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Introduction 

•In the last two modules, we discussed that in case of digital VLSI design we start 
with high-level system specifications, which are transformed into optimal Register 
Transfer Level (RTL) circuits using High Level Synthesis (HLS) algorithms.   
 
•Once the RTL circuit is available, we need to transform it to gate level design, 
which can then be processed by backend algorithm; this process is called Logic 
Synthesis.  Formally speaking, Boolean logic synthesis is a process by which an 
abstract form of desired circuit behavior, typically RTL, is transformed into a design 
implementation in terms of logic gates and flip-flops. This module is dedicated to 
logic synthesis of combinational and sequential circuits.  
•  
• It may be noted that two levels of logic are minimum required to implement an 
arbitrary Boolean function. Generally, we assume that the primitives are AND and 
OR gates and Inverters. AND gates are used at the first level and OR gates are used 
in the second level. Inverters may be present at some inputs of the gates of the 
first level, but it is not considered as an additional level.  



Introduction 
•Many other choices are also possible namely, using OR gates at first level and AND 
gates in the second, using NOR and NAND gates etc. 
 
•It is also possible to implement a circuit in more than two levels, however, it is 
more complex procedure.  
 
•In this triple lecture, we will first discuss two level logic synthesis procedures. 
Latter in this module, we will discuss multilevel synthesis.  
 
 
•There are two main reasons why we may want to implement a circuit in two 
levels, rather than multiple levels namely, speed of operation and simplicity of the 
algorithms. However, in practical cases two level implementation may not be 
possible. Reducing the number of levels increase the fanin and fanout counts of 
gates. Gates having high fanins and fanouts are slow. Therefore, design libraries do 
not generally have gates with more than four fanins; this requires multiple level 
synthesis.  



Introduction 

we have a Boolean function as 1. 2. 3. 4. 5. 6 7. 8. 9. 10. 11. 12f x x x x x x x x x x x x  .  
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Introduction 
•If we want to have two level implementation, then we need an AND gate having 6 
fanins.  If we have gates with 3 maximum fanins, a multilevel implementation  is 
required 
 
• However, two-level implementation is important to be studied. Two-level 
implementations are easier to design and analyze because the solution space is 
greatly restricted.  
 
Further, before the development of CMOS logic gates, Boolean functions were 
realized using Programmable Logic Array (PLAs) and Programmable Array Logic 
(PALs).  
 
•These programmable arrays can implement any combinational logic circuit. 
Broadly speaking, they have a set of programmable AND planes, which connect to 
a set of programmable OR planes; this arrangement is two level AND-OR 
realization that can implement functions in terms of sum of products. In addition, 
the outputs could be conditionally complemented when required. As PLAs and 
PALs worked on “product of sum (POS)/sum of product (SOP)” based 
representation, the algorithms for the optimum implementation of two-level 
functions were developed in the fifties. 



Introduction 

•With the introduction of CMOS based standard cell and semi-custom design 
methodologies, there was a decline in the popularity of PLAs and PALs.   
 
 
•When implementing a circuit with standard cells, it is customary to use multi-
level implementation because generally a CMOS gate has a maximum of 4 fanins.  
 
•The cost in terms of area or speed of a multi-level implementation is not directly 
related to the cost of an equivalent two-level circuit.  However, the role of the 
two-level techniques is still important, because optimization of multilevel logic 
involves a network whose nodes represent functions, which are represented as 
two-level circuits. 
 
• Therefore, in this (triple) lecture we discuss two-level Boolean logic synthesis 
(i.e., optimized two level implementation of a circuit for a given Boolean function). 
Following that, latter in this module we will also discuss multilevel logic synthesis.    
 



Representation: Sums of Products and Products of Sums 

We know that input/output of an RTL circuit can be represented by a Boolean 
function.  
 
In logic synthesis, we need to design a circuit to implement the Boolean function. It 
may be noted that more the number of terms (will be defined precisely latter) in 
the function, more the number of gates in the circuit.  
 
 
Therefore, the primary objective of logic synthesis is to determine a minimal gate 
representation of the function; this is called “minimizing Boolean functions”. From 
the context of two level implementation, our objective is to find the simplest two-
level formula that represents a given function. Simplicity is measured, in terms of 
the number of gates and gate inputs of the circuit.  



Representation: Sums of Products and Products of Sums 

Definition 1: A product term is a formula of one of the following forms: 
1. 1 
2. a variable literal 
3. a conjunction of variable literals where no letter appears more than once. 
  
Definition 2: A sum term is a formula of one of the following forms: 
1. 0; 
2. a variable literal 
3. a disjunction of variable literals where no letter appears more than once. 

Now we formally define a two-level formulae. Formula consists of constants, 

variables, parentheses and operators. A letter is a constant or a variable. A literal is a 

letter or its complement. For example, for 0,1,x,y are letters and 0,1, , ', 'x x y are 

literals; 0,1  are constant literals and ', 'x y  variable literals. The following definitions 

are introduced.  



Representation: Sums of Products and Products of Sums 

Definition 3:  A Sum of Products (SOP) formula is one of the following: 
0; 
a product term; 
a disjunction of product terms. 

For example, . 'x y is a product term, 'x y  is a sum term and 'x  is both. On the other 

hand, . 'x x  is neither product terms nor sum term, because the letter x appears twice 

and the term reduces to 0.  

Example, . 'f x y yz   

The cost of a SOP formula is determined by the number of product terms and the 

number of literals. Broadly, speaking, number of product terms determine the number 

of AND gates and number of literals determine the number of inputs of a gate. 

. 'f x y yz   has two product terms and four literals.  



Representation: Sums of Products and Products of Sums 

Definition 4:  A Product of Sums (POS) formula is one of the following: 
1. 1; 
2. a sum term; 
3. a conjunction of sum terms. 

Example, ( ').( )f x y y z    

The cost of a POS formula is determined by the number of sum terms and the number 

of literals. Broadly, speaking, number of sum terms determine the number of OR 

gates and number of literals determine the number of inputs of a gate. 

( ').( )f x y y z    has two sum terms and four literals.  

A two-level formula is either a SOP or a POS. The two forms are, one is the dual 
of the other, which can be shown by De-Morgan’s theorem. In this module, we 
will restrict all our discussions on SOP based representation of a Boolean 
formula.  



Prime Implicants  

There are two basic steps for minimizing Boolean functions namely, determining 
prime implicants and then finding subset such implicants that cover all product 
terms of a function. In this section, we introduce the concept of prime implicants 
and schemes to determine prime implicants.  
  
Definition 5:  An implicant of a function is a product term that is included in the 
function.  

For instance, xyz  is an implicant of ( , , )f x y z xy ; { '}xy xyz xyz  .   

Definition 6:  A prime implicant of a function is an implicant that is not 
included in any other implicant of the function.  

For instance, xyz  is not a prime implicant of ( , , ) ' ' 'f x y z xy x y z  because xyz  is 

contained in xy .  xy  is a prime implicant of ( , , )f x y z  because it is not contained in 

' ' 'x y z . So, if is an implicant is not prime, then it is possible to obtain prime 

implicant of by removing some literals from it.    



Prime Implicants  

Definition 7:  If a prime implicant includes a minterm that is not included in any 
other prime implicant, then that prime implicant is essential.  

For example, ( , , ) ' ' 'f x y z xy x y z   has two prime implicants namely, xy  and 

' ' 'x y z . Prime implicant xy  is essential because xy contains xyz  and 'xyz which are 

not contained in any other prime implicant (i.e., ' ' 'x y z ).  In another function

( , , ) ' 'f x y z xy xy xz   , prime implicants are xy , 'xy  and 'xz . Among them, 'xz  is 

not essential because ' { ' ', '}xz xy z xyz  and ' 'xy z  is in 'xy  and 'xyz  is in xy .  



Determining Prime Implicants 

Theorem 1: If cost of a Boolean function depends on literals then a minimal SOP 
must always consist of a sum of prime implicants.  

Proof: Let us assume that f is an SOP which is minimal and one (product) term is non-

prime. Another SOP formula 1f f  exists, that can be obtained by replacing the non-

prime implicant by a prime implicant that contains it. The cost does not increase and the 

formula is equivalent to the original one. So, we reach a contradiction i.e., f is an SOP 

which is minimal and all terms are prime implicants.   

For example, let SOP representation of ( , )f x y  be 'x x y . A prime implicant of f is 

y . The SOP representation can be changed as x y , where we have replaced 'x y with 

y ; y  includes 'x y . So the new SOP is rewritten by saving one literal.  



Determining Prime Implicants 

Theorem 1: If cost of a Boolean function depends on literals then a minimal SOP 
must always consist of a sum of prime implicants.  

Proof: Let us assume that f is an SOP which is minimal and one (product) term is non-

prime. Another SOP formula 1f f  exists, that can be obtained by replacing the non-

prime implicant by a prime implicant that contains it. The cost does not increase and the 

formula is equivalent to the original one. So, we reach a contradiction i.e., f is an SOP 

which is minimal and all terms are prime implicants.   

For example, let SOP representation of ( , )f x y  be 'x x y . A prime implicant of f is 

y . The SOP representation can be changed as x y , where we have replaced 'x y with 

y ; y  includes 'x y . So the new SOP is rewritten by saving one literal.  



Determining Prime Implicants by Tabular Method 

Definition 8:  Given a Boolean function in SOP form 'Xy Xy , where X is a 

product term not having variable y , then consensus can be applied on the two 

terms , 'Xy Xy  to generate ( ')X Xy Xy  ;  X  is the consensus term containing 

both , 'Xy Xy . This is also called distance-1 merging.  

In other words, pairs of terms that differ in exactly one letter, which must 
appear complemented in one term and un-complemented in the other, are 
used for consensus. 



Determining Prime Implicants by Tabular Method 

Given a Boolean formula in SOP form we need to determine the prime 
implicants. The steps of tabular method are given below.  
 
1. Express the function in minterm canonical form 

 
2. Consider all pairs of adjacent terms, i.e., the pairs of terms to which 

consensus can be applied. The consensus terms are implicants of the 
function though not necessarily prime. All terms that form these new 
consensus terms are included in the new terms, and hence they are 
not prime. We mark the old terms as non-prime and are not used for 
further consensus.  
 

3. The new terms are added to the SOP and steps 1,2 are repeated till no 
more consensus terms can be found 
 

4. All terms that are absorbed (or contained) by the new terms are 
marked as non-primes. Finally, the terms that are not marked 
constitute all the prime implicants of the function.   



Determining Prime Implicants by Tabular Method 

Now we illustrate the scheme using an example.  

Consider the SOP: ( , , , ) ' ' ' 'f w x y z x y wxy x yz   . 

