, label it with AF p

- Repeat: label any state with AF p if all successor states are labeled with AF p until there is no change.

Temporal Operator:

AFp

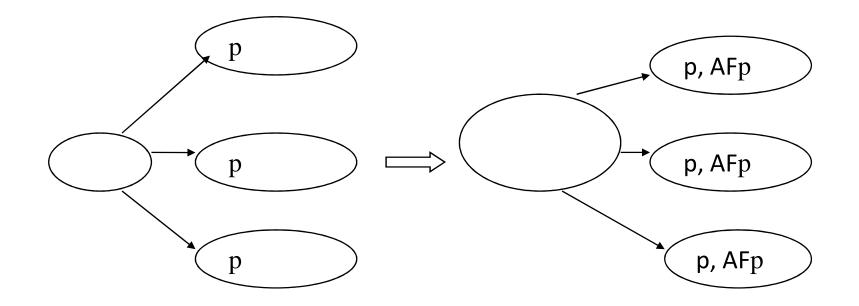
- If any state s is labeled with p, label it with AF p

- Repeat: label any state with AF p if all successor states are labeled with AF p until there is no change.

 $\mathsf{AF} \ \mathsf{p} \equiv \mathsf{p} \lor \mathsf{AX} \ \mathsf{AF} \ \mathsf{p}$

Function SAT_{AF}(p)

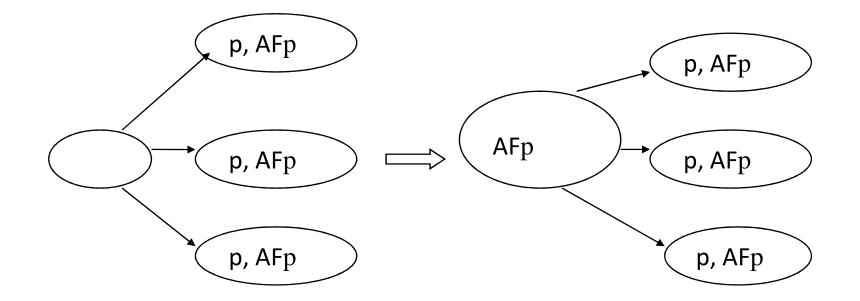
/* determines the set of states satisfying AFp */



... Until no change

Function SAT_{AF}(p)

/* determines the set of states satisfying AFp */



... Until no change

```
Function SAT_{AF}(p)
/* determines the set of states satisfying AFp */
local var X, Y
begin
   X := S, Y := SAT(p),
   repeat until X = Y
   begin
         X := Y
         Y := Y \cup \{s \mid \text{for all } s' \text{ with } s \rightarrow s' \text{ we have } s' \in Y\}
   end
   return Y
end
```

Temporal Operator:

E(pUq)

- If any state s is labeled with q, label it with E(p U q)

- Repeat: label any state with E(p U q) if it is labeled with p and at least one of its successor is labeled with E(p U q) until there is no change.

Temporal Operator:

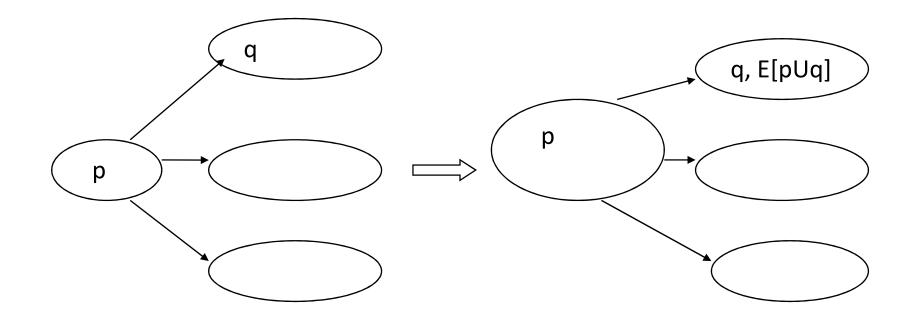
E(pUq)

- If any state s is labeled with q, label it with E(p U q)

- Repeat: label any state with E(p U q) if it is labeled with p and at least one of its successor is labeled with E(p U q) until there is no change.

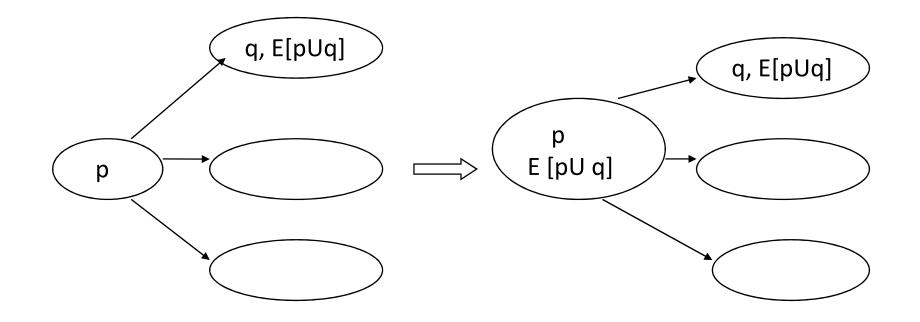
$$\mathsf{E}[\mathsf{p} \mathsf{U} \mathsf{q}] \equiv \mathsf{q} \lor (\mathsf{p} \land \mathsf{E}\mathsf{X} \mathsf{E}[\mathsf{p} \mathsf{U} \mathsf{q}])$$

Function SAT_{EU}(p,q) /* determines the set of states satisfying E(p U q) */



... Until no change

Function SAT_{EU}(p,q)
/* determines the set of states satisfying E(p U q) */



... Until no change

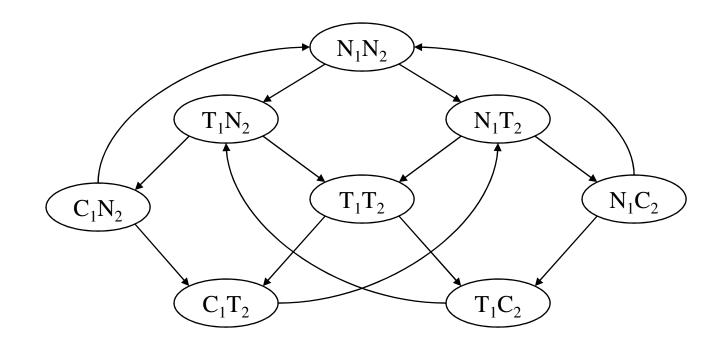
```
Function SAT<sub>EU</sub>(p,q)
```

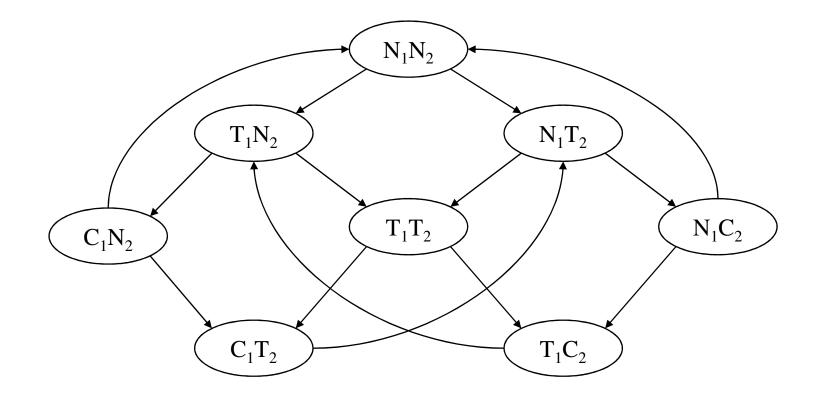
```
/* determines the set of states satisfying E(p U q) */
local var W,X,Y
begin
W := SAT(p), X := S, Y := SAT(q)
repeat until X = Y
begin
X := Y
Y := Y \cup (W \cap {s | exists s' such that s \rightarrow s' and s' \in Y}
end
return Y
end
```

• After performing the labeling for all the subformulas of Φ (including Φ itself), we output the states which are labeled Φ .

- After performing the labeling for all the subformulas of Φ (including Φ itself), we output the states which are labeled Φ .
- The complexity of the algorithm is
 - O(|f|.|V|.(V+E)
 - f : number of connectives in the formula
 - V: number of states
 - E: number of transitions

Apply the model checking algorithm to label the states with the formula AG ¬(c₁ ∧ c₂) (safety property)





AG \neg (c₁ \land c₂)

• We have the methods for EX, AF and EU

$$AG \neg (c_1 \land c_2) \equiv \neg EF (c_1 \land c_2)$$
$$\equiv \neg E(T \cup (c_1 \land c_2))$$

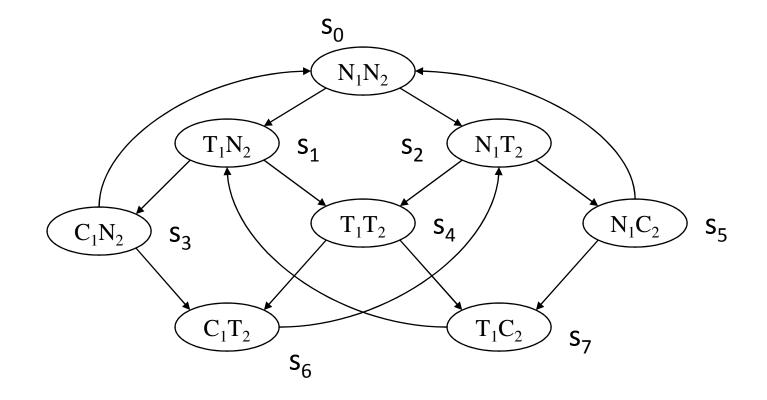
 $AGp \equiv \neg EF \neg p$ $EFp \equiv E(true U p)$

• We have the methods for EX, AF and EU

$$AG \neg (c_1 \land c_2) \equiv \neg EF (c_1 \land c_2)$$
$$\equiv \neg E(T \cup (c_1 \land c_2))$$

Subformulas:

 $c_1, c_2, c_1 \wedge c_2, E(T \cup (c_1 \wedge c_2))$ $\neg E(T \cup (c_1 \wedge c_2))$

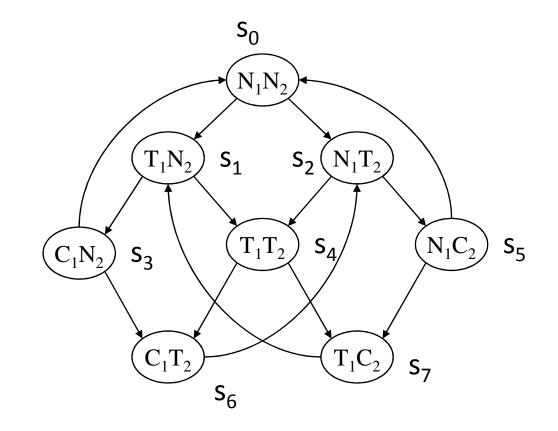


 $c_1: \{s_3, s_6\}$

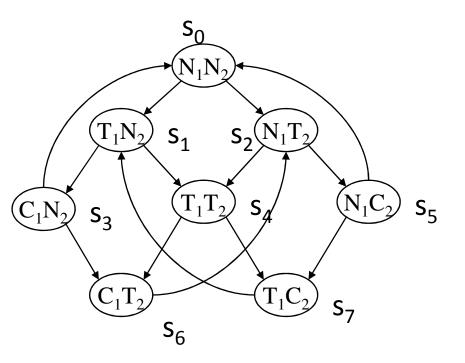
 $c_2: \{s_5, s_7\}$

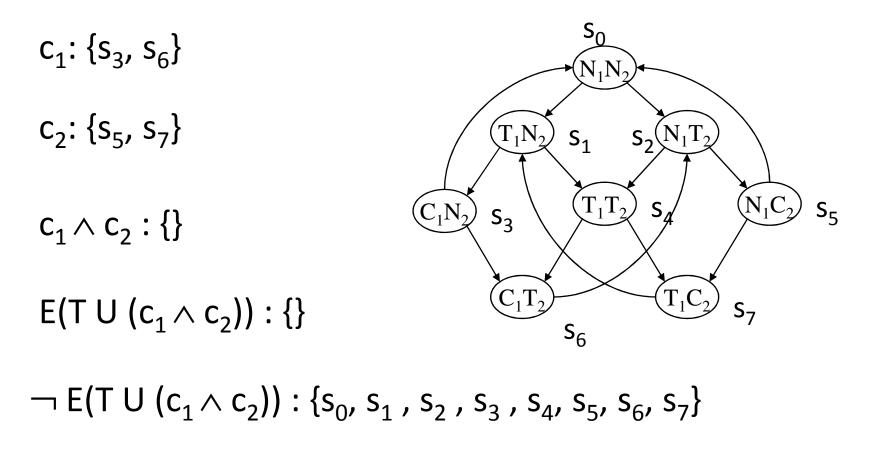
c₁: {s₃, s₆} c₂: {s₅, s₇}

 $\mathsf{C}_1 \land \mathsf{C}_2 : \{\}$



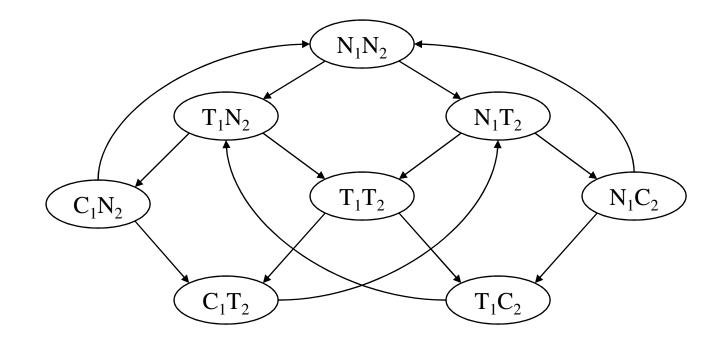
c₁: {s₃, s₆} c₂: {s₅, s₇} c₁ \land c₂ : {} E(T U (c₁ \land c₂)) : {}





