
NPTEL Phase-II

Video course on

Design Verification and Test of

Digital VLSI DesignsDigital VLSI Designs

Dr. Santosh Biswas

Dr. Jatindra Kumar Deka

IIT Guwahati

Module IV: Temporal Logic

Lecture I: Introduction to formal methods for Lecture I: Introduction to formal methods for
design verification

Design Cycle

Specification

Design

Implementation

TestingTesting

Installation/marketing

Maintenance

Design Cycle

Specification

Suppose we have to design the controller of a

washing machine. There are certain aspects of

washing clothes that the system has to take care washing clothes that the system has to take care

of, like:

– The drier is activated after the wash not before it.

– Water is poured in before the detergent and it is

drained before activating the drier.

– Cold water is to be used in soft wash where hot water

in heavy wash, etc.

Design Cycle

Specification

Design

Implementation

TestingTesting

Installation/marketing

Maintenance

Design Cycle

Specification

Design

Implementation

TestingTesting

Installation/marketing

Maintenance

Bugs reported at early phase of design incur less
cost for debugging.

Design Cycle

Specification

Design

Verification

Implementation

TestingTesting

Installation/marketing

Maintenance

Verification is used to capture the bugs at the early
phase of design cycle.

Simulation

Simulation:

Exhaustive Simulation

Non exhaustive Simulation

Simulation

Simulation:

Exhaustive Simulation

Non exhaustive Simulation

Number of test cases are exponential to the
number of state variables.

Non Exhaustive Simulation

Instead of using all possible combinations,
simulation is done for some selected input
combinations.

Non Exhaustive Simulation

Instead of using all possible combinations,
simulation is done for some selected input
combinations.

To find the appropriate subset is a complex To find the appropriate subset is a complex
problem.

- Test case generation

Non Exhaustive Simulation

Instead of using all possible combinations,
simulation is done for some selected input
combinations.

To find the appropriate subset is a complex To find the appropriate subset is a complex
problem.

- Test case generation

We may not cover all possible error cases.

Non Exhaustive Simulation

Problems??

Non Exhaustive Simulation

Non Exhaustive Simulation: Pentium Bug

The intel pentium ™ processor for IBM compatible

PC was first introduced into the market in May of

1993. 1993.

Non Exhaustive Simulation

Non Exhaustive Simulation: Pentium Bug

The intel pentium ™ processor for IBM compatible

PC was first introduced into the market in May of

1993. 1993.

A year later an estimated two million had been

sold, it was discovered that there was a flaw in

the hardware of floating point division.

Non Exhaustive Simulation

Non Exhaustive Simulation: Pentium Bug

The intel pentium ™ processor for IBM compatible

PC was first introduced into the market in May of

1993. 1993.

A year later an estimated two million had been

sold, it was discovered that there was a flaw in

the hardware of floating point division.

It uses the SRT floating point division.

(Sweeney, Robertson and Tocher)

Formal Verification

• Increased complexity of design

Formal Verification

• Increased complexity of design

• In formal verification, we deal with the
abstract model of the system

Formal Verification

• Increased complexity of design

• In formal verification, we deal with the
abstract model of the system

• Model helps us to build more complex • Model helps us to build more complex
systems

Formal Verification

• Increased complexity of design

• In formal verification, we deal with the
abstract model of the system

• Model helps us to build more complex • Model helps us to build more complex
systems

• A model is easier to understand than a
whole system

Formal verification

Construct a model (for the application) in
which we can demonstrate that a certain
property holds

Formal verification

Construct a model (for the application) in
which we can demonstrate that a certain
property holds

- System Model- System Model

- Specification (Property)

Formal verification

Construct a model (for the application) in
which we can demonstrate that a certain
property holds

Testing versus Formal VerificationTesting versus Formal Verification

What is
wrong?

Why it is
wrong?

Formal verification

• Approaches for formal verification

– Propositional Logic

– First Order Logic

– Higher Order Logic– Higher Order Logic

Deductive Verification

Propositional logic
–Consisting of Boolean formulas comprising Boolean

variables and connectives such as ∨ and ∧.

–Gate-level logic networks can be described.

–Typical aim: checking if two models are equivalent

(called tautology checkers or equivalence checkers).(called tautology checkers or equivalence checkers).

–Since propositional logic is decidable, it is also

decidable whether or not the two representations are

equivalent.

–Tautology checkers can frequently cope with designs

which are too large to allow simulation-based

exhaustive validation.

First order logic (FOL)

• FOL includes quantification, using ∃ and ∀.

• Some automation for verifying FOL models
is feasible.is feasible.

• However, since FOL is undecidable in
general, there may be cases of doubt.

Higher order logic (HOL)

� Higher Order Logic allows functions to be
manipulated like other objects.

Higher order logic (HOL)

� Higher Order Logic allows functions to be
manipulated like other objects.

� For higher order logic, proofs can hardly
ever be automated and typically must be ever be automated and typically must be
done manually with some proof-support.

Higher order logic (HOL)

� Higher Order Logic allows functions to be
manipulated like other objects.

� For higher order logic, proofs can hardly
ever be automated and typically must be ever be automated and typically must be
done manually with some proof-support.