The function in minterm canonical form is as follows: 

' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 'w x y z w x y z wx y z wx y z wxyz wxyz w x yz wx yz       . 

•Now we construct a table, where the minterms appearing in the canonical 
form are entered.  
 
•The column is divided into four parts based on number of complemented 
letters of the terms.  
•The first group consists of minterms with no un-complemented literals.  
 
•In general, some groups may be empty. So, for consensus, we to need to 
compare terms of immediately successive groups.  
 
•It may be noted that we need not consider the minterms in the immediately 
preceding group, because this would only cause us to repeat comparisons. 



Determining Prime Implicants by Tabular Method 

' ' ' 'w x y z  

' ' '

' ' '

' ' '

w x y z

wx y z

w x yz

 

' '

' '

wx y z

wx yz
 

'wxyz  

wxyz  

Minterms partitioned based on number of complemented alphabets 



Determining Prime Implicants by Tabular Method 

In the example, if we compare the term from the first row ( ' ' ' 'w x y z )  with the top most 

term of second row ( ' ' 'w x y z ), their consensus term is ' ' 'w x y . 

 

Both ' ' ' 'w x y z and ' ' 'w x y z  are marked as non-prime because there exists another 

implicant ' ' 'w x y  that contains them.  

 

A second column is created in the table where in the first row the consensus term ' ' 'w x y  

is placed;  



Determining Prime Implicants by Tabular Method 

In the example, if we compare the term from the first row ( ' ' ' 'w x y z )  with the top most 

term of second row ( ' ' 'w x y z ), their consensus term is ' ' 'w x y . 

 

Both ' ' ' 'w x y z and ' ' 'w x y z  are marked as non-prime because there exists another 

implicant ' ' 'w x y  that contains them.  

 

A second column is created in the table where in the first row the consensus term ' ' 'w x y  

is placed;  



Determining Prime Implicants by Tabular Method 

 

' ' ' 'w x y z  (not prime) ' ' 'w x y  

' ' 'w x y z (not prime) 

' ' '

' ' '

wx y z

w x yz
 

 

' '

' '

wx y z

wx yz
 

 

'wxyz   

wxyz   

Entry after consensus of ' ' ' 'w x y z and ' ' 'w x y z  



Determining Prime Implicants by Tabular Method 

' ' ' 'w x y z  (not prime) ' ' '

' ' '

' ' '

w x y

x y z

w x z

 

' ' 'w x y z (not prime) 

' ' ' (not prime)

' ' '(not prime)

wx y z

w x yz
 

' 'x y z  

' '

' '

wx y

wx z
 

' 'x yz  

' ' (not prime)

' '(not prime)

wx y z

wx yz
 

'wyz  

'(not prime)wxyz  wxy  

(not prime)wxyz   

Entry after consensus of all terms of first table 



Determining Prime Implicants by Tabular Method 

' ' ' 'w x y z  (not prime) ' ' '  (notprime)

' ' '  (notprime)

' ' '  (notprime)

w x y

x y z

w x z

 

' '

' '

x y

x z
 

' ' 'w x y z (not prime) 

' ' ' (not prime)

' ' '(not prime)

wx y z

w x yz
 

' 'x y z  (not prime) 

' '  (not prime)

' '  (not prime)

wx y

wx z
 

' 'x yz  (not prime) 

 

' ' (not prime)

' '(not prime)

wx y z

wx yz
 

'wyz   

'(not prime)wxyz  wxy   

(not prime)wxyz    

          Entry after consensus of all terms of column 2  

So here, we have four prime implicants as ', , ' ', ' 'wyz wxy x y x z .  



Determining Prime Implicants by Tabular Method 
•It my be noted that the function considered in the example was completely 
specified, i.e., there was no don’t care terms.  
 
•If the function is incompletely specified then we follow the same procedure 
discussed above (for completely specified functions), however, we drop the mean 
terms that contain only don’t care minterms.  
 
•Specifically, a product term is a prime implicant of an incompletely specified 
function if it is a prime implicant of the function and contains at least one minterm 
which is not don’t care.  
 
•Now we will consider the following example, which illustrates tabular method for 
incompletely specified functions.  



Determining Prime Implicants by Tabular Method 

Consider the function written in SOP form ( , , ) ' ' ' ( ' ' ' )f x y z x z xyz d xy z xy z    . 

The function in minterm canonical form is as follows 

' ' ' ' ' ' ( ' ' ' )x y z x yz xyz d xy z xy z    .  

The table for consensus of the SOP is shown in next Table 

' ' 'x y z  (not prime) ' '(not prime)x z  

' '(not prime)y z  

'z  

' ' (not prime)

' '.... ' (not prime)

x yz

xy z don t
 

'(not prime)yz  

'xz (not prime) 

'..... 'xy don t  

 

' (not prime)

' ..... ' (not prime)

xyz

xy z don t
 

  

 



Determining Prime Implicants by Tabular Method 

The prime implicates are 'xy and 'z . However, we do not consider 'xy  as prime 

implicate because it comprises only don’t care terms.  

 

It may be noted that in case of merging, if both the terms in consensus are don’t care, 

then the new term is also marked don’t care.  

 

In this example, the term  'xy  in second column is marked don’t care because both the 

terms in consensus  ' ', 'xy z xy z  are don’t cares.  



Thank You 
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Determining Prime Implicants by Iterated Consensus 

•The tabular method discussed above is based on the application of the 
Quine’s theorem.  
 
•The tabular method is simple, however, it requires the minterm canonical 
form to start with, which is exponential in number of input variables 
(alphabets).  
 
•To cater to this issue, iterated consensus method does not expand the 
product terms (of SOP) to minterms.  Instead, consensus is made between all 
pairs of product terms.  

•The consensus terms of all pairs of terms that are not contained in 
some other term are added to the equation.  
 
•The new terms are compared to the existing terms and among 
themselves to see if more new consensus terms can be generated. 

 
• All terms that are contained in some other term are removed.  

 
•Once no more new terms can be generated, the SOP has only prime 
implicants.  



Determining Prime Implicants by Iterated Consensus 

  
Definition 9:  An SOP formula is complete sum if it comprises all the prime 
implicants of the function it represents. 
  
Theorem 2 :  A SOP formula is a complete sum if and only if: 

1. No term includes any other term.  
2. The consensus of any two terms of the formula either does not exist 

or is contained in some term of the formula. 

We only highlight the basic philosophy behind the proof.     

Suppose a SOP representing a function is not a complete sum, because there is one prime 

implicant of the function that does not appear in the SOP (and all other terms are prime 

implicants). Therefore, the remaining prime implicant must be covered by two or more of 

the prime implicants in the SOP. Suppose for simplicity let us assume that there are two 

such prime implicants 1 2 and p p . If we add the consensus term of 1 2 and p p , we get 

another term that covers the missing prime implicant.  



Determining Prime Implicants by Iterated Consensus 

  
The theorem suggests a simple procedure (steps given below) to generate all 
the primes of a function, called iterated consensus.  
 
1. Start from an arbitrary SOP formula and add the consensus terms of all 

pairs of terms that are not contained in some other term.  
 

2. The new terms are compared to the existing terms and among 
themselves to see if new consensus terms can be generated (and 
added). All terms that are contained in some other term are removed.  
 

3. Repeat step 2 until no more new terms are created. 
 
The steps generate a complete sum (i.e., all prime implicants) 



Determining Prime Implicants by Iterated Consensus 

As an example, consider the SOP for the function 

( , , ) ' ' ' ' ' 'f x y z x z xyz xy z xy z     (it is the same function used in the last 

section, however, now the don’t care terms are made minterms).  

Steps of iterative consensus for the function are discussed below.   

1. Consensus of ' '  and 'x z xyz  (1
st
 two terms) generates 'yz , which contains 'xyz . 

By eliminating  'xyz  and adding 'yz , we have ' ' ' ' ' 'f x z xy z xy z yz     

2. Consensus of ' 'and ' 'x z xy z  will generate ' 'y z , which contains ' 'xy z . By 

eliminating  ' 'xy z  and adding ' 'y z , we have ' ' ' ' ' 'f x z xy z yz y z    . 



Determining Prime Implicants by Iterated Consensus 

3. ' 'and 'x z xy z do not have consensus  

4. ' 'and 'x z yz  do not have consensus; '  and 'xy z yz  do not have consensus 

5. 'and ' 'yz y z generates 'z . ',  ' 'yz y z  and ' 'x z  are in 'z . By eliminating 

',  ' 'yz y z  and ' 'x z  and adding 'z , we have ' 'f xy z z  . 

6. Consensus between '  and 'xy z z generates 'xy , which contains  'xy z . 

Eliminating 'xy z  and adding 'xy we get ' 'f xy z  .  

 

Now ' 'f xy z   is the complete sum as no more new terms can be created. It may be 

noted that 'and 'xy z are the prime implicants; same result was determined using tabular 

method, as discussed in the last sub-section (however, in that case 'xy comprised only 

don’t cares). 



Selecting a Subset of Primes  

• In the last Lecture, we discussed techniques to generate prime 
implicants from a given SOP Boolean equation.  
 

• Now, we need to select a subset of the prime implicants that cover all 
the minterms.  
 

• The approach of minimizing a SOP formula based on computing all 
primes and then selecting some of them to form a cover is called 
Quine-McCluskey procedure.  
 
 
 

• In this lecture, we will discuss Quine-McCluskey procedure and 
illustrate the same using examples.  



Selecting a Subset of Primes  
Let us consider the following SOP formula:  

( , , ) ' ' ' ' ' ' ' 'f x y z yz x y y z xyz x z x y z      .  

The complete sum for the function (i.e., in terms of prime implicants)  is 

( , , ) ' ' ' ' 'f x y z x y x z y z yz    .  

•The condition that any subset of primes must satisfy the Boolean formula is 
that, each minterm (for which the function is 1) is to be included in at least one 
prime implicant, which is in the subset.  
 
•A subset of (prime) implicants that satisfies this requirement is called a SOP 
cover of the function, or simply a cover.  
 
•The concept of “cover” can be represented by a constraint matrix.  
 
•Each column of the constraint matrix corresponds to a prime implicant and each 
row corresponds to a minterm.  

Let C be the constraint matrix and let 
ijc be the element in row i  and column j ; 

1ijc  (0), if the j-th prime covers (does not cover) the i-th minterm.  



Selecting a Subset of Primes  

In the example, let us represent the prime implicants as follows. 