 $AG \neg (c_1 \land c_2) \equiv \neg E(T \cup (c_1 \land c_2))$

• Apply the model checking algorithm to label the states with the formula $AG(t_1 \rightarrow AFc_1)$



• We have the methods for EX, AF and EU

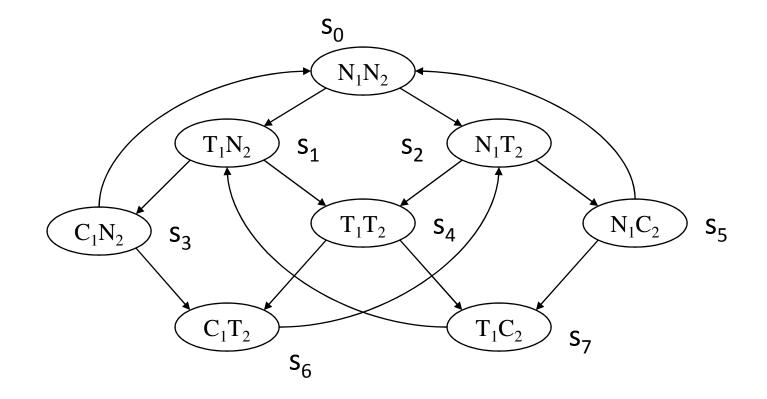
$$\begin{array}{l} \mathsf{AG}(\mathsf{t}_1 \to \mathsf{AFc}_1) \equiv \neg \mathsf{EF} \ (\neg \ (\mathsf{t}_1 \to \mathsf{AFc}_1)) \\ \\ \equiv \neg \mathsf{E}(\mathsf{T} \ \mathsf{U} \ (\neg \ (\mathsf{t}_1 \to \mathsf{AFc}_1))) \end{array}$$

 $AGp \equiv \neg EF \neg p$ $EFp \equiv E(true U p)$

$$\begin{array}{l} \mathsf{AG}(\mathsf{t}_1 \to \mathsf{AFc}_1) = \neg \ \mathsf{EF} \ (\neg \ (\mathsf{t}_1 \to \mathsf{AFc}_1)) \\ \\ = \neg \ \mathsf{E}(\mathsf{T} \ \mathsf{U} \ (\neg \ (\mathsf{t}_1 \to \mathsf{AFc}_1))) \end{array}$$

Subformuals:

$$\begin{split} &t_1, c_1, AFc_1, (t_1 \rightarrow AFc_1), \neg (t_1 \rightarrow AFc_1), \\ & E(T \cup (\neg (t_1 \rightarrow AFc_1))), \\ & \neg E(T \cup (\neg (t_1 \rightarrow AFc_1))) \end{split}$$



 $t_1: \{s_1, s_4, s_7\}$ $c_1: \{s_3, s_6\}$

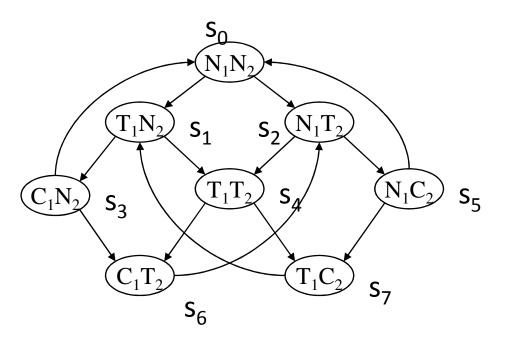
Temporal Operator:

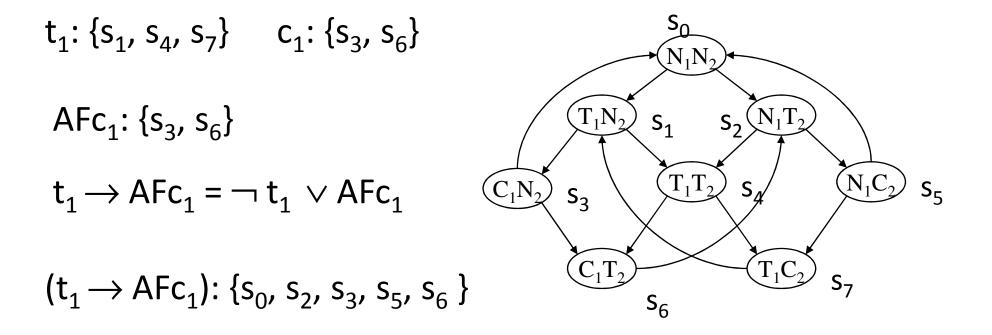
 AFc_1

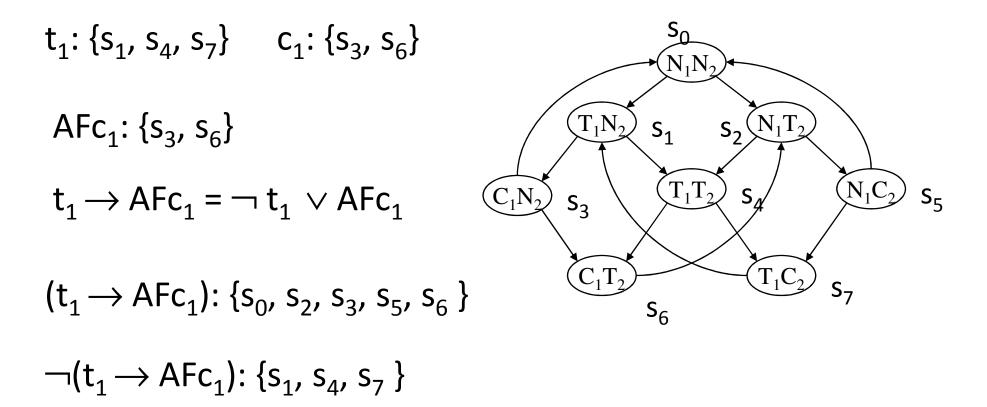
- If any state s is labeled with $\rm c_1$, label it with AF $\rm c_1$

- Repeat: label any state with AF c_1 if all successor states are labeled with AF c_1 until there is no change.

 $t_1: \{s_1, s_4, s_7\}$ $c_1: \{s_3, s_6\}$ AFc₁: $\{s_3, s_6\}$



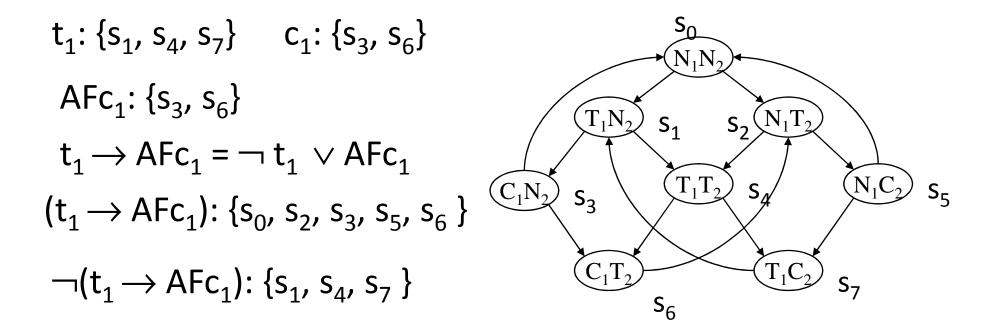




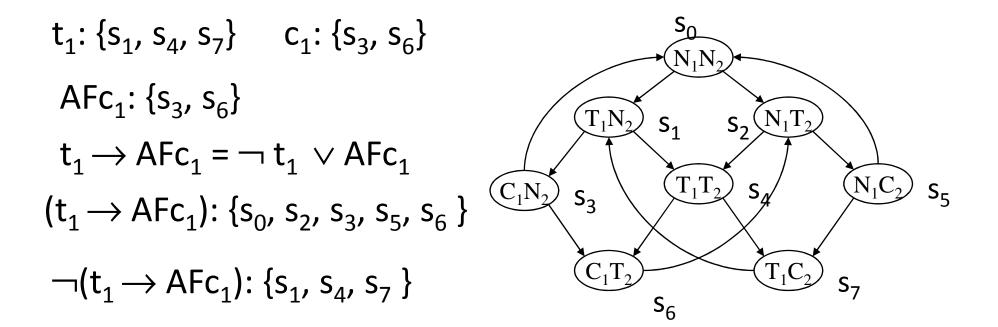
Temporal Operator: E(p U q)

- If any state s is labeled with q, label it with E(p U q)

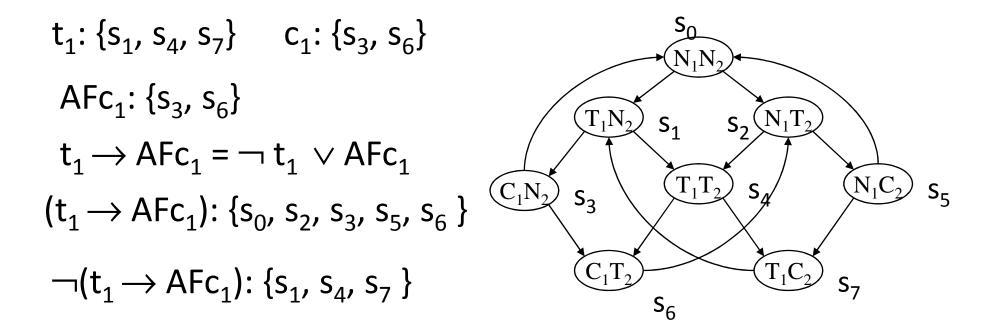
 Repeat: label any state with E(p U q) if it is labeled with p and at least one of its successor is labeled with E(p U q) until there is no change.



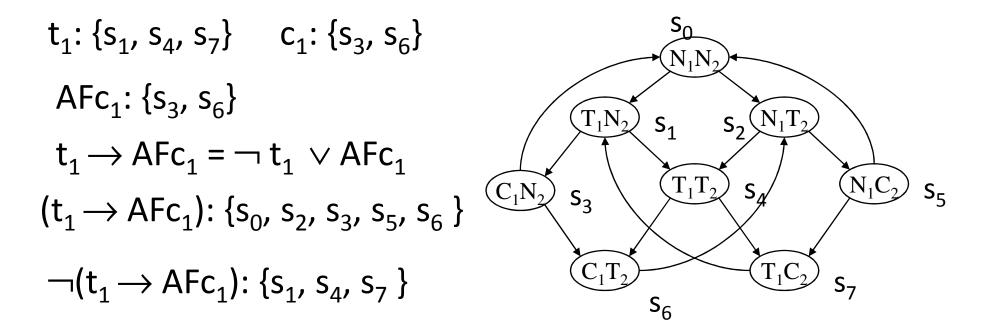
 $\mathsf{E}(\mathsf{T} \cup \neg(\mathsf{t}_1 \to \mathsf{AFc}_1)): \{\mathsf{s}_1, \mathsf{s}_4, \mathsf{s}_7\}$



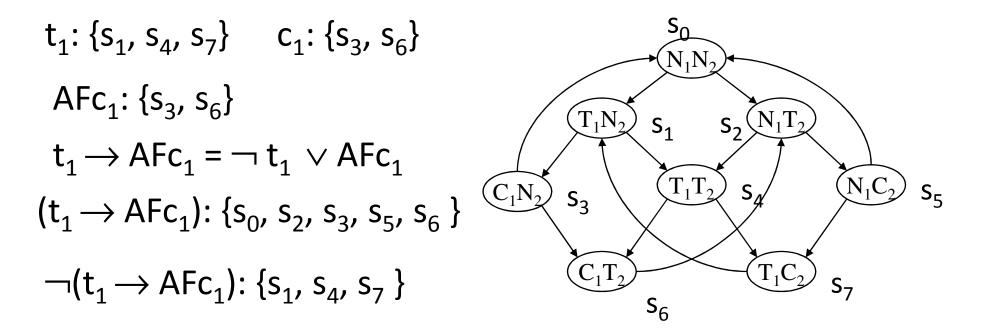
 $E(T \cup \neg(t_1 \to AFc_1)): \{s_1, s_4, s_7, s_0, s_2, s_5\}$



 $E(T \cup \neg(t_1 \to AFc_1)): \{s_1, s_4, s_7, s_0, s_2, s_5, s_3\}$



 $E(T \cup \neg(t_1 \to AFc_1)): \{s_1, s_4, s_7, s_0, s_2, s_5, s_3, s_6\}$



 $E(T \cup \neg(t_1 \to AFc_1)): \{s_1, s_4, s_7, s_0, s_2, s_5, s_3, s_6\}$

 $\neg \mathsf{E}(\mathsf{T} \mathsf{U} \neg (\mathsf{t}_1 \rightarrow \mathsf{AFc}_1)): \{\}$

NPTEL Phase-II Video course on

Design Verification and Test of Digital VLSI Designs

Dr. Santosh Biswas Dr. Jatindra Kumar Deka IIT Guwahati

Module V: Verification Techniques

Lecture III: Model Checking Algorithms

Model Checking Algorithm

Given the model '*M*' and a CTL formula Φ as input.

Model checking algorithm provides all the states of model M which satisfy Φ

Labeling Algorithm

Labeling Algorithms

CTL model checking algorithm basically works by iteratively determining (i.e., labeling) states which satisfy a given CTL formula.