� Interactive theorem provers require a
human user to give hints to the system.

Temporal logic

• Logic extended with a notion of
"time“

• Capture future behaviors

Temporal logic

• Branching vs. linear time:
– Linear time

Models physical time
At each time instant, only one of the
future behaviors is considered.

– Branching time (at each time – Branching time (at each time
instant, all possible future behaviors
are considered).

• Models different computational
sequences of a system.

• Nondeterministic selection of the
path taken.

Temporal logic

• Branching vs. linear time:
– Linear time

Models physical time
At each time instant, only one of the
future behaviors is considered.

– Branching time (at each time – Branching time (at each time
instant, all possible future behaviors
are considered).

• Models different computational
sequences of a system.

• Nondeterministic selection of the
path taken.

Temporal logic

• Discrete vs. continuous time

– Discrete time

Used by most temporal

logics, mostly using natural

numbers to model time.

ℕ

ℝnumbers to model time.

– Continuous time

Using real numbers

ℝ

Temporal logic

• Qualitative vs. Quantitative

– Something will happen in

futurefuture

– Something will happen after

some specific time

Model checking

• Process of Model Checking:
– Modeling

– Specification

– Verification Method

Basic picture of Model Checking

OK

Finite-state model
Verification

Finite-state model

Specification

Verification

tool

(Φ Ω)

or

Error trace

Line 5: …

Line 12: …

Line 15:…

Line 21:…

Line 25:…

Line 27:…

…

Line 41:…

Line 47:…

where do we get the system

model?
hardware

e.g., Verilog or VHDL,

source code

state machinestate machine--
based system modelbased system model

abstraction & other

(semi-)automated

transformations

software based system modelbased system model

e.g., C, C++ , or

Java, source

code

handhand--built design modelsbuilt design models

StatechartsStatecharts ((HarelHarel 1987)1987)
CSP (Hoare 1985)CSP (Hoare 1985)

(Communicating Sequential Processes)(Communicating Sequential Processes)

CCS (Milner 1980)CCS (Milner 1980)
(Calculus of Communicating Systems)(Calculus of Communicating Systems)

Basic picture of Model Checking

OK

Finite-state model
Verification

Finite-state model

Specification

Verification

tool

(Φ Ω)

or

Error trace

Line 5: …

Line 12: …

Line 15:…

Line 21:…

Line 25:…

Line 27:…

…

Line 41:…

Line 47:…

Questions

1. What are the problems with simulation based
validation method.

2. Why Formal methods did not get acceptance in
industry earlier.

3. What are the advantages of using formal methods
for design verification.

4. Why it is difficult to use HOL in verification.4. Why it is difficult to use HOL in verification.

5. Try to find out major system design failure like
Pentium Bug.

NPTEL Phase-II

Video course on

Design Verification and Test of

Digital VLSI DesignsDigital VLSI Designs

Dr. Santosh Biswas

Dr. Jatindra Kumar Deka

IIT Guwahati

Module IV: Temporal Logic

Lecture II: Temporal Logic: Lecture II: Temporal Logic:

Introduction and Basic Operators

Temporal Logic

• To capture timing behaviour

• Linear and Branching

• Discrete and Continuous• Discrete and Continuous

• Qualitative and Quantitative

Temporal Logic

• The truth value of a temporal logic is
defined with respect to a model.

• Temporal logic formula is not statically true• Temporal logic formula is not statically true
or false in a model.

Temporal Logic

• The models of temporal logic contain
several states and a formula can be true in
some states and false in others.some states and false in others.

Temporal Logic

In temporal logic we can express statements
like:

• "I am always happy",• "I am always happy",

•"I will eventually be happy",

•"I will be happy until I do something wrong“

•"I am happy."

Temporal Logic Operator

Temporal logic has two kind of operators:

• Logical operator

• Temporal operator

Temporal Operator

Operat

or

Textual

Notatio

Meaning

or Notatio

n

○ X φ Φ holds at next state

◊ F φ Φ eventually holds

□ G φ Φ holds globally

U φ U ψ Φ holds until ψ holds

Temporal formulas are interpreted over a
model, which is an infinite sequence of
states.

�Given a model M and a temporal formula � ,
we define an inductive definition for the
notion of φ holding at a position Sj in M and
denoted by

(M, S j) ⊨ �

Next : X �

(M, S j) ⊨ X � � (M, S j+1) ⊨ �

�

⊨ � ⊨ �

State Sj satisfies as its next state Sj+1

satisfies � .

s0 s1 s2 sj
sj+1

Future : F �

(M, S j) ⊨ F � �∃k, k ≥ j, (M, Sk) ⊨ �

�

⊨ F � ∃k, k ⊨ �

state Sj satisfies as future state Sk satisfies �
.

Globally : G �

(M, S j) ⊨ G� � ∀k, k ≥ j, (M, Sk) ⊨ �

� �

⊨ G� ∀k, k ⊨ �

Sj satisfies G � as all states satisfies �.