' ........PI1

' '.......PI2

' '.......PI3

..........PI4

x y

x z

y z

yz

 

Now the matrix C is as follows: 

PI1 PI2 PI3 PI4

' ' ' 0 1 1 0

' ' 1 1 0 0

' 1 0 0 1

0 0 0 1

' ' 0 0 1 0

x y z

x yz

x yz

xyz

xy z

 



Selecting a Subset of Primes  

Given the constraint matrix, we need to find a subset of columns of minimum cost 

that covers all the rows.  

In other words, for every row there must be at least one selected column with a 1 in 

that row.   

In the example, we note that, columns PI3 and PI4 must be part of every solution, 

because the last two rows are singletons. If a row is a singleton, there is only one 

column that may cover it and that column must be selected. 

 

 It may also be noted that prime implicates corresponding to PI3 (and PI4) are 

essential because they comprise minterm  (and ' ')xyz xy z  which is not in any other 

prime implicant.  



Selecting a Subset of Primes  
When we select some columns, we simplify the constraint matrix accordingly, by 

eliminating the selected columns and the rows covered by them; if we select PI3 and 

PI4 then the resultant constraint matrix is as follows.  

PI1 PI2

' 1 1xy z
 

From the resultant matrix, we can easily see that a complete solution may be obtained 

by adding either PI1 or PI2 to PI3 and PI4.  

In the first case we obtain ( , , ) ' ' 'f x y z x y y z yz    in the second, we obtain 

( , , ) ' ' ' 'f x y z x z y z yz   . In this case, both the solutions involve same number of 

literals. However, in a general case, we select the solution involving minimum 

literals.  



Selecting a Subset of Primes  

Let us consider an arbitrary constraint matrix as shown below.  

PI1 PI2 PI3 PI4

minterm1 1 1 0 0

minterm2 0 1 1 0

minterm3 0 0 1 1

minterm4 1 0 0 1

 

1. A function has a cyclic core if we cannot identify columns of the constraint 
that must be part of the solution or that can be eliminated.  
 

2. In the arbitrary constraint matrix, each row is covered by exactly two columns 
and each column covers exactly two rows. There is no essential primes. There 
is no apparent reason to prefer one column over another. For this matrix we 
must proceed by choosing one column arbitrarily and finding the best solution 
subject to the assumption that the column is selected. We must then assume 
that the column is not in the solution and find another solution. This process 
is repeated till the whole solution space is explored.  

 



Selecting a Subset of Primes  

•From the two previous examples, we note that two important mechanisms are 
involved in determining the cover (of minterms using prime implicants) 

 
1. Reduction of the constraint matrix by selecting columns that cover singleton 

rows (i.e., essential primes) 
2. Exploring solution space by branching in case of cyclic cores.  
 
 
 
•We will discuss algorithms to perform the above two tasks. Before that, 
however, we formulate the covering problem as a constraint matrix, formally. It 
may be noted that once the matrix is created, it becomes a problem of 
determining minimum cost columns that cover all rows, which can be thought 
independently of Boolean functions, prime implicants, minterms etc.    
 



Selecting a Subset of Primes  

One may readily see that the rows of the constraint matrix in our first example can be 

written as the switching function as follows  

 (PI2+PI3)  for the 1
st
 row 

 (PI1+PI2)  for the 2
nd

  row. 

 (PI1+PI4)  for the 3
rd

  row. 

 PI3 for the 4
th

 row 

 PI4 for the 5
th

 row 



Selecting a Subset of Primes  

The switching function (PI2+PI3) for the 1
st
 row evaluates to one if either PI2=1or 

PI3=1or both PI2=1, PI3=1.  

We interpret iPI =1 as “column i is selected,” and all j “rows covered” for which the 

matrix has 1ijc  .   

We can proceed similarly for the other rows. The expressions thus obtained are 

switching functions that must all be 1 for a solution to be valid. Hence, their product 

must be 1. We can therefore write the following equation as an equivalent to the 

constraint matrix (PI2+PI3).(PI1+PI2).(PI1+PI4).PI3.PI4  



Selecting a Subset of Primes  

•This equation is called the constraint equation of the covering problem 
(represented by the constrained matrix). The covering problem can be 
stated in this setting as the problem of finding an assignment of zeroes 
and ones to the variables that is a solution to the constraint equation 
and that is of minimum cost. Cost is predefined on the variables 
depending on the literals in the corresponding prime implicant.    
 
•We may note that all variables in the constraint equation are un-
complemented. This is not a coincidence, but rather a direct 
consequence of the way the equation is built; we do not put the 
concept “not considering a column” in the equation. A formula where 
no letter appears with both phases is said unate. A non-unate formula is 
called binate. Because of the form of the constraint equation that we 
get, the covering problem we are dealing with is sometimes called unate 
covering.  
 



Unate Covering Problem 

The Unate Covering Problem (UCP) can be defined in terms of both a 
constraint matrix and a constraint equation. As we will solve the UCP using 
constraint matrix, we will define the problem only in that from 

Definition 10:  Let M be a matrix of m rows and n columns, for which 
ijM  is either 0 or 

1. The unate covering problem involves finding a minimum cardinality column subset S, 

such that for all such that for all 'S  
' 1, {1,2,... } | | | ' |j S ijM i m S S      .  

In other words, the columns in the set S “cover” M in the sense, that every row of M 

contains a 1-entry in at least one of the columns of S, and there is no smaller set 'S which 

also covers M. 



Unate Covering Problem 

To solve the unate covering problem, the constraint matrix can be simplified 
by considering three factors namely,  
 

•Columns that have singleton rows are mandatory to be taken in the 
cover. All rows covered by such columns can be deleted and so do the 
columns. The unate covering can be then carried out in the reduced 
matrix. The procedure is called elimination of rows covered by “essential 
columns”. For example, in the matrix given below, PI4 is an essential 
column.  

PI1 PI2 PI3 PI4

minterm1 1 1 0 0

minterm2 0 1 1 0

minterm3 0 0 1 1

minterm4 0 0 0 1



Unate Covering Problem 

PI4 also covers minterm3. The resultant simplified matrix (after elimination of 
rows covered by essential column PI4) is give below.  

PI1 PI2 PI3

minterm1 1 1 0

minterm2 0 1 1

If a row 
ir of the constraint matrix has all the ones of another row 

jr , then 
ir  is covered 

whenever 
jr  is covered. We say that ir dominates  

jr . In the example matrix below, 

minterm1 has all 1s of another row, minterm2. So minterm1 dominates minterm2.   

PI1 PI2 PI3 PI4

minterm1 1 1 1 0

minterm2 0 1 1 0

minterm3 0 0 1 1

minterm4 0 0 0 1



Unate Covering Problem 

All dominating rows (minterm1, in this example) can be eliminated from the constraint 

matrix. This is because, if a column is taken which covers the dominated row then by 

virtue of the “common 1”, the dominating row is also covered. In the example, if we 

select PI2 to cover minterm2, then by virtue of common 1 (i.e., 12c )  minterm1 is also 

covered. By applying “eliminating dominating rows”, the reduced matrix is as follows 

PI1 PI2 PI3 PI4

minterm2 0 1 1 0

minterm3 0 0 1 1

minterm4 0 0 0 1



Unate Covering Problem 

If a column 
ic of the constraint matrix has all the ones of another column 

jc , then 
ic  is 

said to dominate 
jc . In such a case we may say that then ic  covers all rows that are 

covered by 
jc . Also, if the cost of prime implicant (in terms of number of literals) 

corresponding to ic  is not more than that corresponding to 
jc , then we can say that ic  is 

not inferior to 
jc , in that it covers all the rows that 

jc  covers, at a cost that is not larger. 

This means that we can eliminate 
jc  and simplify the matrix, without giving up the 

possibility of finding an optimum solution.  The process is called elimination of columns 

through “column dominance”. 



Unate Covering Problem 
In the matrix given below, row dominance are--PI2 dominates PI1 and PI3 

dominates PI1 and PI2.   

PI1 PI2 PI3 PI4

minterm1 1 1 1 0

minterm2 0 1 1 0

minterm3 0 0 1 1

minterm4 0 0 0 1

 

If cost of PI3 is not higher than PI1 and PI2 then, by eliminating PI1 and PI2, the 

simplified matrix is given below.  

PI3 PI4

minterm1 1 0

minterm2 1 0

minterm3 1 1

minterm4 0 1

 

It may be noted that if the matrix is cyclic then none of the above three 

simplification procedures can be applied.  
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Branch-and-Bound Algorithm for selecting cover  

The unate covering problem can be solved efficiently using Branch-and-Bound 
Algorithm. Now we will present the scheme and then illustrate the same with 
examples.  

 There may be multiple optimum solutions to the problem and our intension to 

find one of them.  

 The search space can be defined as a subset of selected columns.; if there are n 

columns then solution space is (2 )nO .  

 In the branch and bound procedure for this problem the solution space is 

enumerated in form of a binary search tree.  

 A node corresponds to a column and the left (right) edge represents the column 

being (not being) considered in the cover. 

 It may be noted that for all columns there may not be a node in the tree, because 

considering some column may result in elimination of some other due to 

dominance or inclusion due to essentiality.   



Branch-and-Bound Algorithm for selecting cover  

Therefore, if we can determine that a given part of the search 
space (i.e., sub-tree rooted at a non-leaf node) does not contain 
any solution better than the one we have found so far, then we can 
avoid exploring that part of the search space altogether.  
 
We start searching another branch by considering a column that 
was considered not to be taken in the cover. In addition, we may 
search other branch by not considering a column that was 
considered to be taken in the cover. Therefore, in branch and 
bound algorithm for unate covering problem, we resort to two 
basic ideas—organize the search space in from of a binary search 
tree and explore the branches of the tree.  



Branch-and-Bound Algorithm for selecting cover  

•For efficiency, we need some scheme to estimate the lower bound 
cost of a solution (given a constraint matrix) without fully exploring 
the search space.  
 
•When we find that exploring a given path would lead to more 
expensive solution than expected, we retract to other braches 
without exploring the path under question.   
 
•In other words, at any given node of the search tree, we have 
selected and rejected some columns. These columns are identified 
by the path from the root of the tree to that node. Hence, at that 
node we have a partial solution. If the cost of a partial solution 
(from that node) exceeds the expected solution at a node, clearly 
we can abandon that path and track back.  



Branch-and-Bound Algorithm for selecting cover  

•Branch and Bound then tries to establish whether a new best solution can still 
be found by proceeding from the current node in a different branch.  
 
•The way of computing the lower bound depends on the particular problem. It is 
obvious that a careful choice of the lower bound criterion is important. Ideally, 
the criterion should provide an accurate estimate of the real minimum cost 
incurred in completing the current solution. At the same time, the computation 
of the bound should be fast. So, most of the lower bound estimation algorithms 
are fast heuristics, that may not provide a sharp bound. 
 