The basic input/output of labeling algorithm are as follows:

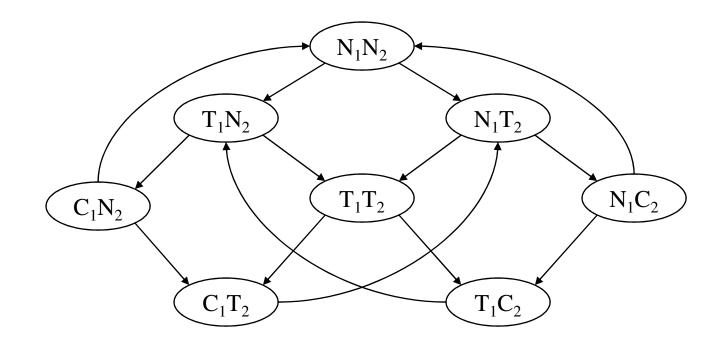
```
INPUT : A CTL model 'M' = (S, \rightarrow, L)
CTL formula \Phi.
```

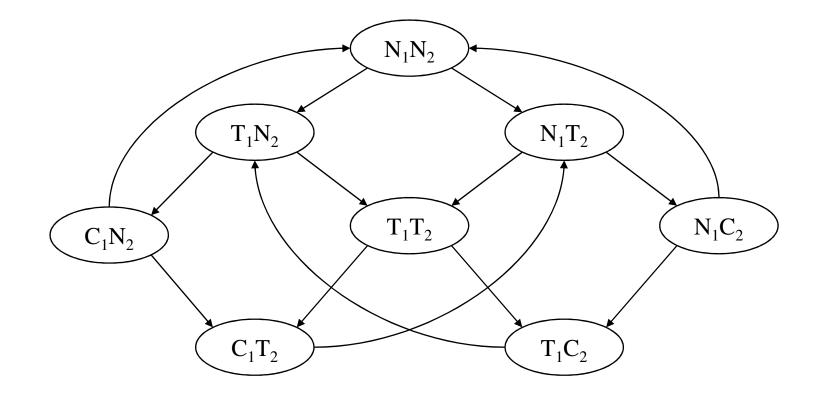
OUTPUT : The set of states of M which satisfy Φ .

CTL Model Checking

- Algorithms for the operators:
 - -EX
 - -AF
 - EU

Apply the model checking algorithm to label the states with the formula AG ¬(c₁ ∧ c₂) (safety property)





AG \neg (c₁ \land c₂)

• We have the methods for EX, AF and EU

$$AG \neg (c_1 \land c_2) \equiv \neg EF (c_1 \land c_2)$$
$$\equiv \neg E(T \cup (c_1 \land c_2))$$

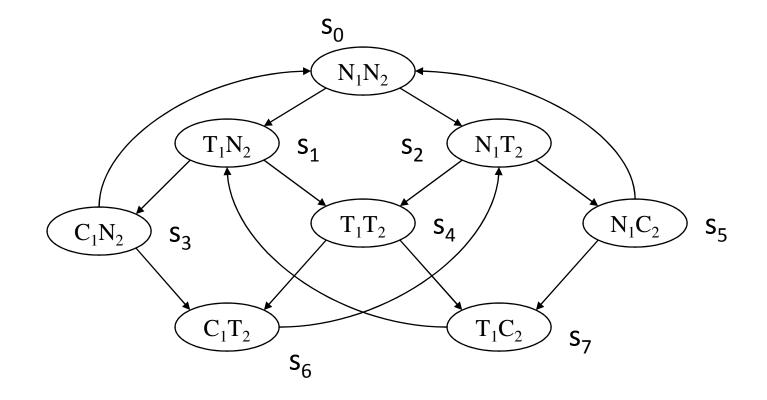
 $AGp \equiv \neg EF \neg p$ $EFp \equiv E(true U p)$

• We have the methods for EX, AF and EU

$$AG \neg (c_1 \land c_2) \equiv \neg EF (c_1 \land c_2)$$
$$\equiv \neg E(T \cup (c_1 \land c_2))$$

Subformulas:

 $c_1, c_2, c_1 \wedge c_2, E(T \cup (c_1 \wedge c_2))$ $\neg E(T \cup (c_1 \wedge c_2))$

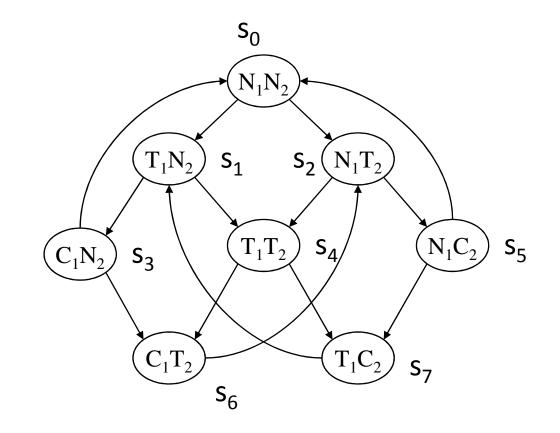


 $c_1: \{s_3, s_6\}$

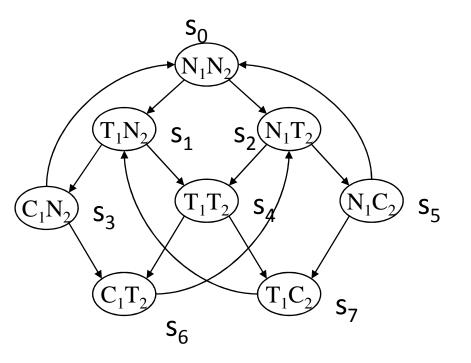
 $c_2: \{s_5, s_7\}$

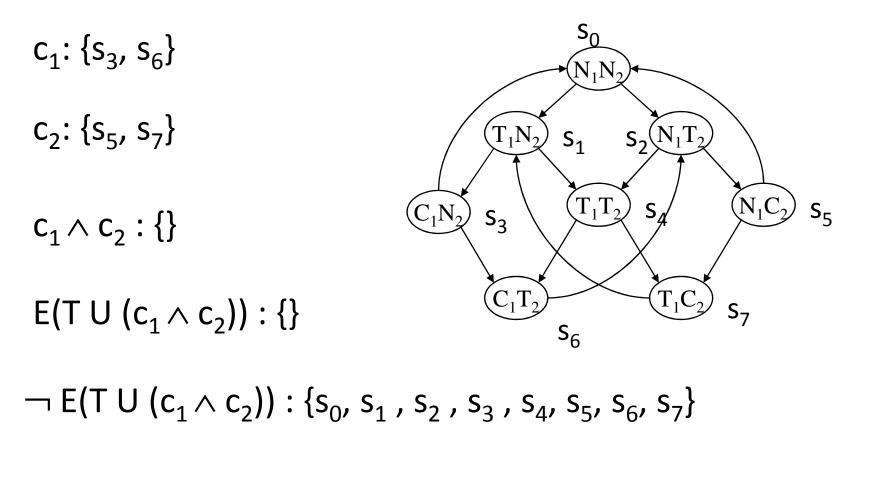
c₁: {s₃, s₆} c₂: {s₅, s₇}

 $\mathsf{C}_1 \land \mathsf{C}_2 : \{\}$



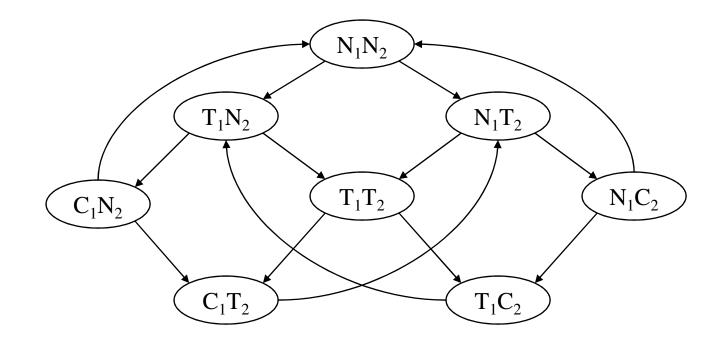
c₁: {s₃, s₆} c₂: {s₅, s₇} c₁ \land c₂ : {} E(T U (c₁ \land c₂)) : {}





 $AG \neg (c_1 \land c_2) \equiv \neg E(T \cup (c_1 \land c_2))$

• Apply the model checking algorithm to label the states with the formula $AG(t_1 \rightarrow AFc_1)$



• We have the methods for EX, AF and EU

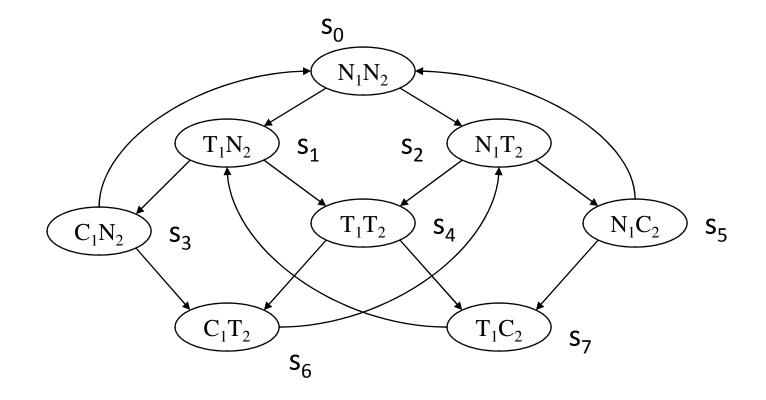
$$\begin{array}{l} \mathsf{AG}(\mathsf{t}_1 \to \mathsf{AFc}_1) \equiv \neg \mathsf{EF} \ (\neg \ (\mathsf{t}_1 \to \mathsf{AFc}_1)) \\ \\ \equiv \neg \mathsf{E}(\mathsf{T} \ \mathsf{U} \ (\neg \ (\mathsf{t}_1 \to \mathsf{AFc}_1))) \end{array}$$

 $AGp \equiv \neg EF \neg p$ $EFp \equiv E(true U p)$

$$\begin{array}{l} \mathsf{AG}(\mathsf{t}_1 \to \mathsf{AFc}_1) = \neg \ \mathsf{EF} \ (\neg \ (\mathsf{t}_1 \to \mathsf{AFc}_1)) \\ \\ = \neg \ \mathsf{E}(\mathsf{T} \ \mathsf{U} \ (\neg \ (\mathsf{t}_1 \to \mathsf{AFc}_1))) \end{array}$$

Subformuals:

$$\begin{aligned} &t_1, c_1, AFc_1, (t_1 \rightarrow AFc_1), \neg (t_1 \rightarrow AFc_1), \\ &E(T \cup (\neg (t_1 \rightarrow AFc_1))), \\ &\neg E(T \cup (\neg (t_1 \rightarrow AFc_1))) \end{aligned}$$



 $t_1: \{s_1, s_4, s_7\}$ $c_1: \{s_3, s_6\}$

$$\begin{array}{l} \mathsf{AG}(\mathsf{t}_1 \to \mathsf{AFc}_1) = \neg \ \mathsf{EF} \ (\neg \ (\mathsf{t}_1 \to \mathsf{AFc}_1)) \\ \\ = \neg \ \mathsf{E}(\mathsf{T} \ \mathsf{U} \ (\neg \ (\mathsf{t}_1 \to \mathsf{AFc}_1))) \end{array}$$

Subformuals:

$$\begin{aligned} &t_1, c_1, AFc_1, (t_1 \rightarrow AFc_1), \neg (t_1 \rightarrow AFc_1), \\ &E(T \cup (\neg (t_1 \rightarrow AFc_1))), \\ &\neg E(T \cup (\neg (t_1 \rightarrow AFc_1))) \end{aligned}$$

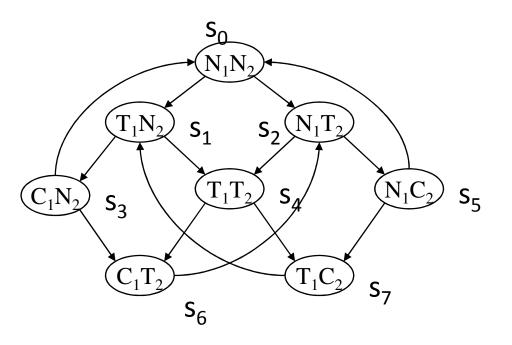
Temporal Operator:

 AFc_1

- If any state s is labeled with $c_{1}^{}\text{,}$ label it with AF $c_{1}^{}$

- Repeat: label any state with AF c_1 if all successor states are labeled with AF c_1 until there is no change.