Until :
 U �

(M, S j) ⊨
 ∪ � �∃k, (M, SK) ⊨ � and

∀k, j < k (M, S j) ⊨

S satisfies (
 U �) because
 is true for all
�

∀k ⊨

Sj satisfies (
 U �) because
 is true for all
states Si j<=i<k and then � is true for state
Sk .

Temporal Operator

Future Logic

Operat

or

Textual

Notatio

Meaning

or Notatio

n

○ X φ Φ holds at next state

◊ F φ Φ eventually holds

□ G φ Φ holds globally

U φ U ψ Φ holds until ψ holds

• Past Temporal Logic

– Previous

– Eventually in Past

– Globally in Past– Globally in Past

– Back to

Previous: φ has to hold at the previous
state.

(M, S j) ⊨ � �∃ (M, S j-1) ⊨ �

~~~~

(M, S j) ⊨ � �∃ (M, S j-1) ⊨ �

state Sj satisfies         φ as its previous state 
Sj-1 satisfies φ .

~~~~

s0 s1 s2 sj-1 sj

Eventually in past: φ eventually has to hold
in the past.

(M, S j) ⊨ � � ∃k, k≤ j(M, Sk) ⊨ �

�

�

~~~~⊨ � ∃k, k≤ j ⊨ �

state Sj satisfies          � as eventually a past 
state Sk satisfies �.

~~~~


Globally in past: � has to hold on the entire
previous path.

(M, S j) ⊨ � � ∀k, k≤ j(M, Sk) ⊨ �

�

~~~~(M, S j) ⊨ � � ∀k, k≤ j(M, Sk) ⊨ �

state Sj satisfies         �, as globally in all past 
states staring backward from Sj , satisfies �.

~~~~

~~~~



Back to: φ holds in all previous states 
(including the present) starting at the last 
position � held.

⊨ φ�� ∃k ⊨� ∀ ≥ k 

⊨ �

�

(M, Sj) ⊨ φ�� � ∃k(M, Sk) ⊨� and ∀j ≥ k (M, 
Sj) ⊨ � until present state 

OR (M, Sj) ⊨ � for j=0 to present state

in state Sk � is true and for all  the states 
satisfy � until present state Sj. 



Example

P Q

(P→  FQ): If  P is true in a state 

then in a future state Q is true.  

s0 sj sk ............



Examples

(P ∨  XQ): Either P holds in a state or in 

next state Q holds 

s0
sj sk ...........

P QQ P P



Examples

P Q Q Q

(P ∨  (Q U R): Either P holds in a state 

or Q U R (Q until R) holds  

s0 sj sk

P Q Q
R

Q



Examples

(P ∧  (Q U R): P holds in a state and

also Q U R (Q until R) holds in the 

state 

s0 sj sk

P Q QQ P P PP RR

............



Examples

(P ∧      Q): P holds in a state and in 

the previous state Q holds  

s0 sj sk

P Q QP P Q P Q P

...........



Questions

What does the temporal formula (P→        Q) 
mean? Give an example where this 
formula is valid in all the states. 

~~~~

The temporal operator used here is
Eventually in Past

Questions

What does the temporal formula (P→ Q)
mean? Give an example where this
formula is valid in all the states.

~~~~

The temporal operator used here is 
Eventually in Past

(P→        Q) means that “If P holds in a state 
then eventually in past Q holds”.

~~~~


P
Q

s0
sj sk

P
Q

............

Questions

• Express the following information in
temporal logic

– P is true in next state, or the next but one.

Questions

• Express the following information in
temporal logic

– P is true in next state, or the next but one.

X p V XXp

Questions

• Express the following information in
temporal logic

– p is true in next state, or the next but one.

X p V XXp

Consider now: p is true in next state and the

next but one.

Questions

• Consider the fact: p is an atomic
proposition. Write the temporal formula for
p is infinitely often true.

Questions

• Consider the fact: p is a atomic
proposition. Write the temporal formula for
p is infinitely often true.

– G F p

Questions

• Consider the fact: p is a atomic
proposition. Write the temporal formula for
p is infinitely often true.

– G F p

Give a model to show that this formula is true in

all states.

NPTEL Phase-II

Video course on

Design Verification and Test of

Digital VLSI DesignsDigital VLSI Designs

Dr. Santosh Biswas

Dr. Jatindra Kumar Deka

IIT Guwahati

Module IV: Temporal Logic

Lecture III: Syntax and Semantics of CTLLecture III: Syntax and Semantics of CTL

Temporal Logic

• Temporal Logic

– Meaning is defined over a model.

• Given a model M and a temporal formula
� , we define an inductive definition for the

⊨ �

� , we define an inductive definition for the
notion of φ holding at a position Sj in M
and denoted by (M, S j) ⊨ �

• Type of Formulas

– Path Formulas

– State formulas

Temporal Logic

• Computational Tree Logic (Branching
Time Logic)

– Meaning is defined over a model.

s°s°ab

cbc
s² s1

Temporal Logic

• Computational Tree Logic (Branching
Time Logic)

– Meaning is defined over a model.

s°s°ab

cbc
s² s1

ab

bc c

ccab

Syntax of CTL

A CTL formula comprises

1. Atomic propositions such as {p, q, r…..}

2. Path Quantifiers {A,E}

a. A : all paths starting from a given state.

b. E : there exists at least one path from a given state.