• So the branch and bound algorithm for unate covering problem generally 
provides near optimal solutions. However, due to the lower bound estimation 
heuristics the execution time is low.  



Branch-and-Bound Algorithm for selecting cover  

Before we turn our attention to the computation of the lower bound for the 
unate covering problem, we now look at the steps for the branch-and-bound 
algorithm for the unate covering problem.  
 
1. Execute the lower bound computation algorithm on the constraint matrix.  

The “Initial Lower Bound” is the Lower Bound. Current Cost is set to 0.   
 
 

2. Select or de-select a column PI (i.e., a path in the solution space 
corresponding PI=1 or PI=0). If a column PI is selected then add PI to the 
cover and add cost 1 to the Current Cost. Apply reduction techniques 
(essential columns, row and column dominance) to the constraint matrix. 
For all essential columns, add them to the cover and increase Current Cost 
by the number of essential columns. If the problem is now reduced to a 
terminal case (because of selection of a column), then check whether the 
solution thus found is better than (or at least at par) the “Initial Lower 
Bound” (i.e., Initial Lower Bound  >= Current cost). If so, the cover is 
returned and algorithm is terminated.  

 



Branch-and-Bound Algorithm for selecting cover  

3. On the reduced matrix, again compute the lower bound. Add the lower 
bound value to the Current Cost. If there is still a chance of getting an 
optimal solution, identify a column to be selected/de-selected from the 
reduced matrix and go to Step-2; execute step-2 by selecting/de-selecting 
the column being marked.  
 
 
 

4. If the value of lower bound + Current Cost is higher than Initial Lower 
Bound, then there is no point in exploring that path. Undo selection or de-
selection of the column done last (in Step-2), consequent selection/de-
selection of columns (due to matrix reduction) and addition in Current cost. 
Go to step-2 and traverse another path by selecting or de-selecting an 
alternative column.  

 



Computation of the Lower Bound 

As discussed in the last sub-section, the branch and bound algorithm needs a 
procedure that can provide a quick estimate of the minimum number of columns 
required for a cover.  This lower bound helps the algorithm to retract (to other 
branches by selecting appropriate column) if the estimated solution cost is 
higher than the expected one, without actually exploring the full path.    
  
 
We now address the problem of computing a lower bound approximation to the 
cost of covering a constraint matrix in terms of number of columns. Before the 
discussion, some definitions and a theorem are introduced.  
  
 
 
Definition 11:  In a given covering matrix C, suppose that two rows have no 
nonzero columns in common, we say these two rows are independent (that is, 
column-disjoint).  
 



Computation of the Lower Bound 

It is obvious that we need two different columns to cover these two rows.  
 
Generalizing this argument, if a matrix has n rows that are disjoint (pair wise), 
we need at least n columns to cover the whole matrix.  
 
In this case, the  rows are said to form an independent set of rows.  
 
In the constraint matrix given below, rows corresponding to minterm1, minterm3 
and minterm5 are independent as they do not have a common column that has 
1.  Similarly, rows corresponding to minterm2, minterm4 and minterm6 are 
independent. So, we need at least three columns to cover the matrix. The lower 
bound in this case is 3.  
 



Computation of the Lower Bound 

PI1 PI2 PI3 PI4 PI5 PI6

minterm1 1 0 0 0 0 1

minterm2 1 1 0 0 0 0

minterm3 0 1 1 0 0 0

minterm4 0 0 1 1 0 0

minterm5 0 0 0 1 1 0

minterm6 0 0 0 0 1 1

For cyclic matrices, lower bound is 2 or more, as shown in the following 
theorem. 
  
Theorem 3:  The lower bound for a cyclic matrix is at least 2. 
There is only one case when the lower bound is 1; constraint matrix contains a 
full column of ones. In this case, the matrix cannot be cyclic because the column 
with all ones dominates all the others. The matrix can therefore be reduced to 
one column, which is obviously essential. Thus, such a matrix is not cyclic.  
 



Computation of the Lower Bound 

There are several heurists for computing the lower bound for the coving problem that 

have been proposed. Steps are as follows. 

1. Add a field w  to each row, whose value is equal to the number of 1’s 

in the row 

2. Choose the row with minimum w. Let it be ir . If there are multiple 

rows with same value, choose the one from the top.  

3. Delete all rows jr such that ir  and jr  have at least one column where 

both of them have a 1. Also, delete ir . 

4. Repeat step 2 and 3 until no more rows remain.  

The number of rows selected in Step-2 is the lower bound of the cover.  



Computation of the Lower Bound 

The key feature of this algorithm is it just chooses the “shortest” row, that is, the 
row with the fewest nonzero columns, and breaking ties in ascending order.  
 
The basic motivation of choosing the “shortest” row first, comes from the fact--
shorter the row is, higher is the probability of involving a column to cover it. If 
there is a row of w=1, then one column is mandatory to cover it. All rows with at 
least one common column of 1 are deleted because, all the rows can be covered 
with the common columns. This makes the solution faster because we eliminate 
many rows quickly.  
 
However, this also leads to inaccuracy explained as follows. Let row1 be selected to 
be deleted. Let row2 has common column as column1 (with row1) and row3 has 
common column as column2 (with row1). So the lower bound estimate in this case 
is 1; deletion of row1 will also eliminate row2 and row3 because of common 
columns having 1. Also, let row2 and row3 be singletons. To cover row1 and row2 if 
we select column1, then selection of column2 is mandatory for row3. Similarly, to 
cover row1 and row3 if we select column2, then selection of column1 is mandatory 
for row2. Therefore, we require two columns in this case, which is not reflected in 
the estimate.  



Computation of the Lower Bound 
Let is consider the constraint matrix given below. The weights w are also shown 

in the matrix.  

PI1 PI2 PI3 PI4 PI5 PI6

minterm1 1 0 0 0 1 0 2

minterm2 1 1 0 1 0 0 3

minterm3 0 1 1 0 0 0 2

minterm4 0 0 0 1 1 1 3

minterm5 0 0 1 1 0 0 2

minterm6 0 1 0 0 0 1 2

w

w

w

w

w

w













 

In this case, we start with row1 (minterm1) which has the minimum weight and 
occurs first in chronological order among all other rows having equal weight. 
Now, rows minterm2 and minterm4 are also eliminated because of common 
columns column1 (PI1) and column5 (PI5), respectively. In the next iteration, 
row3 is selected.  Now, rows minterm6 and minterm5 are also eliminated 
because of common columns column2 (PI2) and column3 (PI3), respectively. As 
there are no more rows, Lower Bound = 2 and comprises {1, 3}. It may be noted 
that in this case the bound is not sharp, as we require at least three columns in 
the cover.  



Example of Branch and Bound applied to Unate covering  
Let us consider the constraint matrix given below. It may be noted that this 
matrix cannot be cannot be further simplified. If we apply the quick lower bound 
estimate , we get Lower Bound = 4 comprising {1, 3,5,7}.  
 PI1 PI2 PI3 PI4 PI5 PI6 PI7 PI8 PI9 PI10 PI11

minterm1 1 1 0 0 0 0 0 0 0 0 0

minterm2 0 1 1 0 0 0 0 0 0 0 0

minterm3 0 0 1 1 0 0 0 0 0 0 0

minterm4 1 0 0 1 0 0 0 0 0 0 0

minterm5 0 0 0 0 1 1 0 0 0 1 0

minterm6 0 0 0 0 0 1 1 0 1 0 0

minterm7 0 0 0 0 0 0 1 1 0 0 0

minterm8 0 0 0 0 0 1 0 1 0 1 1

minterm9 0 0 0 0 1 0 0 0 1 1 1

minterm10 0 0 0 0 1 0 0 1 1 0 0

minterm11 0 0 0 0 1 0 1 0 0 0 1

minterm12 1 0 0 0 0 0 0 0 0 0 1



Example of Branch and Bound applied to Unate covering  

Now we start exploring the solution space. Let is start with selecting PI1 (i.e., 
PI1=1).  With PI1 being taken, the following happens in the matrix 

•rows minterm1, minterm4, and minterm112 are covered,  
•columns PI2 (by PI3) and PI4 (by PI3) are dominated  
•column PI3 becomes essential.  

  
  
The Binary search tree illustrating the search in the solution space by the branch 
and bound algorithm is shown in next figure. The left edge (right dotted edge) 
indicates the column being (not being) considered.    
 



Example of Branch and Bound applied to Unate covering  

PI1

PI5

PI6

PI5

PI7

PI6

PI3.PI2',PI4'

PI8'

PI9'.PI10',PI11'

PI8.PI7

Cost=5

PI7

PI8
Cost=5



Example of Branch and Bound applied to Unate covering  

The left edge from root note indicates PI1 being taken. Also in the edge it is 
marked that  “PI3, PI2’,PI4”—this indicates that because of taking PI1, PI3 has 
to be considered and PI2 and PI4 get eliminated.  
 
After reduction (i.e., taking PI1, PI3 and eliminating PI2, PI3) we get the 
following matrix. As of now, the cost of the solution is 2 (PI1, PI3).  

PI5 PI6 PI7 PI8 PI9 PI10 PI11

minterm5 1 1 0 0 0 1 0

minterm6 0 1 1 0 1 0 0

minterm7 0 0 1 1 0 0 0

minterm8 0 1 0 1 0 1 1

minterm9 1 0 0 0 1 1 1

minterm10 1 0 0 1 1 0 0

minterm11 1 0 1 0 0 0 1



Example of Branch and Bound applied to Unate covering  

In this matrix Lower Bound = 2 comprising {5,7}. So if we explore on this matrix 
the solution cost lower bound is 2+2=4. As this value is equal to that of the 
Lower Bound on the initial matrix, we explore on the search space. Let us now 
consider column PI5.  With PI5 being taken, the following happens in the matrix 
 

•rows minterm9, minterm10, and minterm11 are covered,  
•columns PI9 (by PI6), PI10 (PI6) and PI11 (by PI6) are dominated  

  
The left edge from root note indicates PI5 being taken (tree). Also in the edge it 
is marked that  “PI9’, PI0’,PI1’”—this indicates that because of taking PI5, PI9, 
PI10 and PI11 get eliminated.  
 
After reduction (i.e., taking PI5 and eliminating PI92, PI10, PI1) we get the 
following matrix. As of now the cost of the solution is 3 (PI1, PI3,PI5).  

PI6 PI7 PI8

minterm6 1 1 0

minterm7 0 1 1

minterm8 1 0 1



Example of Branch and Bound applied to Unate covering  

•In this matrix Lower Bound = 1 comprising {6}. So if we explore on this matrix 
the solution cost lower bound is 3+1=4. As this value is equal to that of the 
Lower Bound on the initial matrix, we explore on the search space.  If we 
consider PI6, the following happens in the matrix 

•row minterm8 is covered,  
•Column PI7 or PI8 needs to be taken in the cover. 