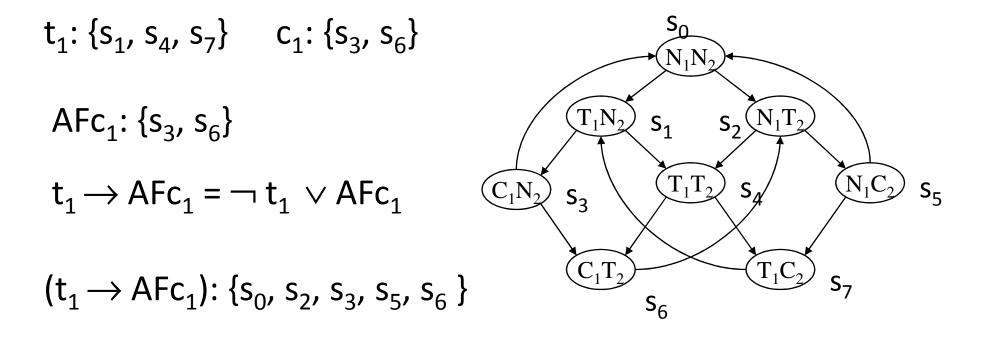
 $t_1: \{s_1, s_4, s_7\}$ $c_1: \{s_3, s_6\}$ AFc₁: $\{s_3, s_6\}$

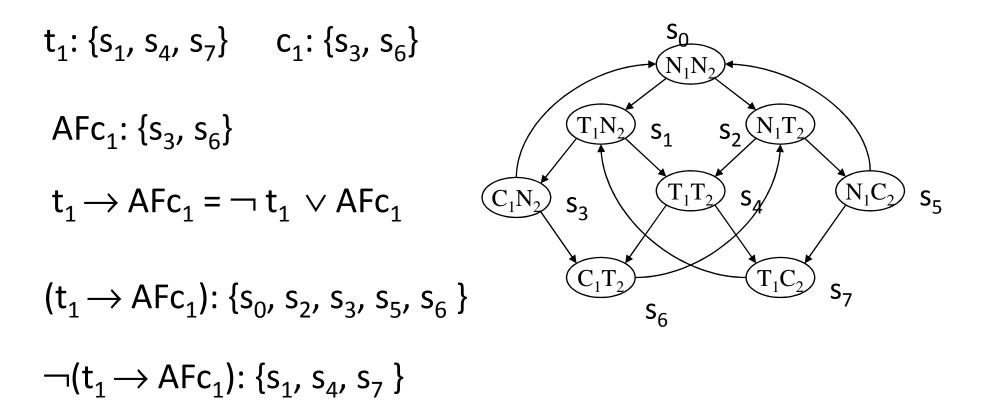


$$\begin{array}{l} \mathsf{AG}(\mathsf{t}_1 \to \mathsf{AFc}_1) = \neg \ \mathsf{EF} \ (\neg \ (\mathsf{t}_1 \to \mathsf{AFc}_1)) \\ \\ = \neg \ \mathsf{E}(\mathsf{T} \ \mathsf{U} \ (\neg \ (\mathsf{t}_1 \to \mathsf{AFc}_1))) \end{array}$$

Subformuals:

$$\begin{aligned} &t_1, c_1, AFc_1, (t_1 \rightarrow AFc_1), \neg (t_1 \rightarrow AFc_1), \\ &E(T \cup (\neg (t_1 \rightarrow AFc_1))), \\ &\neg E(T \cup (\neg (t_1 \rightarrow AFc_1))) \end{aligned}$$





$$\begin{array}{l} \mathsf{AG}(\mathsf{t}_1 \to \mathsf{AFc}_1) = \neg \ \mathsf{EF} \ (\neg \ (\mathsf{t}_1 \to \mathsf{AFc}_1)) \\ \\ = \neg \ \mathsf{E}(\mathsf{T} \ \mathsf{U} \ (\neg \ (\mathsf{t}_1 \to \mathsf{AFc}_1))) \end{array}$$

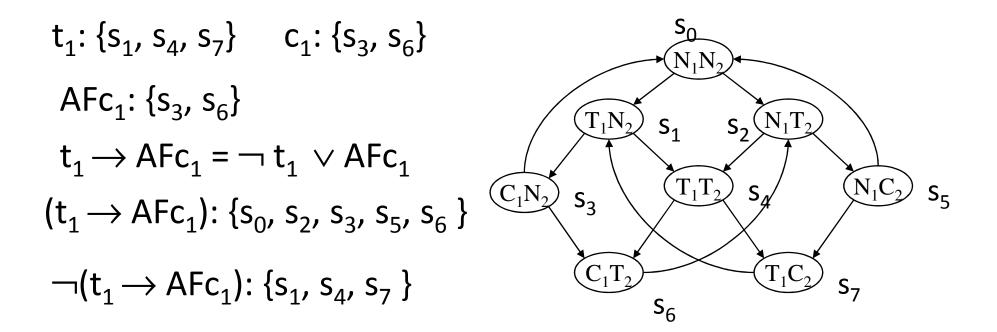
Subformuals:

$$\begin{aligned} &t_1, c_1, AFc_1, (t_1 \rightarrow AFc_1), \neg (t_1 \rightarrow AFc_1), \\ &E(T \cup (\neg (t_1 \rightarrow AFc_1))), \\ &\neg E(T \cup (\neg (t_1 \rightarrow AFc_1))) \end{aligned}$$

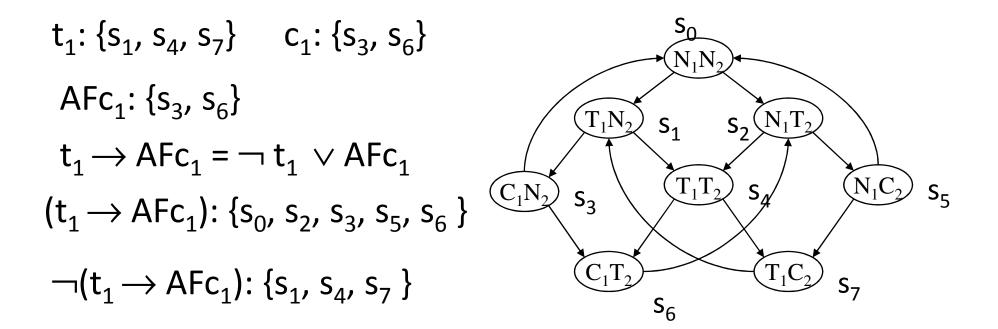
Temporal Operator: E(p U q)

- If any state s is labeled with q, label it with E(p U q)

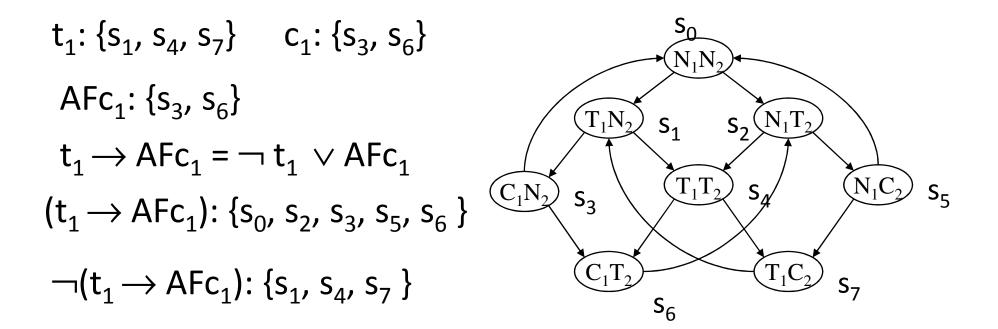
 Repeat: label any state with E(p U q) if it is labeled with p and at least one of its successor is labeled with E(p U q) until there is no change.



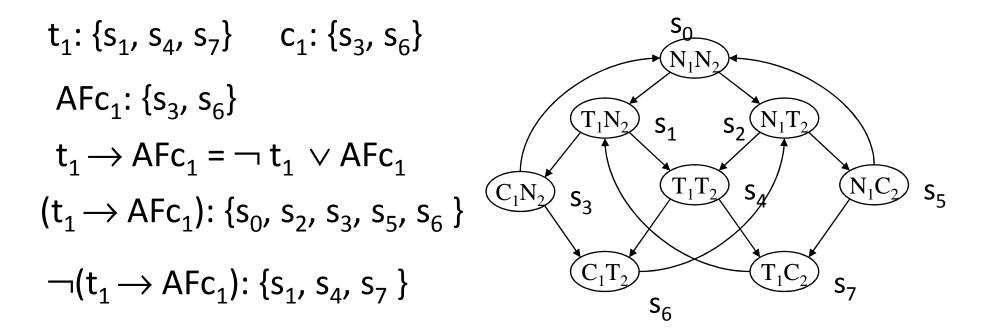
 $\mathsf{E}(\mathsf{T} \cup \neg(\mathsf{t}_1 \to \mathsf{AFc}_1)): \{\mathsf{s}_1, \mathsf{s}_4, \mathsf{s}_7\}$



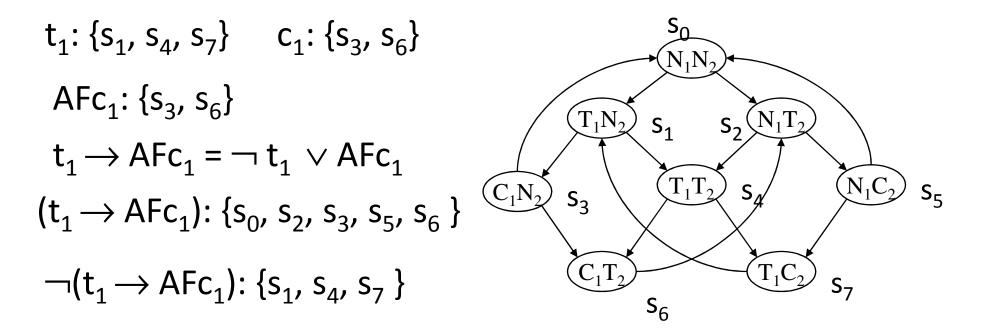
 $E(T \cup \neg(t_1 \to AFc_1)): \{s_1, s_4, s_7, s_0, s_2, s_5\}$



 $E(T \cup \neg(t_1 \to AFc_1)): \{s_1, s_4, s_7, s_0, s_2, s_5, s_3\}$



 $E(T \cup \neg(t_1 \to AFc_1)): \{s_1, s_4, s_7, s_0, s_2, s_5, s_3, s_6\}$



 $E(T \cup \neg(t_1 \to AFc_1)): \{s_1, s_4, s_7, s_0, s_2, s_5, s_3, s_6\}$

 $\neg \mathsf{E}(\mathsf{T} \mathsf{U} \neg (\mathsf{t}_1 \rightarrow \mathsf{AFc}_1)): \{\}$

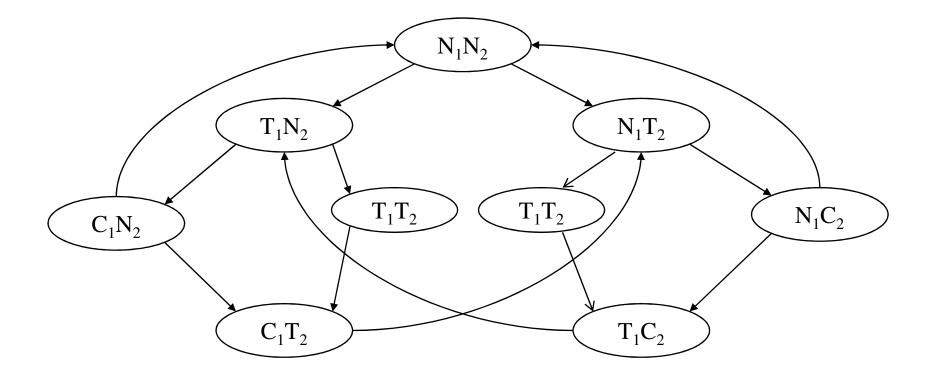
$$\begin{array}{l} \mathsf{AG}(\mathsf{t}_1 \to \mathsf{AFc}_1) = \neg \ \mathsf{EF} \ (\neg \ (\mathsf{t}_1 \to \mathsf{AFc}_1)) \\ \\ = \neg \ \mathsf{E}(\mathsf{T} \ \mathsf{U} \ (\neg \ (\mathsf{t}_1 \to \mathsf{AFc}_1))) \end{array}$$

Subformuals:

$$\begin{aligned} &t_1, c_1, AFc_1, (t_1 \rightarrow AFc_1), \neg (t_1 \rightarrow AFc_1), \\ &E(T \cup (\neg (t_1 \rightarrow AFc_1))), \\ &\neg E(T \cup (\neg (t_1 \rightarrow AFc_1))) \end{aligned}$$

Questions

Apply the model checking algorithm to label the states with the formula $AG(t_1 \rightarrow AFc_1)$



$$\begin{array}{l} \mathsf{AG}(\mathsf{t}_1 \to \mathsf{AFc}_1) = \neg \ \mathsf{EF} \ (\neg \ (\mathsf{t}_1 \to \mathsf{AFc}_1)) \\ \\ = \neg \ \mathsf{E}(\mathsf{T} \ \mathsf{U} \ (\neg \ (\mathsf{t}_1 \to \mathsf{AFc}_1))) \end{array}$$

Subformuals:

$$\begin{aligned} &t_1, c_1, AFc_1, (t_1 \rightarrow AFc_1), \neg (t_1 \rightarrow AFc_1), \\ &E(T \cup (\neg (t_1 \rightarrow AFc_1))), \\ &\neg E(T \cup (\neg (t_1 \rightarrow AFc_1))) \end{aligned}$$

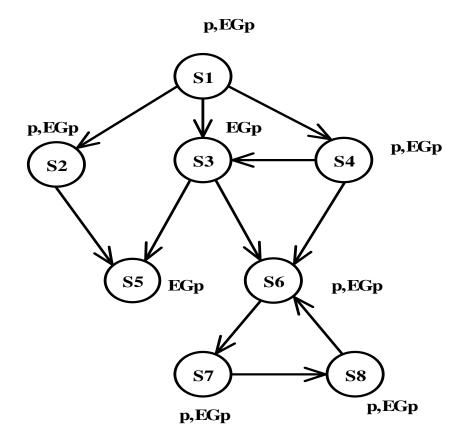
CTL Model Checking

- Algorithms for the operators:
 - -EX
 - -AF
 - -EU
- We may write procedure for other operators also

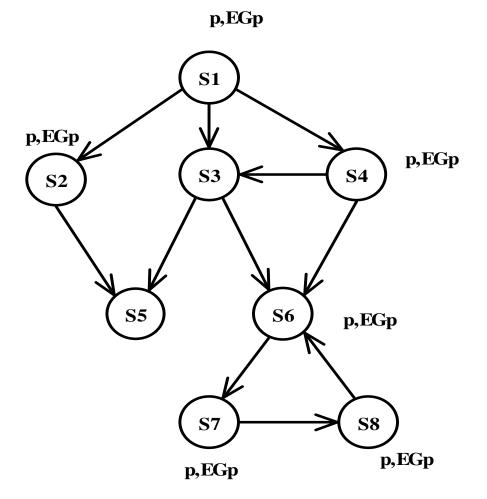
– EG or AG

Labeling algorithm for EG

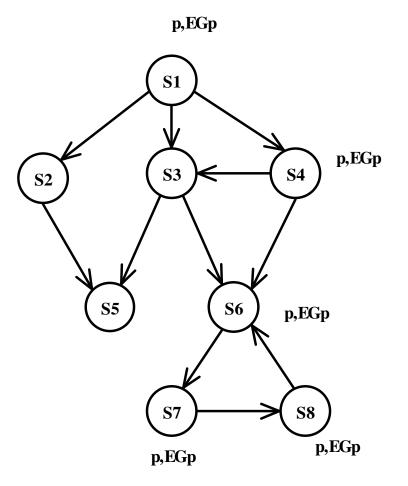
Step1: Label all the states with EGp.Step2: If any state s is not labeled with p, delete the label EGp.Step3: Repeat: delete the label EGp from any state if none of its successors is labeled with EGp until there is no change.