3. Propositional logic operators such as AND (), OR (), NOT () 3. Propositional logic operators such as AND (), OR (), NOT ()

4. Temporal operators {X,F,G,U}

a. NEXT: next states of current state.

b. FUTURE: any one of future states from the current state.

c. GLOBAL: all future states from the current state.

d. UNTIL: Some CTL formula holds until another CTL formula,

from the current state.

We can define CTL formulas as:

Φ :: = | | P | (φ) | (φ φ) | (φ φ) | (φ → φ) | AXφ

| EXφ | AFφ | EFφ | AGφ | EGφ | A[φ U φ] | E[φ U

φ];

where where

• The symbol means truth value ‘true’ and

symbol means truth value ‘false’.

• P ranges over a set of atomic propositions

Let V be a set of atomic propositions

CTL formulas are defined recursively:

Every atomic proposition is a CTL formula

If f1 and f2 are CTL formulas, then so are ¬f1,
f1∧f2,f1∧f2,

AX f1, EX f1, A[f1 U f2] and E[f1 U f2], AGf1,
EGf1, AFf1, EFf1

AX f1 means: holds in state s°iff f1 holds
in all successor states of s°

EX f1 means: There exists a successor
such that f1 holds

A[f1 U f2] means: always until, in all A[f1 U f2] means: always until, in all
paths such that f1 holds until is f2

satisfied.

E[f1 U f2] means: There exists a path
such that f1 holds until is f2 satisfied.

AGf1: Always globally f1 holds.

EGf1: There exists a path where f1 holds

globally

AFf1: f1 holds in all path in future.AFf1: f1 holds in all path in future.

EFf1: There exists a path in which f1 holds in

future.

• In CTL, every temporal operator must be
preceded by a path quantifier.

– State formula

Examples

• AG(p → ￢ EG￢q)

• EGp E(q U r)

• AG￢(p ∧ q) • AG￢(p ∧ q)

• AG￢(EF p ∧ q)

• AF EG p

• A[p U A[q U r]]

• A[AX￢p U EX(￢p q)] →A[p U￢q]

Examples

• Gp

• EFGr

• F[r U q]

• AEFr• AEFr

• A[(r U q) ∧ (p U r)]

Temporal structures

• The semantics of CTL is defined over a model
M, which is defined as 3-tuple M = (S, →, L)

• Definition: A temporal structure M:= (S, →,L)
consists of consists of

1. A finite set of states S
2. A transition relation → ⊆S×S with ∀s∈S ∃s' ∈S:(s,s')∈

→
3. A labeling function L: S →℘(V), with being the set of

propositional variables (atomic formulas)

� This structure is often called Kripke structure.

Semantics of CTL

• This model is also known as Kripke
structure.

• A Kripke structure is similar to a state • A Kripke structure is similar to a state
transition diagram, with
– All states must have at least one outgoing

edge.

– Each state is labeled with one of the element
of the power set of atomic propositions.

s°
ab

cbc

s² s1

s2
s5

s4s1

s2
s5

s4s1

s6
s3

s6
s3

s0

s3 s2

s1

{p, q, r}
{p, q}

{q, r}
{r}

• S={s0,s1,s2,s3} • S={s0,s1,s2,s3}

• → ={{s0, s1}, {s1,s2}, {s1, s3}, {s2,s3},

{s3,s2},{s3,s3}}.

• L: L(s0)={p,q,r}, L(s1)={p, q}, L(s2)={r},

L(s3)={q, r}.

CTL Semantics

Let M = (S, →, L) be a model for CTL. Given any s

in S, we define whether a CTL formula Φ holds

in state s. We denote this by M, s ╞ Φ

The relation M, s φ is defined by structural

induction on φ, as follows

M, s and M, s ;

M, s p iff p L(s); atomic proposition p is

satisfied if label of s has p. satisfied if label of s has p.

M, s ￢φ iff M, s φ. ￢φ is satisfied at s if s

does not satisfy φ.

s0

s1
s2

s3

. ..

{{{{p}}}}

{{{{q}}}}
{{{{q}}}}

{{{{q}}}}
M, s1 ||||====¬¬¬¬ p

L(s0)={p}

L(s1)={q}

L(s2)={q}

L(s3)={q}

M, s0 |=|=|=|=p

.

.

.

.

.

.

.

.

.

M, s φ1 ∧ φ2 iff M, s φ1 and M, s φ2;

 φ1 ∧ φ2 is satisfied at s if in s both φ1 and

φ2 are satisfied.

M, s φ1 φ2 iff M, s φ1 or M, s φ2; M, s φ1 ∨ φ2 iff M, s φ1 or M, s φ2;

φ1 ∨ φ2 is satisfied at s if in s either φ1 or φ2

is satisfied.

s0

s1
s2

s3

.

.

.

.

.

.

.

.

.

{{{{p}}}}

{{{{q}}}}
{{{{q}}}}

{{{{p,q}}}}
M, s1 ||||====p q

L(s0)={p}

L(s1)={p,q}

L(s2)={q}

L(s3)={q}

M, s2 |=|=|=|=p q

V

V
. ..