 
 
•This is the terminal case as all rows are covered. This is solution is 
{PI1,PI3,PI5,PI6,PI7} (left edge of PI7) in the tree or {PI1,PI3,PI5,PI6,PI8} (right 
edge of PI7).  
 
•In both the solutions, the cost is 5, which is higher than the initial expected 
lower bound. Therefore, we need to retract. We may select an alternative path 
where, PI6=0 (right edge of PI6).  It is easy to observe that in this case the 
solution is {PI1,PI3,PI5,PI7,PI8}; as the cost is 5 we retract. We may select an 
alternative path where, PI5=0 (right edge of PI5).  



Example of Branch and Bound applied to Unate covering  

•Similarly, the whole tree can be created. In this example, if the whole tree is 
created, it may be noted that the cost at all branches (solution space) is 5.  
 
•Therefore, the whole tree will be explored and in the end, it will be concluded 
that the lower bound (=4) given by the estimate is not sharp and a solution (of 
cost 5) will be taken as cover. 
 
 
• However, it is not always the case. In the Question and Answer part of the 
lecture we will provide a modified lower bound estimate algorithm and show 
how, in the same example (being considered in this sub-section) some paths 
need not be explored  



Question and Answers  

•Question: The lower bound estimate algorithm discussed in this lecture may 
not always give a sharp bound.  Suggest suitable modifications and show that 
better bounds can be obtained. Also show using an example, how benefit is 
achieved in branch and bound algorithm using the modification .  
Answer 

The following 4 steps were present in the lower bound estimate algorithm discussed in 

the lecture. The modification is highlighted as bold. 

1. Add a field w  to each row, whose value is equal to the number of 1’s in the row 

2. Choose the row with minimum w. Let it be ir . If there are multiple rows with same 

value, choose the one from the top.  

3. Delete all rows jr such that ir  and jr  have at least one column where both of them 

have a 1. Also, delete ir . If, after deletion no more rows remain, then check if 

there exists a column PI say, such that PI has all 1s. If there is no such column 

then 1 needs to be added the lower bound.  

4. Repeat step 2 and 3 until no more rows remain.  



Question and Answers  

The motivation of the extension is explained by the following matrix.  

PI1 PI2 PI3

minterm1 1 1 0

minterm2 0 1 1

minterm3 1 0 1

 

In the above matrix, if we apply the lower bound estimate algorithm discussed in 
the lecture, then we get the answer as 1; the algorithm stops after 1 iteration 
because row1 is selected and row2 and row3 get eliminated. However, it may be 
noted one column cannot cover the three rows because no column PI exists, 
such that PI has all 1s. Therefore, in this case, we increment the cost by 1; two 
rows can cover. It may be noted that if the matrix has more rows and columns, 
then the addition required in the cost may be more than 2. However to keep the 
algorithm simple we compromise on accuracy and add just 1; calculating more 
accurate value to be added, requires more computation steps.  



Question and Answers  
Let us again consider the same constraint matrix example. If we apply the 
modified lower bound estimate algorithm, we get Lower Bound = 4 comprising 
{1, 3,5,7} (same as the original algorithm of the lecture).  

PI1 PI2 PI3 PI4 PI5 PI6 PI7 PI8 PI9 PI10 PI11

minterm1 1 1 0 0 0 0 0 0 0 0 0

minterm2 0 1 1 0 0 0 0 0 0 0 0

minterm3 0 0 1 1 0 0 0 0 0 0 0

minterm4 1 0 0 1 0 0 0 0 0 0 0

minterm5 0 0 0 0 1 1 0 0 0 1 0

minterm6 0 0 0 0 0 1 1 0 1 0 0

minterm7 0 0 0 0 0 0 1 1 0 0 0

minterm8 0 0 0 0 0 1 0 1 0 1 1

minterm9 0 0 0 0 1 0 0 0 1 1 1

minterm10 0 0 0 0 1 0 0 1 1 0 0

minterm11 0 0 0 0 1 0 1 0 0 0 1

minterm12 1 0 0 0 0 0 0 0 0 0 1



Question and Answers  
After third iteration of the modified lower bound estimate algorithm (i.e., 
deleting rows corresponding to 1,3 and 5), we have the following matrix  

PI1 PI2 PI3 PI4 PI5 PI6 PI7 PI8 PI9 PI10 PI11

minterm7 0 0 0 0 0 0 1 1 0 0 0

After eliminating minterm7, we exhaust all rows, but need not add 1 to the cost 
because there are two rows PI7 and PI8, which have all 1s.  



Question and Answers  

As discussed in the lecture, we start exploring the solution space by selecting 
PI1 (i.e., PI1=1).  With PI1 being taken, the following happens in the matrix 
 

•rows minterm1, minterm4, and minterm112 are covered,  
•columns PI2 (by PI3) and PI4 (by PI3) are dominated  
•column PI3 becomes essential.  
 

After reduction (i.e., taking PI1, PI3 and eliminating PI2, PI3) we get the 
following matrix. As of now, the cost of the solution is 2 (PI1, PI3).  

PI5 PI6 PI7 PI8 PI9 PI10 PI11

minterm5 1 1 0 0 0 1 0

minterm6 0 1 1 0 1 0 0

minterm7 0 0 1 1 0 0 0

minterm8 0 1 0 1 0 1 1

minterm9 1 0 0 0 1 1 1

minterm10 1 0 0 1 1 0 0

minterm11 1 0 1 0 0 0 1



Question and Answers  

In this matrix Lower Bound = 2 comprising {5,7}; this is same, using the original 
lower bound computation algorithm as well as the modified one. So if we 
explore on this matrix the solution cost lower bound is 2+2=4. As this value is 
equal to that of the Lower Bound on the initial matrix, we explore on the 
search space. Let us now consider column PI5.  With PI5 being taken, the 
following happens in the matrix 

•rows minterm9, minterm10, and minterm11 are covered,  
•columns PI9 (by PI6), PI10 (PI6) and PI11 (by PI6) are dominated  

  
After reduction (i.e., taking PI5 and eliminating PI92, PI10, PI1) we get the 
following matrix. As of now the cost of the solution is 3 (PI1, PI3,PI5).  

PI6 PI7 PI8

minterm6 1 1 0

minterm7 0 1 1

minterm8 1 0 1



Question and Answers  

In this matrix Lower Bound = 2 comprising {5,7}; this is same, using the original 
lower bound computation algorithm as well as the modified one. So if we 
explore on this matrix the solution cost lower bound is 2+2=4. As this value is 
equal to that of the Lower Bound on the initial matrix, we explore on the 
search space. Let us now consider column PI5.  With PI5 being taken, the 
following happens in the matrix 

•rows minterm9, minterm10, and minterm11 are covered,  
•columns PI9 (by PI6), PI10 (PI6) and PI11 (by PI6) are dominated  

  
After reduction (i.e., taking PI5 and eliminating PI92, PI10, PI1) we get the 
following matrix. As of now the cost of the solution is 3 (PI1, PI3,PI5).  

PI6 PI7 PI8

minterm6 1 1 0

minterm7 0 1 1

minterm8 1 0 1



Question and Answers  

In this matrix Lower Bound = 1 comprising {6}; this is the value obtained using 
the using the original lower bound computation algorithm of discussed in the 
lecture.  
 
Using the modified algorithm the Lower Bound = 2 (in this case 1 is added to 
the cost because there is no column with all 1s.)   
 
 
Therefore, if we explore on this matrix the solution cost lower bound is 3+2=5. 
As this value is higher than the Lower Bound on the initial matrix, we do not 
explore on the search space.   
 
 
As shown in the lecture, exploring in path PI1=1, PI5=1….., would have the cost 
of 5. As this value is available without actually exploring the path, when we use 
the modified bound computation algorithm, we save computation time in the 
branch and bound algorithm.  
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Introduction 
•In the last lecture, we have discussed schemes to minimize Boolean functions for 
two level implementations.  
 
•However, the major problem in exact minimization is the potentially very large 
number of minterms and prime implicants.  
 
•exact minimization procedure involves two basic steps namely, finding prime 
implicants and determining a minimal subset of prime implicants, which covers the 
Boolean function.  
 
•For a circuit with n inputs there may be of the order of  2n  minterms, thereby 
making the tabular method of finding prime implicants, an exponentially complex 
method. Similarly, determining a minimal subset of prime implicants also requires 
minterms, making the procedure complex. Broadly speaking, for most functions 
with more than, say, 15 inputs, there are too many primes and minterms, 
rendering exact minimization schemes prohibitive.  
 
 
 



Introduction 

•To cater to this problem, heuristic methods for Boolean function minimization 
have been proposed which avoid computing all the primes and all the minterms in 
an attempt to avoid the computational cost.  
 
•The idea is to successively modify a given initial cover of the function, until a 
suitable stopping criterion (in terms of number of literals) is met. The drawback is 
the inability to guarantee the cheapest solution, though a careful choice of the 
algorithms may actually provide solutions very close to the optimum (when the 
optimum is known) in a very reasonable time.  
 
•In this lecture, we will discuss a simplified version of such a heuristic called 
ESPRESSO. 
 
 



Local Search  
•Heuristic based logic minimization techniques are based on local search.  
 
•The algorithms that start with an initial solution and try to find a better solution 
by applying successive modifications are called local search algorithms.  
 
•Local search algorithms are very common in optimization domain and logic 
minimization is an important optimization problem in VLSI area. 
 
• In the “Selecting a Subset of Primes” problem, the search space consists of a 
subset of primes that cover all the minterms of the Boolean equation.  
 
 
•A point in the search space is a subset of primes. The subsets, which covers all the 
minterms are valid solutions and the ones which do not cover all the minterms are  
not the valid solutions. The set of all points of the search space that are valid 
solutions form the so-called feasible region. The complement is the infeasible 
region.  



Local Search  
•Local search relies on distance between two points in the search space.  
 
•In case of the “Selecting a Subset of Primes” problem, the distance between two 
points would be the number of minterms that are covered in one subset of primes, 
but not in the second or vice versa (i.e., the cardinality of the symmetric difference 
of the two sets). 
 
•Different problems have generally different definitions of distance, and it is also 
possible to define different distances for the same problem.  
 
•Once a definition of distance is given, we can define the neighborhood of a point 
p as all points that are less that some distance k from p.   
 