Label each state by EGp



Delete the label EGp if the sate is not labeled with p



Delete the label EGp if non of its successor is labeled with EGp

- For the operators AFq and E(p U q)
 - We start from nothing
 - Collecting the states that are labeled with q
 - Repeat the process for collection
- For the operator EG
 - We start from complete state space
 - Delete states from this set

Questions

• Write the labeling algorithm for the temporal operator AG.

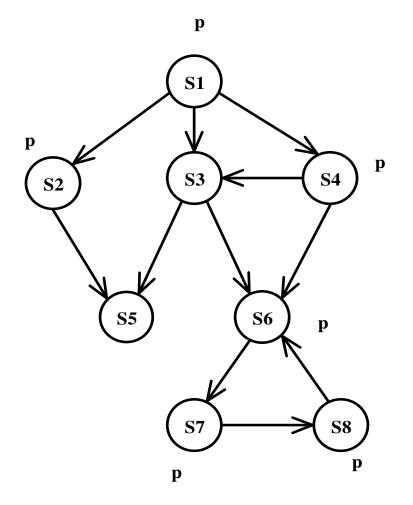
Labeling algorithm for EG

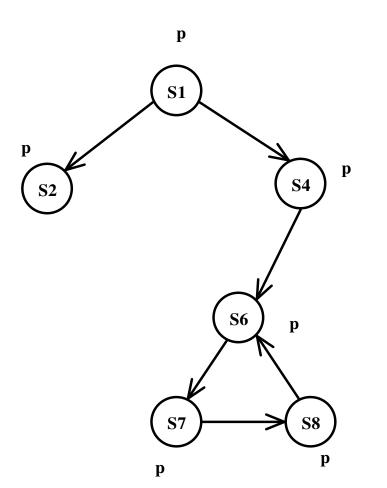
Step1: Label all the states with EGp.Step2: If any state s is not labeled with p, delete the label EGp.Step3: Repeat: delete the label EGp from any state if none of its successors is labeled with EGp until there is no change.

• Complexity Issue

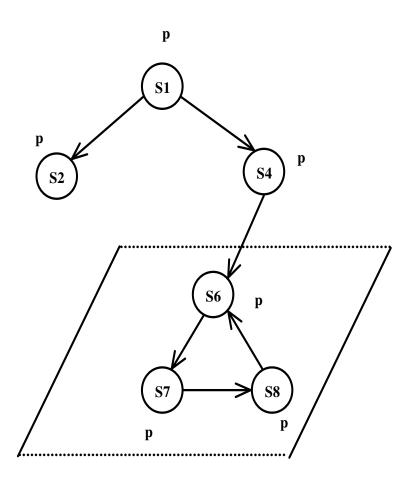
Different way of handling EG Step1: Restrict the graph to states satisfying p, i.e., delete all other states and their transitions. Step2: Find the maximal strongly connected components (SCCs); These are maximal regions of the state space in which every state is linked with every other one in that region.

Step3: Use backwards breadth-first searching on the restricted graph to find any state that can reach an SCC.

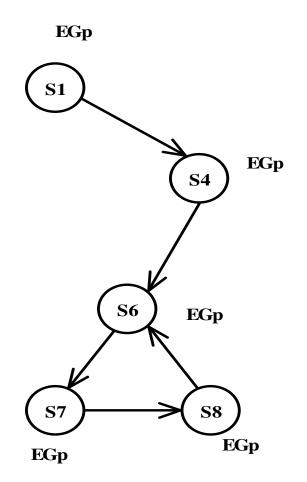




Restrict the graph for the states where p is true



Find the strongly connected component (SCC)



NPTEL Phase-II Video course on

Design Verification and Test of Digital VLSI Designs

Dr. Santosh Biswas Dr. Jatindra Kumar Deka IIT Guwahati

Module V: Verification Techniques

Lecture IV: Model Checking with Fairness

Labeling Algorithms

CTL model checking algorithm basically works by iteratively determining (i.e., labeling) states which satisfy a given CTL formula.

The basic input/output of labeling algorithm are as follows:

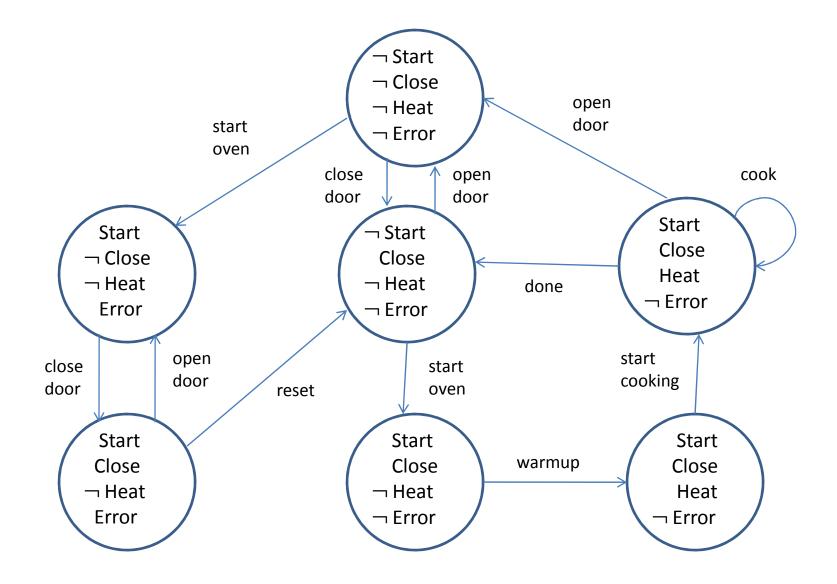
```
INPUT : A CTL model 'M' = (S, \rightarrow, L)
CTL formula \Phi.
```

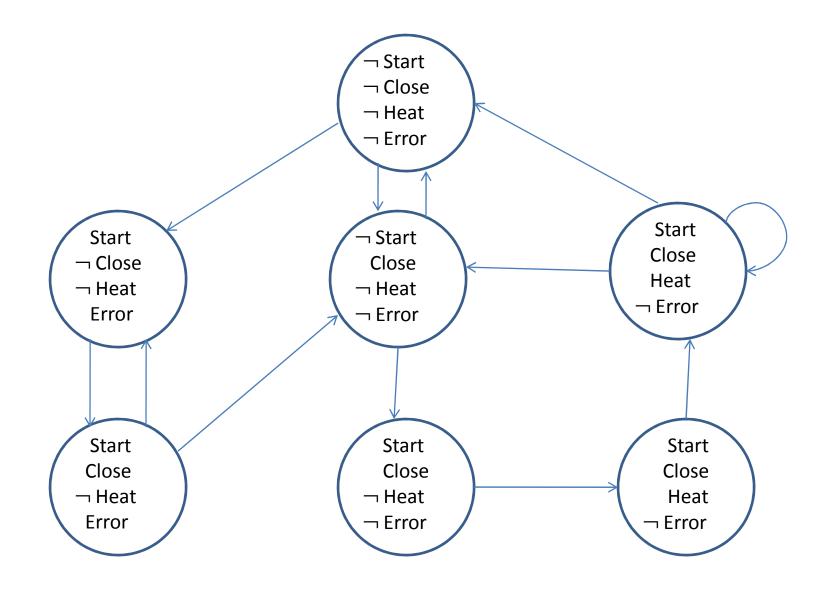
OUTPUT : The set of states of M which satisfy Φ .

• Design a controller for a microwave oven.

- Design a controller for a microwave oven.
 - Door of the oven: either open or close
 - Start of the oven
 - reset

- Simplified model:
 - Start
 - Close
 - Heat
 - Error

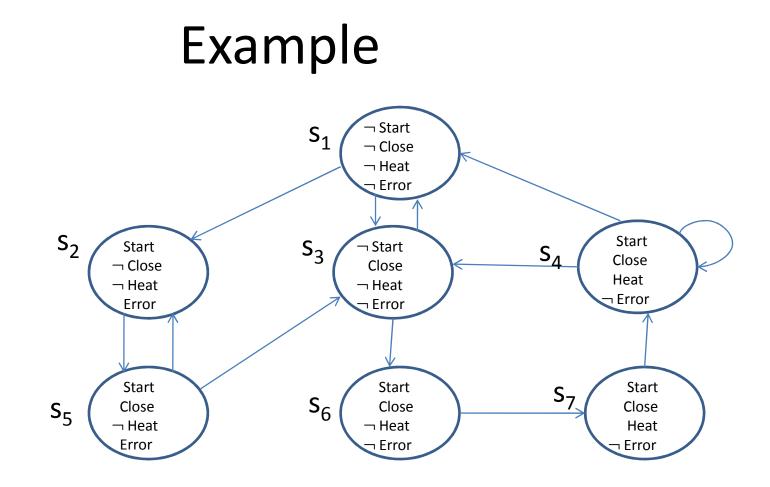




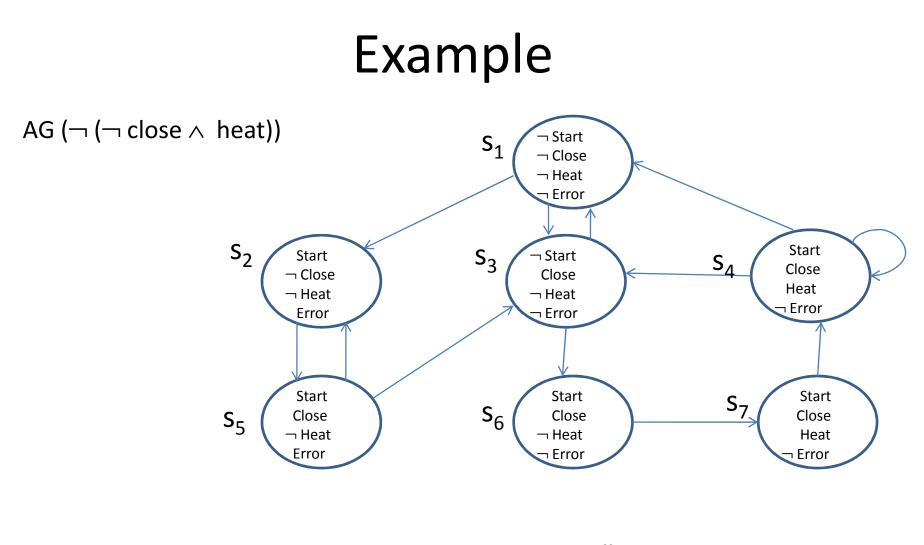
- Microwave oven should not heat up with its door open.
- Once we start the oven, eventually it must turn on the heating coil.

- Microwave oven should not heat up with its door open.
 - $-AG (\neg (\neg close \land heat))$
- Once we start the oven, eventually it must turn on the heating coil.