M, s φ1 → φ2 iff M, s φ1 or M, s φ2;

φ1 → φ2 is satisfied at s if in s either φ1 is

not satisfied or φ2 is satisfied.

M, s AXφ iff for all s1 such that s → s1, we

have M, s1 φ; AXφ is satisfied at s if in all

next states of s, φ is satisfied.

||||====
s0

s1
s2

s3

.

.

.

.

.

.

.

.

.

{{{{p}}}}

{{{{q}}}}
{{{{q}}}}

{{{{p,q}}}}

M, s0 ||||====AXq L(s0)={p}

L(s1)={p,q}

L(s2)={q}

L(s3)={q}

M, s EXφ iff for one state s1 such that s → s1

we have M, s1 φ; EXφ is satisfied at s, if in

some next state of s, φ is satisfied.

s0 EXp.

M, s0 ||||====EXp

s0

s1
s2

s3

.

.

.

.

.

.

.

.

.

{{{{p}}}}

{{{{q}}}}
{{{{q}}}}

{{{{p,q}}}}

M, s0 ||||====EXp
L(s0)={p}

L(s1)={p,q}

L(s2)={q}

L(s3)={q}

M, s AGφ holds iff for all paths s1 → s2 → s3

→ . . ., where s=s1, and all si along the path,

M, si φ. AGφ is satisfied at s if all states of all

paths from s satisfies φ.

s0

s1
s2

s3

{{{{p,q}}}}

{{{{q}}}}

{{{{q}}}}

{{{{p,q}}}}

M, s0 ||||==== AGq L(s0)={p,q}

L(s1)={p,q}

L(s2)={q}

L(s3)={q}

M, s EGφ holds iff there is a path s1 → s2 →

s3 → . . ., where s=s1, and all si along the path,

M, si φ. EGφ is satisfied at s if all states of at

least one path from s satisfies φ.

state s0 satisfies EGp (the path s0 → s1 → s1 →

….). ….).

s0

s1
s2

s3

{{{{p,q}}}}

{{{{q}}}}

{{{{q}}}}

{{{{p,q}}}}

L(s0)={p,q}

L(s1)={p,q}

L(s2)={q}

L(s3)={q}

M, s AFφ holds iff for all paths s1 → s2 → s3 → . .

., where s=s1, and for at least one si along the path,

M, si φ. AFφ is satisfied at s if some “future” state

of all paths from s satisfies φ.

s0

s1
s2

s3

{{{{p}}}}

{{{{q}}}}

{{{{q}}}}

{{{{p,q}}}}

M, s0 ||||==== AFq L(s0)={p}

L(s1)={p,q}

L(s2)={q}

L(s3)={q}

M, s EFφ holds iff there is one path s1 → s2 →

s3 → . . ., where s=s1, and for at least one si along

the path, M, si φ.

{{{{q}}}}
||||==== L(s0)={q}

s0

s1
s2

s3

{{{{q}}}}

{{{{q}}}}

{{{{q}}}}

{{{{p,q}}}}

M, s0 ||||==== EFp L(s0)={q}

L(s1)={p,q}

L(s2)={q}

L(s3)={q}

M, s A[φ1 U φ2] holds iff for all paths s1 → s2 →

s3 → . . ., where s=s1, φ1 U φ2 is satisfied, i.e., there

is some si along the path, such that M, si φ2, and for

each j < i, we have M, sj φ1

s0
M, s0 ||||==== A[p U q]{p}

s0

s1
s2

s3

.

.

.

.

.

.

s4
s5

s6
{q}

{p}

{p}

{q}

{p}

{q}

M, s E[φ1 U φ2] holds iff for at least one path

s1 → s2 → s3 → . . ., where s=s1, φ1 U φ2 is

satisfied, i.e., there is some si along the path,

such that M, si φ2, and for each j < i, we have

M, sj φ1
M, s0 ||||==== E[p U q]{p}

s0

s1
s2

s3

.

.

.

.

.

.

s4
s5

s6

M, s0 ||||==== E[p U q]

{q}

{p}

{p}

{r}

{p}

{r}

{r}

Questions

• Consider X = {p, q, r} be a set of atomic
proposition. What is the power set of X.

Questions

Show a Kripke structure such that in a
particular state EX (q or r) holds but EX(q
and r) does not hold.

Questions

Show a Kripke structure such that in a
particular state AF (q or r) holds but EF(q
and r) does not hold.

Questions

Express the following property in CTL:

It is possible to get a state where started
holds, but ready does not hold.

Questions

Express the following property in CTL:

It is possible to get a state where started
holds, but ready does not hold.

EF(started ∧ ¬ ready)

Questions

Express the following property in CTL:

For any state, if a request (of some
resource) occurs, then it will eventually be
acknowledged.acknowledged.

Questions

Express the following property in CTL:

For any state, if a request (of some
resource) occurs, then it will eventually be
acknowledged.acknowledged.