•Starting from an initial random valid solution, the algorithm examines its 
neighborhood for a feasible point whose cost is lower than the current cost. If one 
is found, it is assumed as the new starting point and the process is repeated until a 
stopping criterion is met.  



Local Search  
Depending on the problem and the definition of neighborhood, various degrees of 
optimality of the solution can be guaranteed.  
 
For example, if we are interested in the minimum of a convex function of a real 
variable as the one shown in next figure, local search optimization consists of 
moving downward along the curve and is guaranteed to find the minimum value. 
In this case, local search finds the solution which is the best.  
 

f(x)

x

minimum

g(x)

x

local minimum

global minimum



Local Search  
However, if the function is not convex, then local search may get stuck in a local 
minimum.  
 
Once the local search reaches the local optimum point it terminates because it 
cannot see a better solution in the neighborhood. However, if it takes a worse 
solution compared to the local optimum then there is a chance that we may reach 
the global optimum.  
 
In the first case, we say that the solution is minimum, whereas in the second case 
we say that the solution is minimal.  
 
In general, one interesting property of the solution of a local search algorithm is 
local optimality. A solution is locally optimal if its neighborhood does not contain 
any solution of lower cost. In order to guarantee local optimality, it is sufficient to  
use the stopping criterion--when there is no cheaper solution in the neighborhood 
of the current solution then terminate.  
 



Local Search applied to Logic Minimization 

•Local search based logic optimization starts with a random subset of the primes, 
which is a cover. The cost of a solution is the number of cubes.  
 
•If two solutions have the same number of cubes then number of literals can be 
used as a secondary cost.  
 
•The neighborhood of a solution is the subset of primes that are obtained from the 
solution by adding (or removing) exactly one literal to (or from) one of the cubes. A 
new cover thus obtained is a valid solution in the search space (and considered) if 
it represents the same function (i.e., covers the same minterms).  
 
•The solutions with more cubes than the current cover, are not considered. 

Boolean function ( )f xyz xyz xyz xyz xyz     and the dotted lines represent the 

initial cover. The cubical representation of the function is as follows 

( , , )

000 1

01 1

11 1

xyz f x y z





 



Local Search applied to Logic Minimization 
Boolean function ( )f xyz xyz xyz xyz xyz     and the dotted lines represent the 

initial cover. The cubical representation of the function is as follows 

( , , )

000 1

01 1

11 1

xyz f x y z





 

z

x

y

(0,0,0) (1,0,0)

(0,0,1)
(1,0,1)

(0,1,0)
(1,1,0)

(1,1,1)
(0,1,1)

(a) Initial cover

(c) Cover after expansion of an implicant

redundant cover



Local Search applied to Logic Minimization 

 Now let us remove the literal “y” from cube x yz  leading to x z .  

 It may be noted that we can do so because x z  comprises minterms x yz  and 

xyz , which are to be covered in the function under question.  

 After removing the literal “y” from cube we get the cover as shown in last 

figure (b). Now we can remove the redundant cover, i.e., remove the output 

literal of xy  , thus effectively removing the cube from the cover; we have 

the cover as follows.  

 Here, cover is the optimum solution. 

( , , )

0 0 1

11 1

xyz f x y z





 



Local Search applied to Logic Minimization 

The function is as follows 

1 2( ) ;        ( )f xyz xyz xyz xyz xyz f xyz xyz xyz xyz xyz xyz          

The cubical representation is  

1 2

0 1 10

1 0 10

00 01

00 01

11 01

xyz f f











 

The initial cover of the two outputs of the function is illustrated in next Figure.  



Local Search applied to Logic Minimization 

(a) Initial Cover f1 (a) Initial Cover f2

1 2

0 1 11

1 0 10

00 01

00 01

11 01

xyz f f











It may be noted that there is no way to improve the solution by expanding the input 

parts of the cubes or reducing their output parts. However, if we expand the output 

part of the first cube (i.e., 0–1|10), we obtain the cover above.   



Local Search applied to Logic Minimization 

The cover is represented in next Figure. We see that 00–|01 is now redundant and can 

be eliminated, yielding the following cover. 

1 2

0 1 11

1 0 10

00 01

11 01

xyz f f








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It may be noted that the second cover (after expansion of the output of the 
first cube) has one cube less than the initial cover.  



A Simple Local Search Algorithm for Logic Minimization 

•The examples in the last section suggest that a procedure based only on the 
simple moves that immediately decrease the cost is effective. 
 
 
•However, in the real scenario we need to consider a wider variety of moves, 
and combine them into sequences of moves that eventually lead to the desired 
reductions in cost. In other words, we may also need to consider moves that 
may not immediately reduce the cost.  
 
 
•Now we discuss an algorithm which applies simple local search algorithm for 
logic minimization. 



A Simple Local Search Algorithm for Logic Minimization 

The algorithm has the following basic phases: 
 

1. EXPAND: This step expands implicants to their maximum size. 
Implicants covered by an expanded implicant are removed from further 
consideration.  Quality of result depends on order of implicant 
expansion. Heuristic methods are used to determine order. 
 

2. IRREDUNDANT COVER : Irredundant cover (i.e., no proper subset is also 
a cover) is extracted from the expanded primes.  
 

3. REDUCE: There might exist another cover with fewer terms or fewer 
literals. Shrink prime implicants to smallest size that still covers the 
minterms  
 

4. Repeat the sequence REDUCE/EXPAND/IRREDUNDANT COVER to find 
alternative solutions. Keep doing this as long as new cover improve on 
last solution 



A Simple Local Search Algorithm for Logic Minimization: Example 

 Let us consider the function ( , , , )f A B C D  having minterms as 

{0,1,2,4,5,6,9,10,11,13,14,15}.  

Let the initial cover be the ones shown in the boxes of the K-map -- , , ,AC CD AC CD

.  

1 1

1 1 1 1

1 1

1 1 1 1

AB

CD

B

C

D

00 01 1011

00

01

11

10

A



A Simple Local Search Algorithm for Logic Minimization: Example 

Now we reduce the covers, however, keeping in mid that all the minterms are covered 

We use the literal A for the reduction making the cover as , , ,AC ACD AC ACD ; CD  

is changed to ACD  and CD  is changed to ACD .  

1 1

1 1 1 1

1 1

1 1 1 1

AB

CD

A

B

C

D

00 01 1011

00

01

11

10



A Simple Local Search Algorithm for Logic Minimization: Example 
Now we expand ACD  using literal C  resulting in cover AD  and ACD  using literal 

A resulting in cover CD .  

It may be now noted that cover AC  is redundant can be eliminated. The cover after 

one iteration. The same sequence is repeated till the cost of solution is as expected.   

1 1

1 1 1 1

1 1

1 1 1 1

AB

CD

A

B

C

D

00 01 1011

00

01

11

10

1 1

1 1 1 1

1 1

1 1 1 1

AB

CD

A

B

C

D

00 01 1011

00

01

11

10



Question and Answer 

Question: Why is the “Simple Local Search Algorithm for Logic Minimization” 
called anytime algorithm. ?  
 
Answer: 
 
“Simple Local Search Algorithm for Logic Minimization” called anytime 
algorithm because at any iteration of the algorithm, even at the initial state, we 
have a valid solution. One need not wait for any (k, say) number of iterations 
for a valid solution, only the quality of solution improves.  
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Introduction 
•In the last four lectures, we discussed two level minimization of Boolean functions 
that directly map to combinational circuits. In this lecture, we will present 
techniques for Finite State Machine (FSM) synthesis.  

An FSM of Mealy type is a 6-tuple 0, , , , ,I S S O  , where 

I is the input alphabet, i.e., a finite, non-empty set of input values; 

S is the (finite, non-empty) set of states 

: S I S   is the next-state function 

0S S  is the set of initial (reset) states 

O is the output alphabet 

: S I O    is the output function. 



Introduction 
•For a Moore type machine, the outputs do not depend on the present inputs, i.e., 
the outputs depend only on the state value.  
 
•In this lecture, we shall mostly deal with Mealy machines, because they are more 
general.  
 
•The algorithms we shall discuss will work equally well for both types of machines.  
 

FSM synthesis involves four basic steps 

1. State minimization by merging equivalent states 

2. State encoding 

3. Determination of Boolean functions for representing next state 

and output.  

4. Two level minimization of these functions. 



Introduction 

next state logic

(Combinational Circuit)

x I ( , )x s

Input output

Latches

(Flip-Flops)

( , )s x

present state
s S

next state

The block diagram of a sequential circuit in terms of 0, , , , ,I S S O  .  



An example: Illustration of FSM synthesis  
•Various representations of FSMs are in use like State Transition Graph (STG), flow 
table, cube table etc. and STG is one of the most widely used scheme for pictorial 
representation.  
 
•Next Figure illustrates a simple STG representation of an FSM.  
 
•In STG, every node corresponds to a state and every arc corresponds to a 
transition. The label on the arc indicates the input that enables the transition and 
the output produced when the transition takes place.  
 
•The cube table representation is suitable for algorithms used for FSM synthesis. 
 
•The cube table has inputs and present state versus next state and output.  



An example: Illustration of FSM synthesis  

S1

S3

S2

S4

0/1

0/1

1/1 0/01/1

1/0

0/0

1/1

x I  Present state s S  Next state 's S  Output o O  

0 S1 S2 1 

1 S1 S4 1 

0 S2 S1 1 

1 S2 S4 1 

0 S3 S3 0 

1 S3 S1 1 

0 S4 S2 0 

1 S4 S3 0 

 



An example: Illustration of FSM synthesis  

•If we closely observer the STG, we may note that state S1 and S2 are 
equivalent.  
 
•We will define state equivalence and algorithms to determine such states 
formally, in subsequent sections of this lecture. 
 
•For the time, we may broadly say that if two equivalent states are merged 
there is no change in input/output behavior of the FSM. If we merge states S1 
and S2 of, we obtain a reduced FSM.  

S1

S3 S4

0/1

0/0

1/1

1/0

0/0

1/1



An example: Illustration of FSM synthesis  

•Once we obtain a minimized STG, we need to assign encodings to the states. 
Now we will see two different encodings and the effect in the cost of the 
Boolean functions implementing them.   

As there are three states, we need two encoding bits as
0 1s s . Let us consider the 

encoding as  

0 1

0 1

0 1

0 0 : 1

1 0 : 3

0 1: 4

s s S

s s S

s s S

 

 

 

 

x I  Present state 
0 1s s  Next state 

0 1' 's s  Output o O  

0 00 00 1 

1 00 01 1 

0 10 10 0 

1 10 00 1 

0 01 00 0 

1 01 10 0 

 



An example: Illustration of FSM synthesis  

The Boolean functions representing the next state bits and the output in terms of 

minterms are as follows. 