 $-AG(start \rightarrow AF heat)$

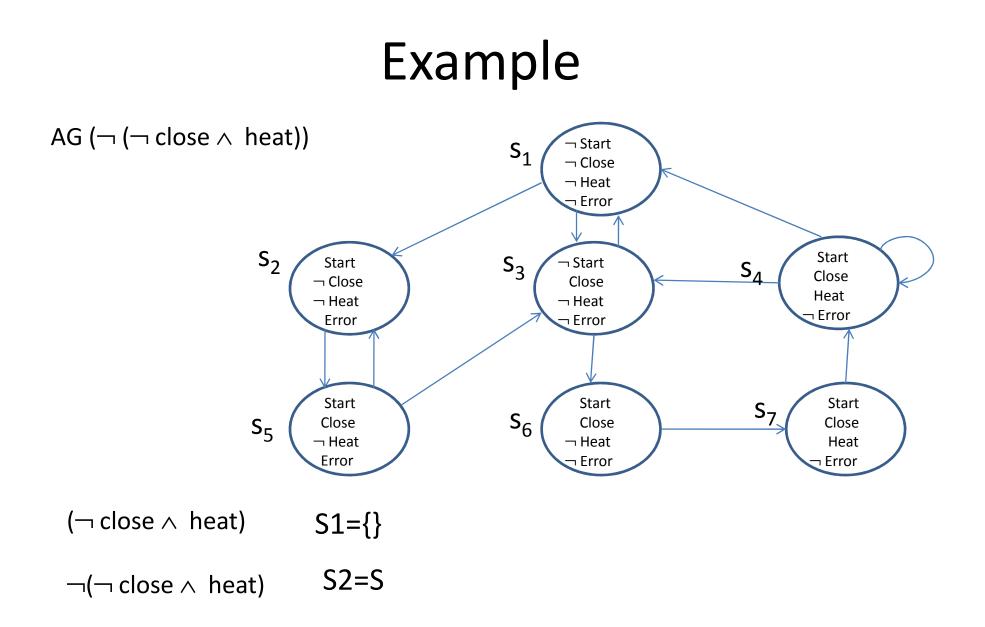


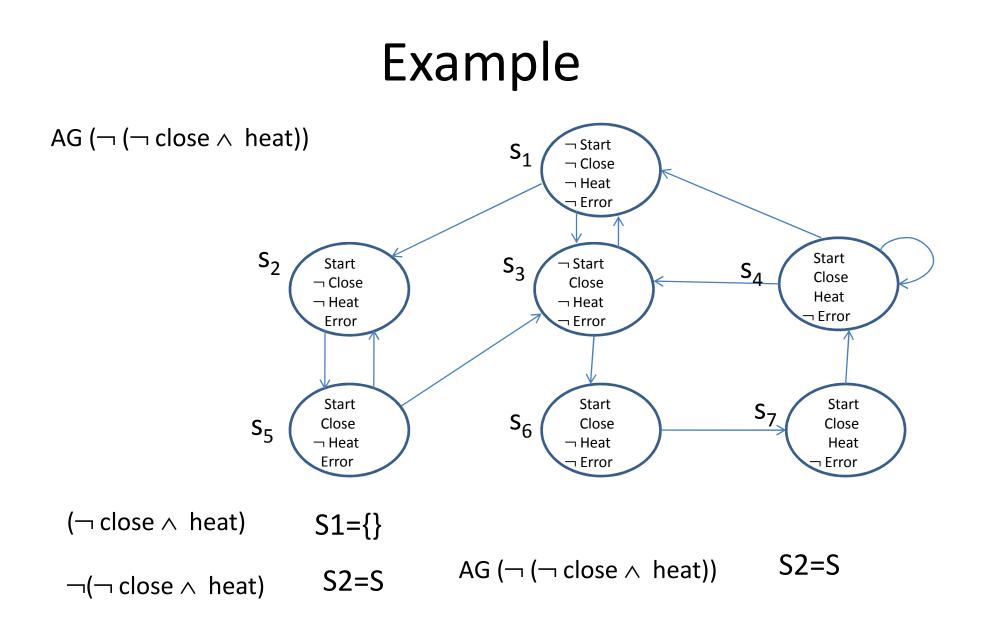
AG (\neg (\neg close \land heat))

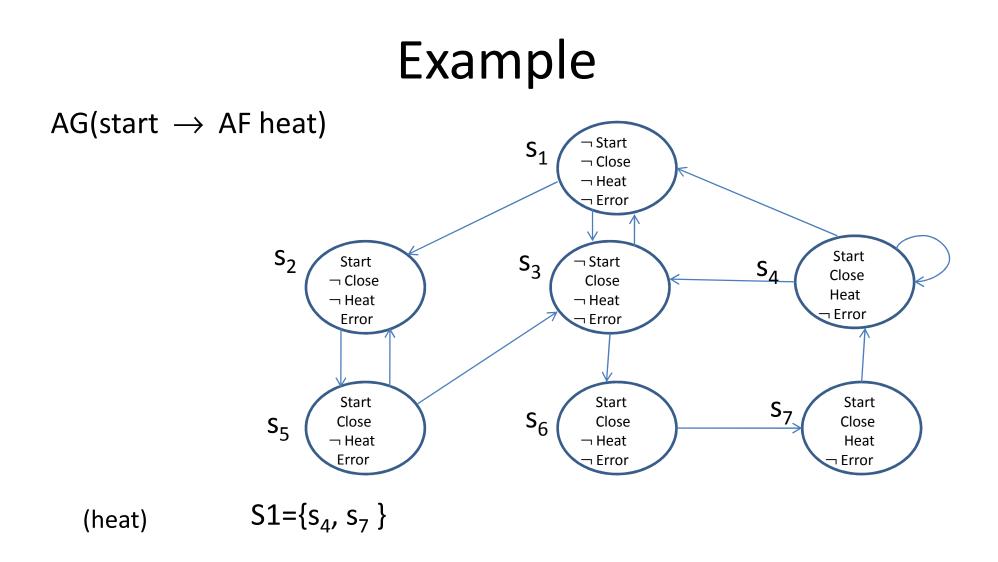


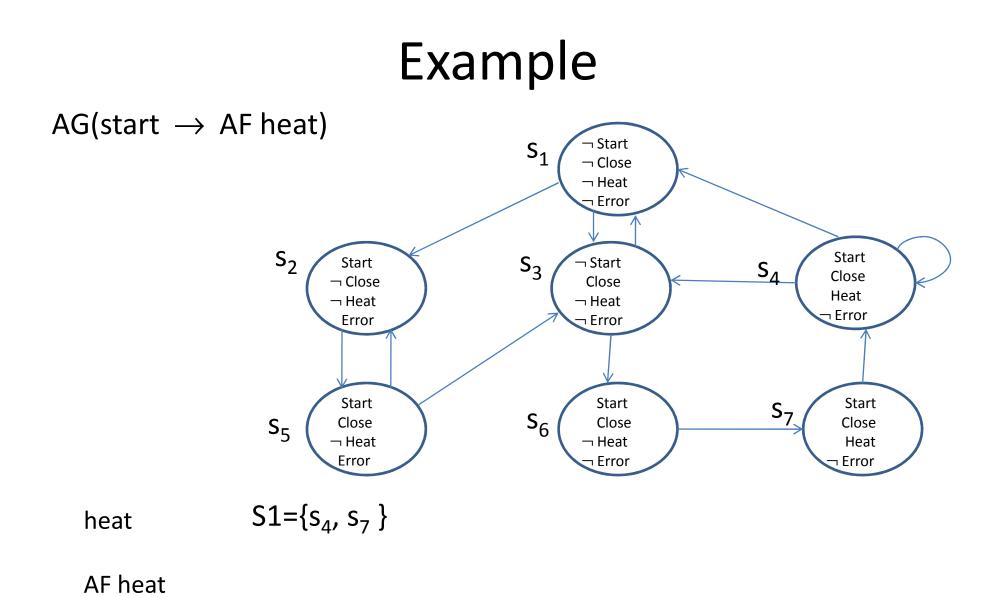
(\neg close \land heat)

S1={}









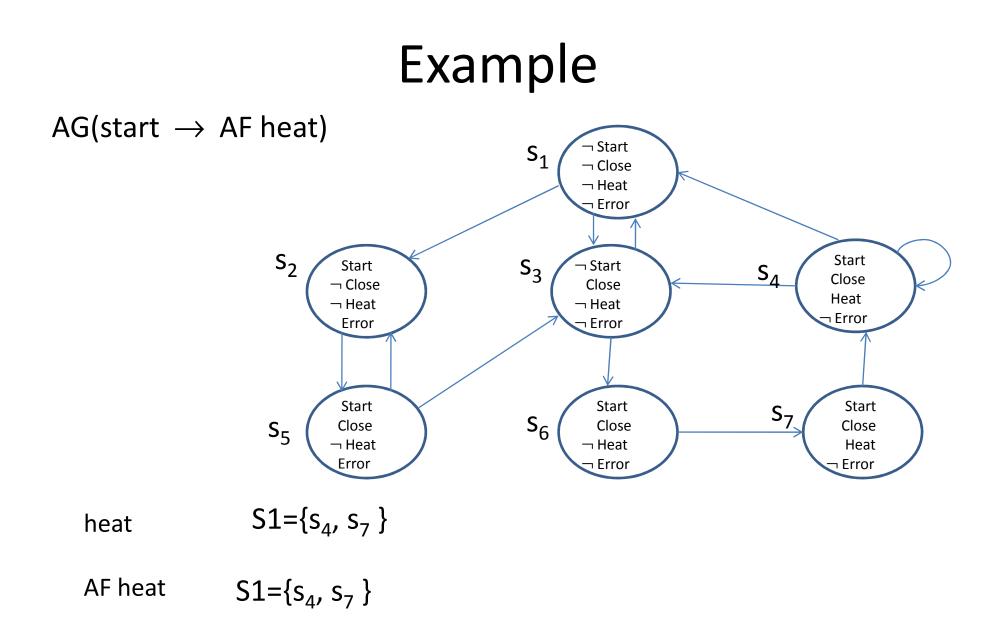
Examples

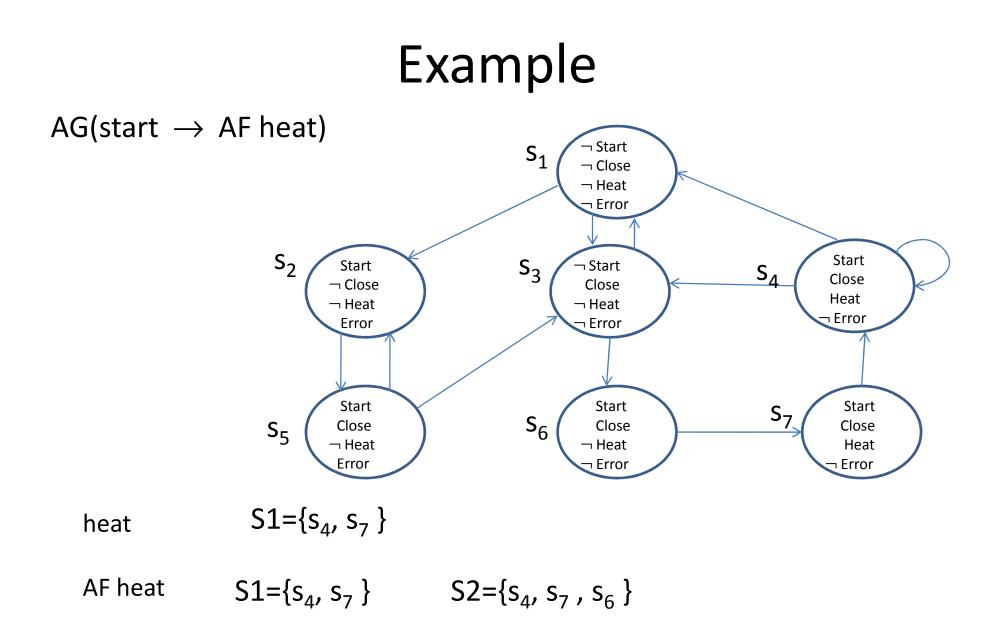
Temporal Operator:

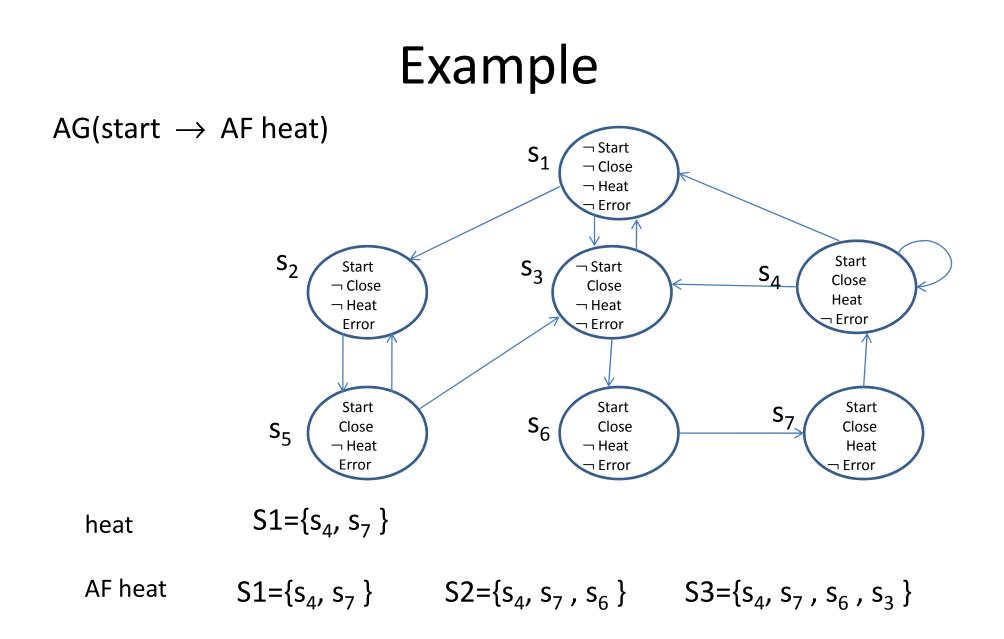
 AFc_1

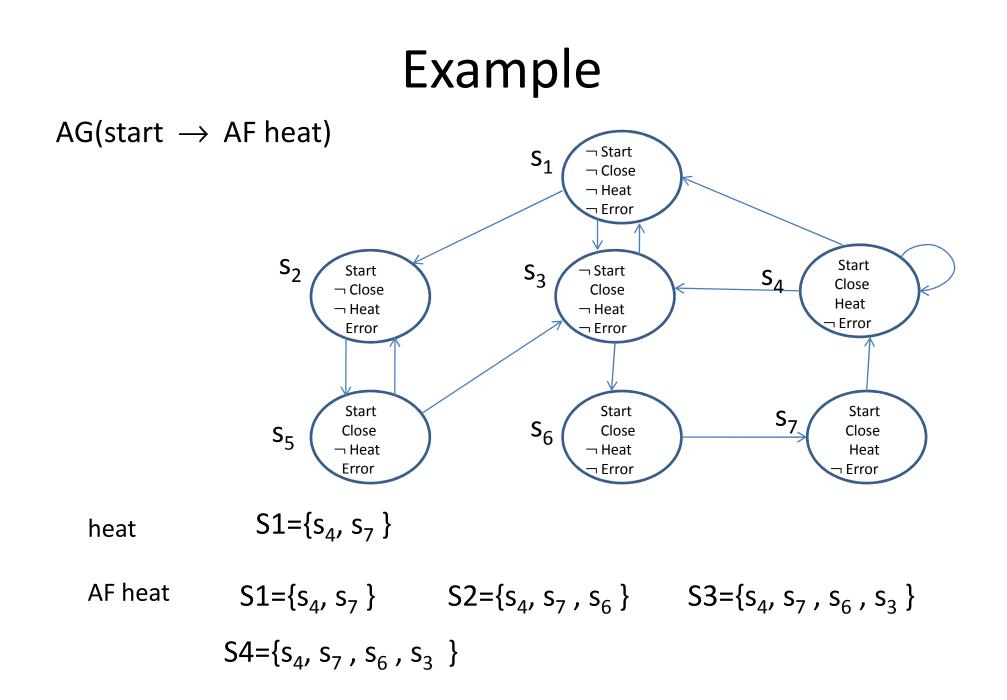
- If any state s is labeled with $c_{1}^{}\text{,}$ label it with AF $c_{1}^{}$