AG(requested → AF acknowledged)

NPTEL Phase-II

Video course on

Design Verification and Test of

Digital VLSI DesignsDigital VLSI Designs

Dr. Santosh Biswas

Dr. Jatindra Kumar Deka

IIT Guwahati

Module IV: Temporal Logic

Lecture IV: Syntax and Semantics of CTL –Lecture IV: Syntax and Semantics of CTL –
Continued

We can define CTL formulas as:

Φ :: = | | P | (φ) | (φ φ) | (φ φ) | (φ → φ) | AXφ

| EXφ | AFφ | EFφ | AGφ | EGφ | A[φ U φ] | E[φ U

φ];

where where

• The symbol means truth value ‘true’ and

symbol means truth value ‘false’.

• P ranges over a set of atomic propositions

Temporal structures

• The semantics of CTL is defined over a model
M, which is defined as 3-tuple M = (S, →, L)

• Definition: A temporal structure M:= (S, →,L)
consists of consists of

1. A finite set of states S
2. A transition relation → ⊆S×S with ∀s∈S ∃s' ∈S:(s,s')∈

→
3. A labeling function L: S →℘(V), with being the set of

propositional variables (atomic formulas)

� This structure is often called Kripke structure.

M, s AXφ iff for all s1 such that s → s1, we

have M, s1 φ;

AXφ is satisfied at s if in all next states of s,

φ is satisfied.

||||====
s0

s1
s2

s3

.

.

.

.

.

.

.

.

.

{{{{p}}}}

{{{{q}}}}
{{{{q}}}}

{{{{p,q}}}}

M, s0 ||||====AXq L(s0)={p}

L(s1)={p,q}

L(s2)={q}

L(s3)={q}

M, s EXφ iff for one state s1 such that s → s1

we have M, s1 φ;

EXφ is satisfied at s, if in some next state of s, φ

is satisfied.

M, s0 ||||====EXp

s0

s1
s2

s3

.

.

.

.

.

.

.

.

.

{{{{p}}}}

{{{{q}}}}
{{{{q}}}}

{{{{p,q}}}}

M, s0 ||||====EXp
L(s0)={p}

L(s1)={p,q}

L(s2)={q}

L(s3)={q}

M, s AGφ holds iff for all paths s1 → s2 → s3

→ . . ., where s=s1, and all si along the path,

M, si φ.

AGφ is satisfied at s if all states of all paths from

s satisfy φ. s satisfy φ.

s0

s1
s2

s3

{{{{p,q}}}}

{{{{q}}}}

{{{{q}}}}

{{{{p,q}}}}

M, s0 ||||==== AGq L(s0)={p,q}

L(s1)={p,q}

L(s2)={q}

L(s3)={q}

M, s EGφ holds iff there is a path s1 → s2 →

s3 → . . ., where s=s1, and all si along the path,

M, si φ.

EGφ is satisfied at s if all states of at least one

path from s satisfies φ.

s0

s1
s2

s3

{{{{p,q}}}}

{{{{q}}}}

{{{{q}}}}

{{{{p,q}}}}

M, s0 ||||==== EGp L(s0)={p,q}

L(s1)={p,q}

L(s2)={q}

L(s3)={q}

M, s AFφ holds iff for all paths s1 → s2 → s3 → . .

., where s=s1, and for at least one si along the path, M,

si φ.

AFφ is satisfied at s if some “future” state of all paths

from s satisfies φ.

s0

s1
s2

s3

{{{{p}}}}

{{{{q}}}}

{{{{q}}}}

{{{{p,q}}}}

M, s0 ||||==== AFq L(s0)={p}

L(s1)={p,q}

L(s2)={q}

L(s3)={q}

M, s EFφ holds iff there is one path s1 → s2 →

s3 → . . ., where s=s1, and for at least one si along

the path, M, si φ.

EFφ is satisfied at s if some “future” state of all

paths from s satisfies φ.

s0

s1
s2

s3

{{{{q}}}}

{{{{q}}}}

{{{{q}}}}

{{{{p,q}}}}

M, s0 ||||==== EFp L(s0)={q}

L(s1)={p,q}

L(s2)={q}

L(s3)={q}

M, s A[φ1 U φ2] holds iff for all paths s1 → s2 →

s3 → . . ., where s=s1, φ1 U φ2 is satisfied, if there is

some si along the path, such that M, si φ2, and for

each j < i, we have M, sj φ1

s0
M, s0 ||||==== A[p U q]{p}

s0

s1
s2

s3

.

.

.

.

.

.

s4
s5

s6
{q}

{p}

{p}

{q}

{p}

{q}

M, s E[φ1 U φ2] holds iff for at least one path

s1 → s2 → s3 → . . ., where s=s1, φ1 U φ2 is

satisfied, if there is some si along the path, such

that M, si φ2, and for each j < i, we have M, sj

φ1

s0

s1
s2

s3

.

.

.

.

.

.

s4
s5

s6

M, s0 ||||==== E[p U q]

{q}

{p}

{p}

{r}

{p}

{r}

{r}

• S={s0,s1,s2,s3}

s0

s3 s2

s1

{p}
{p, q}

{q, r}
{r}

• S={s0,s1,s2,s3}

• → ={{s0, s1}, {s1,s2}, {s1, s3}, {s2,s3},

{s3,s2},{s3,s3}}.