0 0 0 1 0 1 0 1' : ( , , )s f x s s xs s xs s   

1 1 0 1 0 1' : ( , , )s f x s s xs s  

0 1 0 1 0 1 0 1: ( , , )OO f x s s xs s xs s xs s    

As state-encoding 11 is unused we have two don’t cares as 
0 1 0 1,xs s xs s . By applying 

the two-level minimization techniques discussed in the last few lectures, on the above 

Boolean functions, we get the following  

0 0 0 1 1 0' : ( , , )s f x s s xs xs   

1 1 0 1 0 1' : ( , , )s f x s s xs s  

0 1 0 1 1: ( , , )OO f x s s s s xs   

The above-mentioned state encoding involves 11 literals.  



An example: Illustration of FSM synthesis  

Let us consider another encoding as  

0 1

0 1

0 1

0 1: 1

1 1: 3

1 0 : 4

s s S

s s S

s s S

 

 

 

 

x I  Present state 
0 1s s  Next state 

0 1' 's s  Output o O  

0 01 01 1 

1 01 10 1 

0 11 11 0 

1 11 01 1 

0 10 01 0 

1 10 11 0 

 



An example: Illustration of FSM synthesis  

The Boolean functions representing the next state bits and the output in terms of 

minterms are as follows. 

0 0 0 1 0 1 0 1 0 1' : ( , , )s f x s s xs s xs s xs s    

1 1 0 1 0 1 0 1 0 1 0 1 0 1' : ( , , )s f x s s xs s xs s xs s xs s xs s      

0 1 0 1 0 1 0 1: ( , , )OO f x s s xs s xs s xs s    

As state-encoding 00 is unused we have two don’t cares as 
0 1 0 1,xs s xs s . By applying 

the two-level minimization techniques discussed in the last few lectures, on the above 

Boolean functions, we get the following  

0 0 0 1 0 1' : ( , , )s f x s s s xs   

1 1 0 1 0 1' : ( , , )s f x s s x s s    

0 1 0 1 1: ( , , )OO f x s s s s xs   

The above-mentioned state encoding involves 10 literals. Therefore, the 
second encoding is better than the first.  



 State minimization by merging equivalent states  
First, we define the concept of equivalence between two states of a given STG of 
an FSM, and then show how this can be generalized into a procedure for state 
minimization. 

Definition 1:  Consider two states 
1s  and 

1t  of a given FSM, and a k-string (sequence 

of input symbols) 0 2 1, ,... kx x x  . Suppose the string 0 2 1, ,... kx x x   produces one run 

(i.e., state consecution corresponding to the string) 1 2 1, ,... ks s s s   and another run 

0 2 1, ,... kt t t t  . Let 
0 2 ( 1), ,...s s s kos o o o   and 

0 2 ( 1), ,...t t t kot o o o   be the 

corresponding output strings. The string 0 2 1, ,... kx x x   is said to be a length-k 

distinguishing sequence for states 1x  and 1t  (starting states) if and only if os ot

(there is one output value which is not same).  



 State minimization by merging equivalent states  

Definition 2:  Two states 1s  and 
1t  are k-equivalent, written as 

1 1ks t  if and only if 

there does not exist a distinguishing sequence of length k or less for these states. Two 

states 1s  and 1t   are equivalent if and only if they are n-equivalent, where | |n S .  

Definition 3: A binary relation 
1 1( , )k s t S S    is defined as  

1 1 1 1{( , ) | }k

ks t s t   . 

So the relation is an equivalence relation on the set of states S and partitions the set 

into the disjoint equivalence classes. We also denote the equivalence classes of the 

relation k by 1 2, ,... .k k k

lE E E  



 State minimization by merging equivalent states  

Now we will discuss and illustrate the scheme of finding equivalent states using the 
example of next Figure.  

S4

S5

S1

S2

S3

S6

1/0

0/1

0/1

1/0

1/0

1/1

1/0

0/1

0/1

0/1

1/1

1/1



 State minimization by merging equivalent states  

1. Initially we consider all the states of the STG; let the order 

be 1, 2, 3, 4, 5, 6S S S S S S . Now we apply 1 and 0 as input to these states and 

the runs are 4, 6, 2, 6, 6, 3S S S S S S  and 5, 4, 5, 2, 3, 2S S S S S S , respectively. 

In other words, if we apply 1 (0) to states 1, 2, 3, 4, 5, 6S S S S S S   the next sates 

are 4, 6, 2, 6, 6, 3S S S S S S , respectively ( 5, 4, 5, 2, 3, 2S S S S S S , respectively). 

The outputs corresponding to 1 and 0 are  0,1,0,1,0,1  and 1,1,1,1,1,1 , 

respectively. So we have 1 11 3 5S S S    and 1 12 4 6S S S  . So, 

1

1 { 1, 3, 5}E S S S   and 1

2 { 2, 4, 6}E S S S .  



 State minimization by merging equivalent states  

2. As the second stage we will try to determine 2 2 2

1 2 3, , ...E E E . So, we apply 1 

and 0 as input to the equivalent classes 1

1 { 1, 3, 5}E S S S   and 

1

2 { 2, 4, 6}E S S S . 

(i) The runs corresponding to 1 and 0 when applied to 

1

1 { 1, 3, 5}E S S S  are  4, 2, 6S S S  and 5, 5, 3S S S , respectively. 

The outputs corresponding to 1 and 0 when applied to 

1

1 { 1, 3, 5}E S S S  are  0,0,0  and 1,1,1 , respectively. 

So, 2

1 { 1, 3, 5}E S S S ; two conditions are satisfied—(i) outputs 

corresponding to 1 (and 0) are same i.e. all 0s (all 1s), (ii) runs for 

1 (and 0), go to states which are in an equivalent class for 1 .  



 State minimization by merging equivalent states  

(ii) The runs corresponding to 1 and 0 when applied to 1

2 { 2, 4, 6}E S S S  are  

6, 6, 3S S S  and 4, 2, 2S S S , respectively. The outputs corresponding to 1 and 0 

when applied to 1

2 { 2, 4, 6}E S S S  are  1,1,1  and 1,1,1 , respectively. So,  

2 3

2 2{ 2, 4}, { 6}E S S E S  ; —(i) outputs corresponding to 1 (and 0) are same, (ii) runs 

for 1 (and 0), from states 2, 4S S  go to states 6, 6S S  (and 4, 2S S ) which are in an 

equivalent class for 1 . On the other hand, run for 1, from state 6S  goes to state 3S , 

which is in an equivalence class different from the class comprising 6, 6S S .  



 State minimization by merging equivalent states  

4. As the third stage we will try to determine 3 3 3

1 2 3, , ...E E E . So, we apply 1 

and 0 as input to the equivalent classes 

2

1 { 1, 3, 5}E S S S , 2 3

2 2{ 2, 4}, { 6}E S S E S  . Similar, to the procedure of 

Step 2, we can determine that, there will be no further partitioning  in  

2 2

2 2{ 2, 4}, { 6}E S S E S  , thereby generating 3 3

1 2{ 2, 4}, { 6}E S S E S  .  

The runs corresponding to 1 and 0 when applied to 

2

1 { 1, 3, 5}E S S S  are  4, 2, 6S S S  and 5, 5, 3S S S , respectively. 

The outputs corresponding to 1 and 0 when applied to 

1

1 { 1, 3, 5}E S S S  are  0,0,0  and 1,1,1 , respectively. 

So, 3 3

3 4{ 1, 3}, { 5}E S S E S  ; run for 1, from state 5S  goes to state 

6S , which is in an equivalence class different from the class 

comprising 4, 2S S  (run for 1, from state 1, 3S S  reaches 4, 2S S , 

respectively) as per 2 .  



 State minimization by merging equivalent states  

4. If we repeat the procedure (Step-2 or Step-3) on 3 3 3 3

1 2 3 4, , ,E E E E , we will see that there 

is no change in the equivalence classes. So we obtain 
41 3S S   and

42 4S S . As 

there is no change in the classes applying Step-4 (i.e., k=4) we terminate and consider 

the classes of Step-3 as final.  

So, finally we have 2 21 3 5S S S  , 2 22 4 6S S S  , 3 31 3 5S S S    and 

3 32 4 6S S S  . 

Note: In this example, we found a terminating condition. In general, we get a 

terminating condition for the following cases  

 There is no change in the equivalence classes after an iteration  

 All the equivalence classes have single element; in this case, no 

state is equivalent with any other.  

 After n
th

 iteration where | |n S  



 State minimization by merging equivalent states  

So, in this example, we note that there is single run 0 (single input 0) that can distinguish 

between states 1, 3, 5S S S with 2, 4, 6S S S ; on giving input 0 to 1, 3, 5S S S  we get 0 as 

output, while on giving input 0 to 2, 4, 6S S S we get 1 as output.  

 

However, there are no single runs that can distinguish between states 1, 3, 5S S S ; 

1, 3, 5S S S  cannot generate distinguishing outputs if input is either 0 or 1 (and same in 

case of 2, 4, 6S S S ).  

 

Similarly, we can determine that there are no double runs that can distinguish between 

states 1, 3, 5S S S .  



 State minimization by merging equivalent states  
However, there is a double run that can distinguish states 2, 4S S  with 6S .  

Example: Starting from state 2S  ( 6S ) if we apply 1, we go to state 6S  ( 3S ) generating 

output 1 (1). Now if we apply input 1, to state 6S ( 3S ), we go to state 3S ( 2S ) 

generating output 1 (0)—different output. So run with input “11” from state 2S  and 6S  

give outputs as “11” and “10”, respectively, thereby differentiating 2S  from 6S . 

Similarly, we may verify that is a double run that can differentiate  4S  from 6S . 

There are triple runs that can distinguish between states 1, 3S S  with 5S .  

Example: Starting from state 1S  ( 5S ) if we apply 1, we go to state 4S  ( 6S ) generating 

output 0 (0). Now if we apply input 1, to state 4S  ( 6S ), we go to state 6S ( 3S ) 

generating output 1 (1).  Now if we apply input 1, to state 6S ( 3S ), we go to state 3S (

2S ) generating output 1 (0)—different output. So run with input “111” from state 1S  

and 5S  give outputs as “011” and “010”, respectively, thereby differentiating 1S  from

5S . Similarly, we may verify that there are triple runs (no single or double runs) that can 

differentiate  3S  from 5S .  



 State minimization by merging equivalent states  

Therefore, we see that in this example, 1 3S S and 2 4S S . We merge 1 with 3S S and 

2 with 4S S . Next figure represents modified STG when the equivalent sates (i.e., 

1 3S S and 2 4S S )  are merged. 