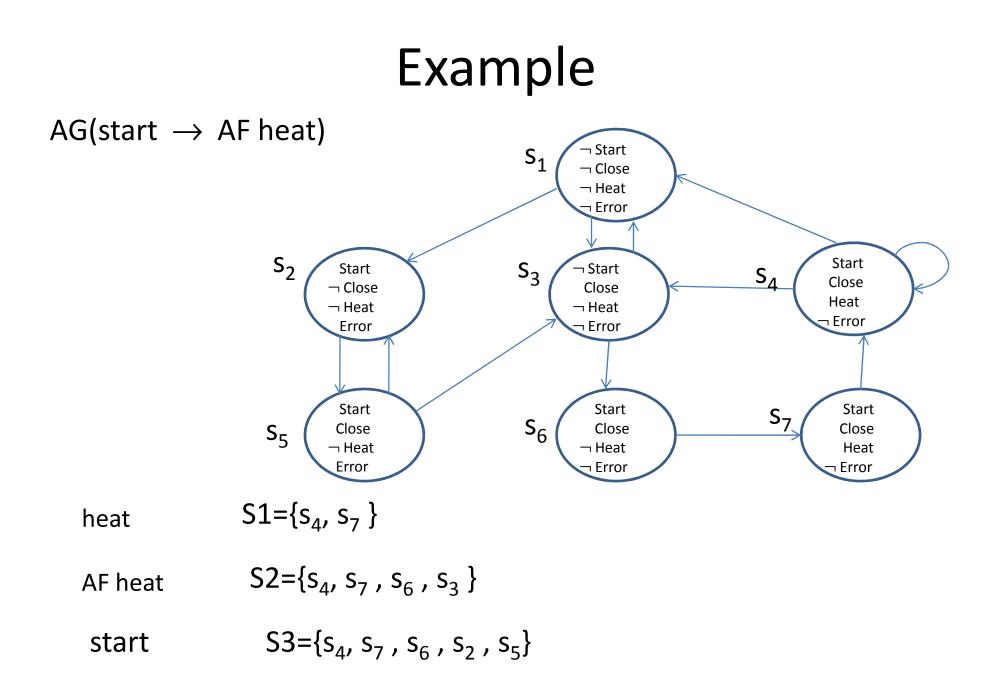
- Repeat: label any state with AF c_1 if all successor states are labeled with AF c_1 until there is no change.

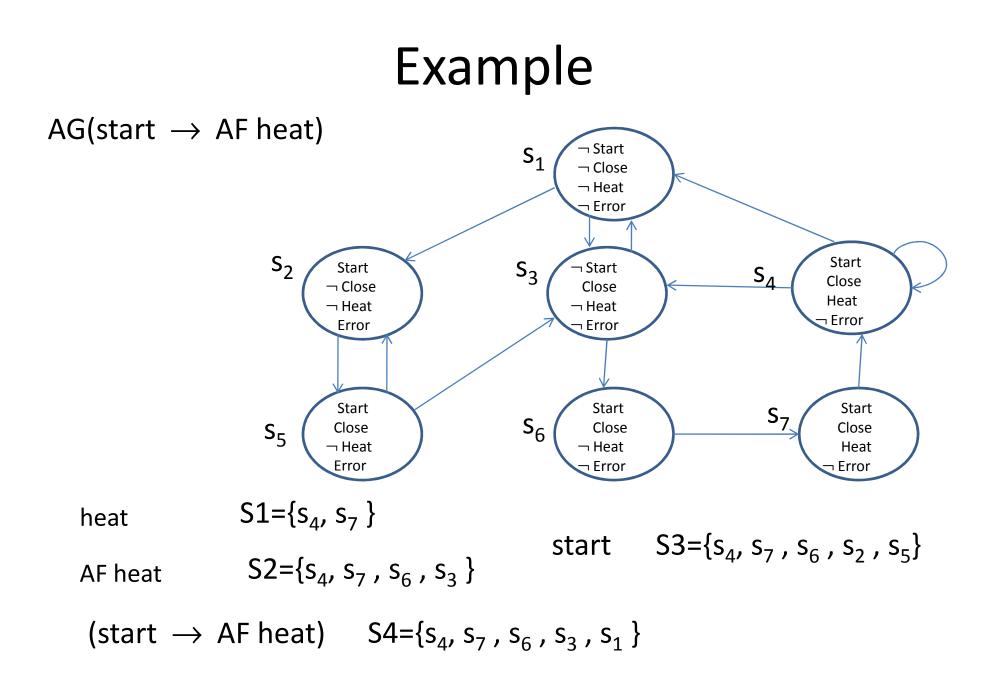








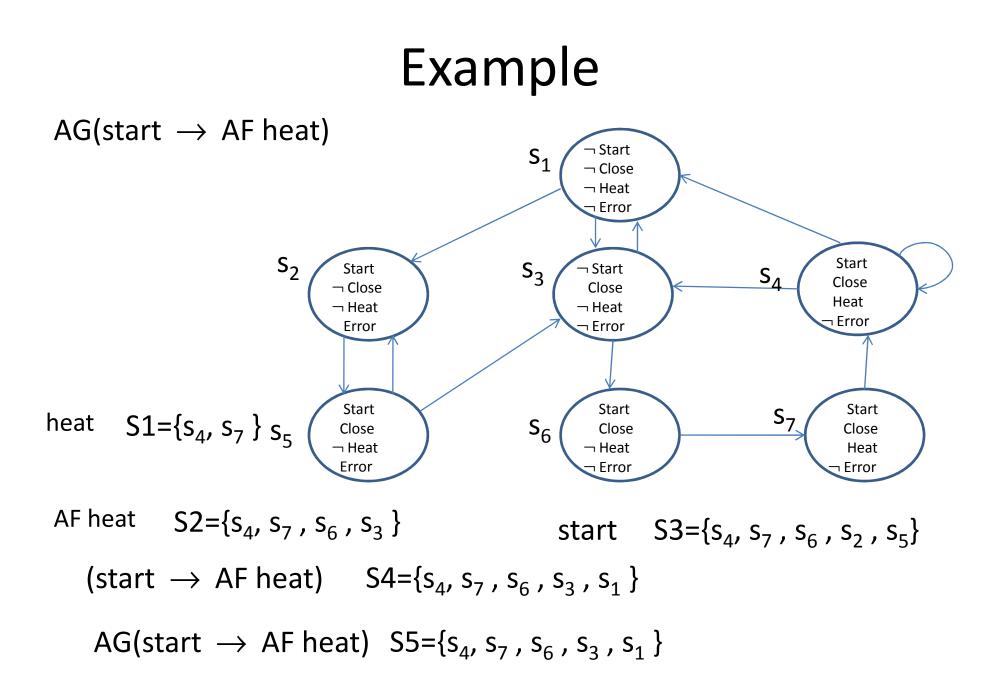


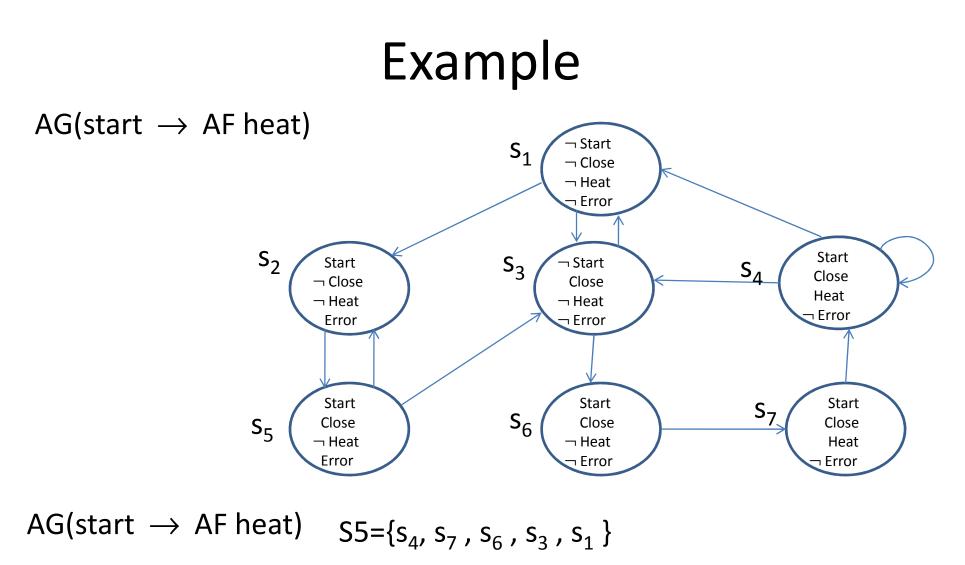


Labeling algorithm for AGp

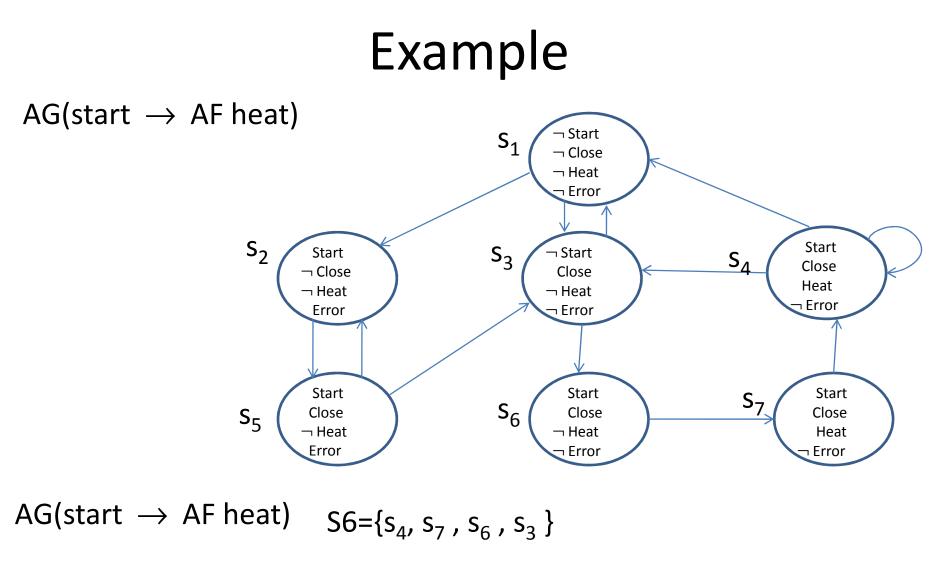
AG(start \rightarrow AF heat)

Step1: Label all the states with AGp.
Step2: If any state s is not labeled with p, delete the label AGp.
Step3: Repeat: delete the label AGp from any state if all of its successors are not labeled with AGp until there is no change.