• L: L(s0)={p}, L(s1)={p, q}, L(s2)={r},

L(s3)={q, r}.

Find the states where the formula AF r

s0

s3 s2

s1

{p}
{p, q}

{q, r}
{r}

Find the states where the formula AF r

holds

Find the states where the formula AG(AF

s0

s3 s2

s1

{p}
{p, q}

{q, r}
{r}

Find the states where the formula AG(AF

r) holds

Find the states where the formula (AF ¬ p)

s0

s3 s2

s1

{p}
{p, q}

{q, r}
{r}

Find the states where the formula (AF ¬ p)

holds

Find the states where the formula A(p U r)

s0

s3 s2

s1

{p}
{p, q}

{q, r}
{r}

Find the states where the formula A(p U r)

holds

Find the states where the formula (AF r)

s0

s3 s2

s1

{p}
{p, q}

{q}
{r}

Find the states where the formula (AF r)

holds

• In the semantics, the future includes the
present.

– Past, present, future

M, s EFφ holds iff there is one path s1 → s2 →

s3 → . . ., where s=s1, and for at least one si along

the path, M, si φ.

M, s E[φ1 U φ2] holds iff for at least one path

s1 → s2 → s3 → . . ., where s=s1, φ1 U φ2 is

satisfied, if there is some si along the path, such

that M, si φ2, and for each j < i, we have M, sj

φ1

Questions

• Consider X = {p, q, r} be a set of atomic
proposition. What is the power set of X.

Questions

Show a Kripke structure such that in a
particular state EX (q V r) holds but EX(q
Ʌ r) does not hold.

Questions

Show a Kripke structure such that in a
particular state AF (q V r) holds but EF(q Ʌ
r) does not hold.

Questions

Express the following property in CTL:

It is possible to get a state where started
holds, but ready does not hold.

Questions

Express the following property in CTL:

It is possible to get a state where started
holds, but ready does not hold.

EF(started ∧ ¬ ready)

Questions

Express the following property in CTL:

For any state, if a request (of some
resource) occurs, then it will eventually be
acknowledged.acknowledged.

Questions

Express the following property in CTL:

For any state, if a request (of some
resource) occurs, then it will eventually be
acknowledged.acknowledged.

AG(requested → AF acknowledged)

Questions

A certain process is enabled infinitely often
on every computation path.

Questions

A certain process is enabled infinitely often
on every computation path.

AG (AF enabled)AG (AF enabled)

Questions

From any state it is possible to get a restart
state.

Questions

From any state it is possible to get a restart
state.

AG (EF restart)

CTL Equivalent formula

CTL Equivalent formula

• Two CTL formulas φ and ψ are said to be
semantically equivalent if any state in any
model which satisfies one of them also
satisfies the other.satisfies the other.

NPTEL Phase-II

Video course on

Design Verification and Test of

Digital VLSI DesignsDigital VLSI Designs

Dr. Santosh Biswas

Dr. Jatindra Kumar Deka

IIT Guwahati

Module IV: Temporal Logic

Lecture V: Equivalence between CTL FormulasLecture V: Equivalence between CTL Formulas

Equivalent formula

p q p q→ ≡ ¬ ∨

Propositional Logic

Predicate Logic

(()) (())x P x x P x¬∀ ≡ ∃ ¬

Predicate Logic

CTL Equivalent formula

• Two CTL formulas φ and ψ are said to be
semantically equivalent if any state in any
model which satisfies one of them also
satisfies the other. satisfies the other.

CTL Equivalent formula

• In temporal logic,

– A : universal quantifier on paths

– E : existential quantifier on paths

– G : universal quantifier of states along a path– G : universal quantifier of states along a path

– F : existential quantifier of states along a path

AF EGϕ ϕ¬ ≡ ¬

AFϕ¬ : “In all paths in future is

true” is false.

EG ϕ¬ : “There is a path where globally EG ϕ¬ : “There is a path where globally

 is not true”

AF EGϕ ϕ¬ ≡ ¬

EF AGϕ ϕ¬ ≡ ¬

EFϕ¬ : “There is a path where in

 future is true” is false

AG ϕ¬ : “In all paths globally is not AG ϕ¬ : “In all paths globally is not

 true”

EF AGϕ ϕ¬ ≡ ¬

AX EXϕ ϕ¬ ≡ ¬

AXϕ¬ : “In all paths next state

satisfies ” is false.

EX ϕ¬ “There exist a path where in EX ϕ¬ “There exist a path where in

next state is not true.

AX EXϕ ϕ¬ ≡ ¬

AF EGϕ ϕ¬ ≡ ¬

EF AGϕ ϕ¬ ≡ ¬

AF EGϕ ϕ≡ ¬ ¬

EF AGϕ ϕ≡ ¬ ¬

AX EXϕ ϕ≡ ¬ ¬

AX EXϕ ϕ¬ ≡ ¬

[]AF A TUϕ ϕ≡ []EF E TUϕ ϕ≡

• AU, EU and EX form an adequate set of
temporal operator for CTL.