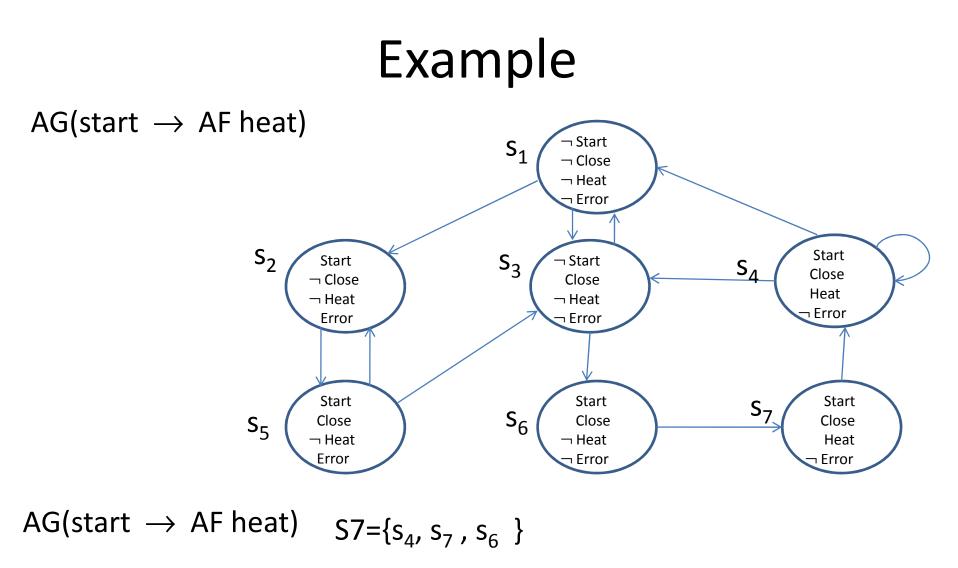




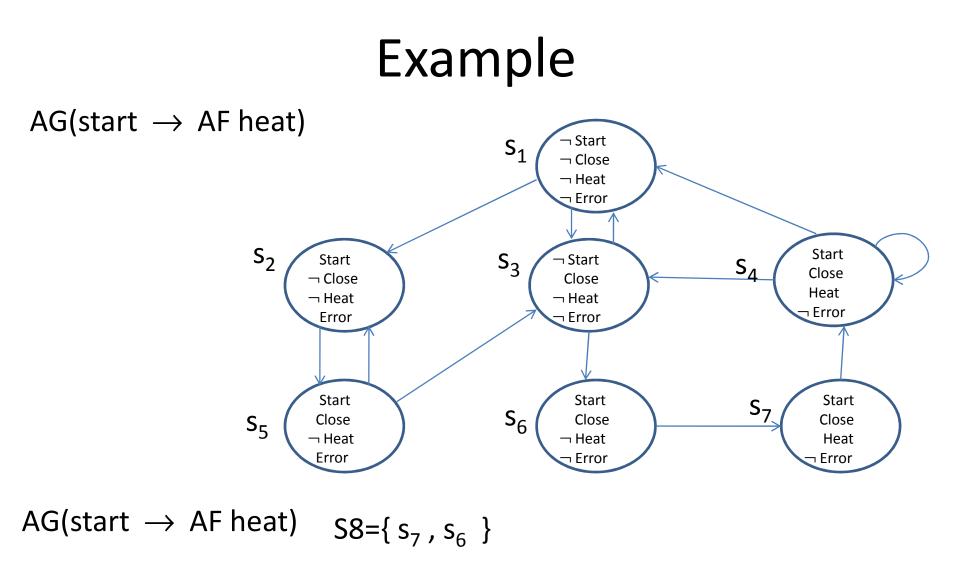
S6={s₄, s₇, s₆, s₃}



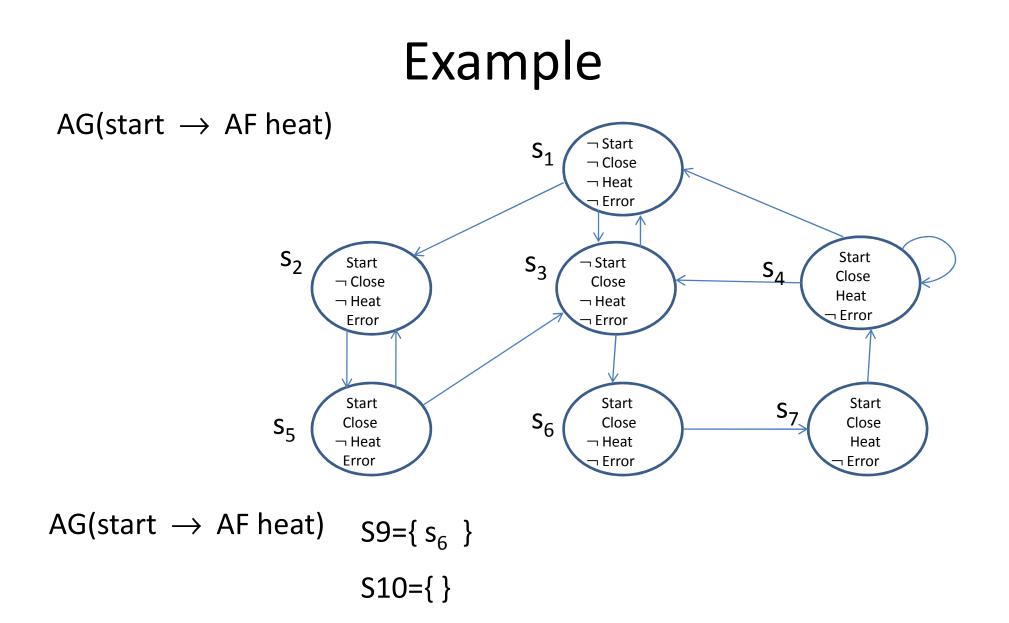
S7={s₄, s₇, s₆ }



S8={ s₇ , s₆ }



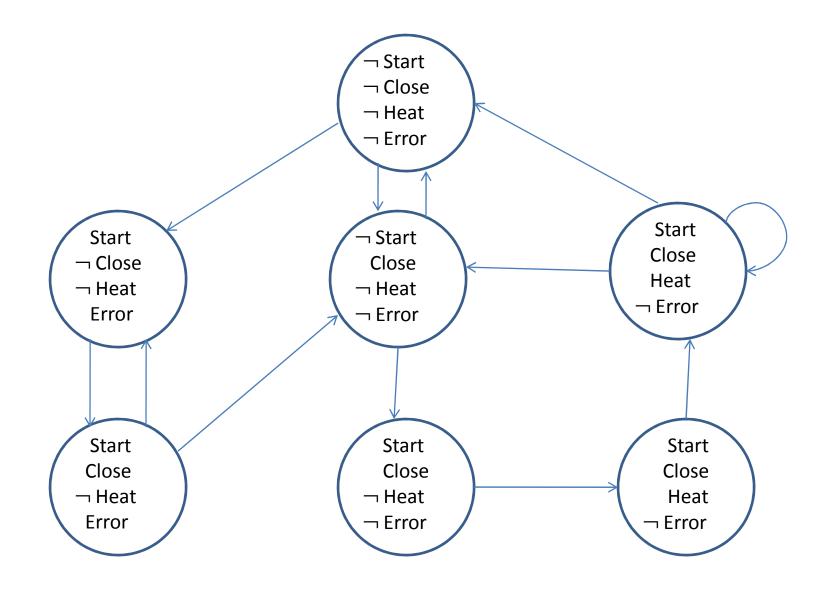
S9={ s₆ }



- The given specification is not true $-AG(start \rightarrow AF heat)$
- What to do
 - Revisit the design
 - Look for correct sequence of operation

 The verification of M, s |= φ might fail because the model M may contain unrealistic behavior.

Example



 It may sometimes be better to stick to the original model and to impose a filter on the model check.

 We verify M, s |= ψ → φ, where ψ encodes the refinement of our model expressed as a specification.

- We verify M, s |= ψ → φ, where ψ encodes the refinement of our model expressed as a specification.
- If ψ is true infinitely often, then φ is also true infinitely often.

- Let C = { ψ_1 , ψ_2 ,..., ψ_n } be a set of n fairness constraints.
- A computation path $s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow ...$ is fair with respect to these fairness constraints if for each i there are infinitely many j such that $s_j \mid = \psi_i$.

- Let C = { ψ_1 , ψ_2 ,..., ψ_n } be a set of n fairness constraints.
- A computation path $s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow ...$ is fair with respect to these fairness constraints if for each i there are infinitely many j such that $s_j \mid = \psi_i$.
- We write A_c and E_c for the path quantifier A and E restricted to fair paths.

- We write A_c and E_c for the path quantifier A and E restricted to fair paths.
- M, $s_0 \mid = A_C G \phi$ iff ϕ is true in every state along all fair paths.
- Similarly A_cF , E_cU , etc.

• A computation path is fair iff any suffix of it is fair.

- A computation path is fair iff any suffix of it is fair.
- $E_{C}[\phi U \psi] \equiv E[\phi U (\psi \wedge E_{C}G T)]$
- $E_C X \varphi \equiv EX(\varphi \land E_C G T)$

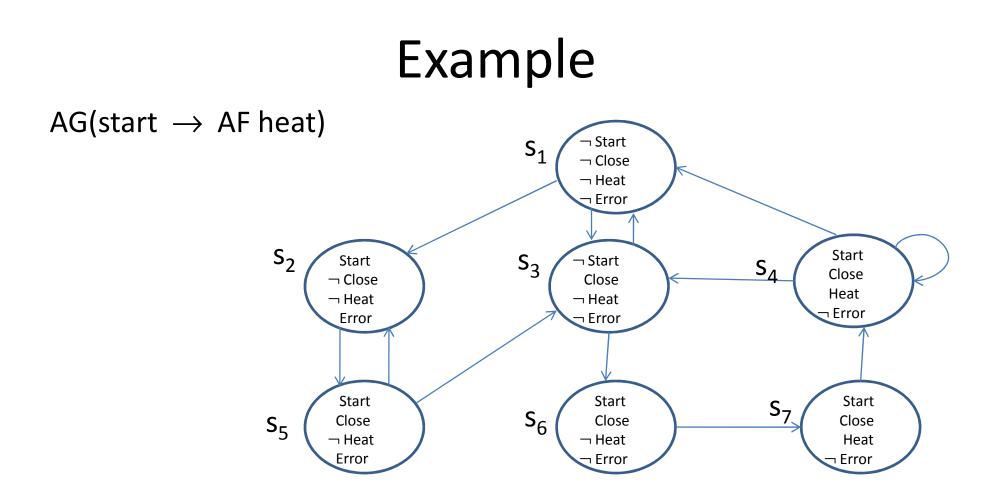
Procedure for $EG\phi$

- Restrict the graph to state satisfying φ.
- Find the strongly connected components (SCC) of the restricted graph.
- Use backward breadth-first searching to find the states on the restricted graph that can reach a SCC.

Procedure for $E_C G \phi$

- Restrict the graph to state satisfying ϕ .
- Find the strongly connected components (SCC) of the restricted graph.
- Remove an SCC if, for some ψ_i , it does not contain a state satisfying ψ_i . The resulting SCCs are fair SCCs.
- Use backward breadth-first searching to find the states on the restricted graph that can reach a fair SCC.

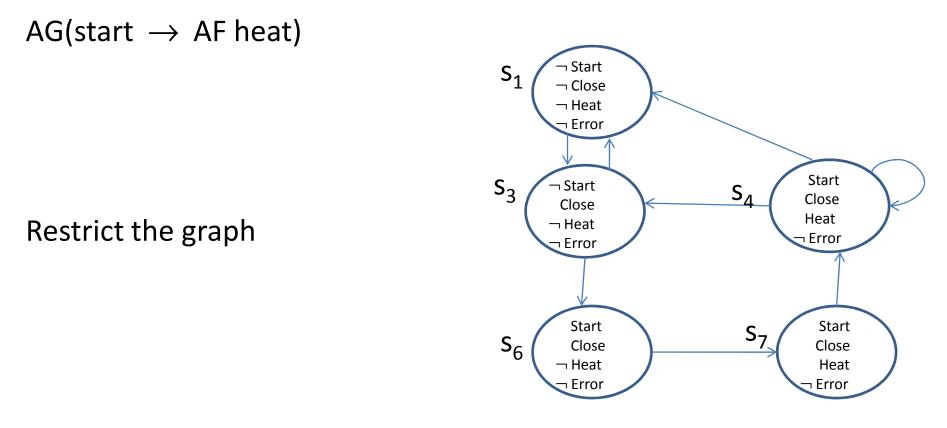
Example AG(start \rightarrow AF heat) ¬ Start S_1 ¬ Close ¬ Heat 🖵 Error S_2 Start **S**₃ Start ¬ Start S_4 Close ¬ Close Close Heat ¬ Heat → Heat - Error Error - Error Start Start Start S₇ S_6 **S**₅ Close Close Close → Heat – Heat Heat Error - Error - Error



(start \rightarrow AF heat) {s₄, s₇, s₆, s₃, s₁}

Fairness constraints: {start, close, ¬ error}

Example



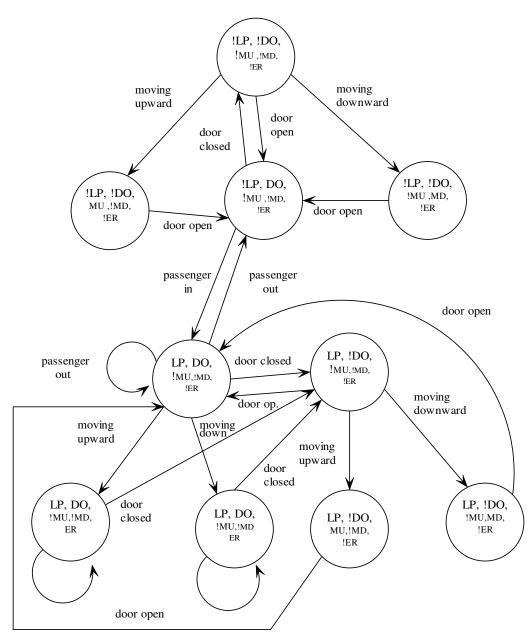
(start \rightarrow AF heat) {s₄, s₇, s₆, s₃, s₁}

Fairness constraints: {start, close, ¬ error}

• Design an elevator controller.

- Design an elevator controller.
 - Abstract model
 - Required control signal

- MU: elevator is moving in the upward direction.
- MD: elevator is moving in the downward direction.
- DO: door is open.
- LP: elevator is loaded with passengers,
- ER: some error occurred.



- Specification:
 - The elevator will either move up or move down provided the door is closed.

- Specification:
 - The elevator will either move up or move down provided the door is closed.
 - An upward travelling elevator at the second floor does not change it direction when it has passengers wishing to go to the fifth floor.

• Design the mutual exclusion protocol for n processes.

- Design a controller for Traffic light.
- Mention the property that the traffic light controller should satisfy.

- The "state explosion" problem
 - State space is exponential to the number of state variables.