– AX can be written with EX

– AG, EG, AF and EF can be written in terms of – AG, EG, AF and EF can be written in terms of

AU and EU

Equivalence

EXp ApUq) E(pUq)

AXp ≡ ¬EX¬p

AGp ≡ ¬EF¬p

EGp ≡ ¬AF¬p EGp ≡ ¬AF¬p

AFp ≡ A(true U p)

EFp ≡ E(true U p)

[1 2] ([2 (1 2)] 2)A U E U EGϕ ϕ ϕ ϕ ϕ ϕ≡ ¬ ¬ ¬ ∧ ¬ ∨ ¬

[1 2] ([2 (1 2)] 2)A U E U EGϕ ϕ ϕ ϕ ϕ ϕ≡ ¬ ¬ ¬ ∧ ¬ ∨ ¬

([2 (1 2)] 2)

[2 (1 2)] 2

E U EG

E U EG

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

¬ ¬ ¬ ∧ ¬ ∨ ¬

≡ ¬ ¬ ¬ ∧ ¬ ∧ ¬ ¬

[1 2] ([2 (1 2)] 2)A U E U EGϕ ϕ ϕ ϕ ϕ ϕ≡ ¬ ¬ ¬ ∧ ¬ ∨ ¬

([2 (1 2)] 2)

[2 (1 2)] 2

E U EG

E U EG

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

¬ ¬ ¬ ∧ ¬ ∨ ¬

≡ ¬ ¬ ¬ ∧ ¬ ∧ ¬ ¬

AF EGϕ ϕ≡ ¬ ¬AF EGϕ ϕ≡ ¬ ¬

([2 (1 2)] 2)

[2 (1 2)] 2

E U EG

E U EG

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

¬ ¬ ¬ ∧ ¬ ∨ ¬

≡ ¬ ¬ ¬ ∧ ¬ ∧ ¬ ¬

AF EGϕ ϕ≡ ¬ ¬

Equivalence

EXp EGp (AFp) E(pUq)

--

AXp ≡ ¬EX¬p

AFp ≡ ¬EG¬p

AGp ≡ ¬EF¬p AGp ≡ ¬EF¬p

A(pUq) ≡ ¬(EG ¬ q ∨ E (¬q U (¬ p ∧ ¬q)))

EFp ≡ E(true U p)

• Adequate set of temporal operators:

– AU, EU, EX

– EG, EU, EX

– AG, AU, AX– AG, AU, AX

– AF, EU, EX

– EG, EU, EX

Other Equivalences

AG p ≡ p ∧ AX AG p

EG p ≡ p ∧ EX EG p

AF p ≡ p ∨ AX AF p

EF p ≡ p ∨ EX EF pEF p ≡ p ∨ EX EF p

A[p U q] ≡ q ∨ (p ∧ AX A[p U q])

E[p U q] ≡ q ∨ (p ∧ EX E[p U q])

Other Equivalences

AG p ≡ p ∧ AX AG p

Other Equivalences

EG p ≡ p ∧ EX EG p

Other Equivalences

AF p ≡ p ∨ AX AF p

Other Equivalences

EF p ≡ p ∨ EX EF p

Other Equivalences

A[p U q] ≡ q ∨ (p ∧ AX A[p U q])

Other Equivalences

E[p U q] ≡ q ∨ (p ∧ EX E[p U q])

Questions

• Which of the following pairs of CTL formulas
are equivalent:
– EFp and EGp

– EFp ∨ EFq and EF(p ∨ q)

– AFp ∨ AFq and AF(p ∨ q)– AFp ∨ AFq and AF(p ∨ q)

– AFp ∧ AFq and AF(p ∧ q)

– EFp ∧ EFq and EF(p ∧ q)

– AG(p ∧ q) and AGp ∧ AGq

– T and AGp → EGp

– T and EGp → AGP

Questions

• Which of the following pairs of CTL
formulas are equivalent:

– EFp ∨ EFq and EF(p ∨ q)

– AFp ∨ AFq and AF(p ∨ q)– AFp ∨ AFq and AF(p ∨ q)

– AG(p ∧ q) and AGp ∧ AGq

– T and AGp → EGp

Questions

• Which of the following pairs of CTL
formulas are equivalent:

– EFp and EGp

– AFp ∧ AFq and AF(p ∧ q)– AFp ∧ AFq and AF(p ∧ q)

– EFp ∧ EFq and EF(p ∧ q)

– T and EGp → AGP

Questions

• Consider the formula

E(Fp ∧ Fq)

Questions

• Consider the formula

E(Fp ∧ Fq) : not a CTL formula

∧If we have Fp ∧ Fq along any path, then
either p must come before q, or the other
way round.

Questions

• Consider the formula

E(Fp ∧ Fq) : not a CTL formula

∧If we have Fp ∧ Fq along any path, then
either p must come before q, or the other
way round.

EF(p ∧ EFq) ∨ EF(q ∧ EFP)

Questions

• Consider the formula

E(Fp ∧ Fq)

∧ ∨ ∧EF(p ∧ EFq) ∨ EF(q ∧ EFP)