S1S3

S2S4

S5

S6

1/0

1/1

0/1

1/1

0/1
0/1

1/0



State Encoding  

 Once the state minimized STG is obtained after merging equivalent states, we 

focus on the problem of state assignment, where the primary objective is the 

reduction of the cost of the implementation.  

 

 As discussed, cost of implementation depends on state encoding.  

 

 It is well understood that the number of all possible assignments is very high. 

If one uses k  bits to encode n  states, there are 2k

nP  possible assignments. 

Therefore, encoding methods used in practical scenarios are heuristics. 

 In this lecture we shall discuss the scheme called MUSTANG.  



State Encoding  

•Broadly speaking, MUSTANG (and most of the other similar techniques) 
works by trying to identify pairs of states that should receive adjacent 
codes.  
 
•Two codes are adjacent if they only differ in one bit, like 01 and 01.  
 
•However, it is clear that providing adjacent codes to all pairs of states 
would require hot one coding which would involve extremely large number 
of bits for encoding.  
 
•So those states pairs which have transitions leading to one state on same 
input are assigned adjacent codes. This leads to lower implementation cost. 



State Encoding  

There are two states S1 and S2  which lead to the same state S3   on the same input 1. 

So it is better to provide adjacent codes to S1 and S2.   

 

The Boolean function representing the next state bits ( 0 1' 's s ) and the output ( o ) in 

terms of input ( x ) and present state bits ( 0 1s s ) are as follows; the dotted part 

represents the product terms of the part of the STG not shown in Figure.  

 

00 0 1 0 1 0 1' : ( , , ) ........ .....Ss f x s s xs s xs s     

11 0 1 0 1 0 1' : ( , , ) ........ .....ss f x s s xs s xs s     

0 1 0 1 0 1: ( , , ) ........ .....OO f x s s xs s xs s     S1:

10

S2:

00

S3:

11

1/1 1/1



State Encoding  

The equations can be simplified (by low level minimization) as given below.  

00 0 1 1' : ( , , ) ........ .....Ss f x s s xs    

11 0 1 1' : ( , , ) ......... .....ss f x s s xs    

0 1 1: ( , , ) ........ .....OO f x s s xs    

It may be noted that the reduction is possible only because of assigning adjacent 

codes to S1 and S2.  



State Encoding  

MUSTANG works on this principle by building an attraction graph.  

 

Whenever two states, S1 and S2 have a common fanout state, the weight of the edge 

1, 2S S  of the attraction graph is increased.  

 

Once the graph of the attractions is found, we try to assign adjacent codes to pairs of 

states that have strong (i.e., higher weights) attractions. It is true that always it may 

not be possible to assign adjacent codes to all the state pairs. In that case, we start 

with the state pairs with the edge that has the highest weight and assign  adjacent 

codes.  

 

Following that we move to the edge with the next highest weight and assign adjacent 

codes, if possible. We repeat, till all the states are assigned a code.  



State Encoding  

To obtain the weights we build two matrices:  

 the first with one row for each present state and one column for each next state 

(called St) and  

 the second with one row for each present state and one column for each output (called 

Ot).  

 For the STG of the example, we obtain the following matrices, where the superscripts 

p and n stand for present state and next state, respectively. 

 

1 3 4

1 1 1 0

3 1 0 1

4 1 0 1

n n n

p

p

p

S S S

S
St

S

S

  
1 1

3 1

4 0

p

p

p

z

S
Ot

S

S





State Encoding  

A 1 in 1pS row and 1nS column indicates that there is one self loop from S1 to itself.  

 

Similarly, a 1 in 1pS  row and z column indicates that there is an arc going out of 1S  

that asserts that output z should be 1.  

 

In general, the entries of the matrix are non-negative integers that give the number of 

arcs connecting two states or the number of arcs going out of a state and asserting a 

given output.  

Let 
iSt  be the i

th
 row of St and 

iZt  the i
th

 row of Zt. Let also k be number of encoding 

bits. Then the attraction between states Si  and Sj  is given by: 

. . .T T

i j i jk St St Zt Zt  

where the operations are on integers and T means transpose.  



State Encoding  

In our example, assuming k=2 (as there are three states we need two bits for 

encoding) the attraction of states S3 and S4 is computed as: 

1

( 3, 4) 2.[101]. 0 [1].[0] 4

1

W S S

 
 

  
 
  

 

S1

S4S3
4

3 2



State Encoding  

Based on the weight of the attraction graph, we are now ready to assign codes to 

states.  

We select first the state for which the sum of the weights of the incident edges is 

maximum; in our case, state S3 has the maximum weight of 7. We arbitrarily assign a 

code 11 to S3 and adjacent codes to the states connected by the heaviest edges; 10 is 

assigned to S4 and 01 is assigned to S1.  

 

In our example, this completes the process.  

S1

S4S3
4

3 2

11
10

01



Question and Answer 

Question: 
 If there is a STG with n states then we require 2log n    bits to encode the states. 

After state reduction using “state equivalence” let there be n-e states, where

2 2log log ( )n n e        . In such a case we do not gain advantage in number of 

bits to encode the states i.e., there is no reduction in the number of flip-flops 

required to implement the STG. What is the advantage of “state equivalence” in 

such a condition?  

Answer: 

It is true that under the case given above, we do not save on flip-flops. However, 

as we have reduced number of states, we have fewer conflicts in assigning 

adjacent codes to the states. More the number of states with adjacent codes, lower 

are the number of literals in the Boolean expression implementing the next state 

bits and the output bits.   
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Introduction 
•In all the lectures of this module, we discussed digital synthesis from the context 
of two-level implementation. Algorithms for optimization in two-level 
implementation are quite matured (in terms of area), be it exact algorithms like 
Quine-mccluskey or heuristics like Espresso. However, the major problem in two-
level implementation is the huge number of fanins and fanouts of the gates. Let us 
consider the SOP of the equation: 
 
 

( 1, 2, 3, 4, 5, 6, 7) 1 2 3 1 2 4 1 5 1 6 7f x x x x x x x x x x x x x x x x x x    

It may be noted that the SOP is already minimized.  

x1

x2

x3

x2

x4

x1

x1

x5

x1

x6

x7

O1

O2

O3

O4

O5

O



Introduction 

It may be noted that the OR gate has five fanins. The CMOS transistor level 
realization of the gate is shown in next Figure.  

O1

VDD

GND

O2

O3

O4

O5

O1 O2 O3 O4 O5

OOin



Introduction 
It may be noted that there are five NMOS transistors in series for pull down i.e., 

draining the voltage from
inO .  

More the number of transistors in series in pull down (pull up) more time the gate will 

require to go from 1 to 0 (0 to 1). In case of AND gate, PMOS transistors are in series 

for the pull up.  

Therefore, in VLSI implementation, gates having more than four fanins are slow and 

are generally not used. So to cater to this problem, SOP forms are factorized into 

multilevel implementation. For example, the SOP can be factorized as 

1 2( 3 4) 1 5 1 6 7x x x x x x x x x      and implemented as shown in next Figure.    



Introduction 

x1

x2

x1

x5

O
x3

x4

x1

x6

x7

Multilevel implementation of 1 2( 3 4) 1 5 1 6 7x x x x x x x x x     



Introduction 

 It may be noted that none of the gates have fanins more than four.  

 Among all the gates of the circuit the OR gate has the maximum fanin of four, 

making it the slowest gate of the circuit (assuming same driving capabilities of 

the transitions used in the gates).  

 If for a certain case of meeting the timeline, delay of the OR gate may need to 

be reduced (by decreasing the fanins). While doing so we need to be careful 

that we do not increase delay for some other gate which may lead to timing 

violations.  

 

 The factorized expression 1 2( 3 4) 1 5 1 6 7x x x x x x x x x     can be further 

factored as  1 2( 3 4) 1( 5 6) 7x x x x x x x x     leading to circuit shown in next 

Figure.  



Introduction 
x1

x2

x1

O
x3

x4

x5

x6

x7

Multilevel implementation of 1 2( 3 4) 1( 5 6) 7x x x x x x x x     



Introduction 

 

 It may be noted that all gates have fanins of three; also, the number of gates 

remain same.  

 It may be noted that the factorized form 1 2( 3 4) 1( 5 6) 7x x x x x x x x    , is 

minimal for the SOP 1 2 3 1 2 4 1 5 1 6 7x x x x x x x x x x x    .  

 So given a minimal SOP form we need to determine the minimal factorized 

from, which realizes an efficient multilevel implementation.  



Factoring an SOP 

An alternative representation (to SOP form) of a logic function, which is closer to 
the physical multi-level implementation, is the factored form. It is the 
generalization of SOP form allowing nested parenthesis. For example, each of the 
following is a factored form: 

1

1'

1 2 ' 3'

1 2 ' 3' 4

( 1 2 ')( 3 1' 4 5) 6

x

x

x x x

x x x x

x x x x x x x



   

where 1, 1', 2...x x x are called literals of the factored form. Factored forms are 

generally derived from (minimized) SOP forms. The SOP expression 

1 3 5 1 4 5 2 3 5 2 4 5 5'x x x x x x x x x x x x x     can be factorized as 

5( 1 2)( 3 4) 5'x x x x x x   . Broadly speaking, a factored form is a SOP of SOP…. , of 

arbitrary depth. 



Factoring an SOP 

Definition 1 A factored form is defined recursively by the following rules: 
 

1. A product is either a single literal or a product of factored forms.  
2. A sum is either a single literal or a sum of factored forms 
3. A factored form is either a product or a sum. 

 
For example, each of the following is a factored form,  

1

1'

1 2 ' 3

1 2 3' 4

( 1 2)( 3 1' 4 5) 6

x

x

x x x

x x x x

x x x x x x x



   

where the first two are literals, the third is a product, the fourth is a sum, and the last one 

is a sum of products of sums of ....  



Factoring an SOP 
According to Definition 1, the following are not factored forms 

( 1 2) '

1 2

x x

x x


 

because they complement internally, which is not allowed by the definition. 

Also it might be noted that like two level SOPs, factored forms are in general not 

unique, as illustrated by the following two equivalent factored forms.  

1 2 3( 1 2)

2 3 1( 2 3)

x x x x x

x x x x x

 

 
 

Definition 2. An algebraic expression 1 2 ... nf C C C    is one in which no cube 

contains another, that is ,i jC C i j . An expression that is not algebraic is called 

Boolean. 

For example, expression 1 2 3 4x x x x  is algebraic, and expression 1 1 3 4x x x x  is 

non-algebraic because { 1} { 2, 3, 4}x x x x   and { 1} { 1, 3, 4}x x x x .  



Factoring an SOP 

Definition 3. A factored form F is said to be algebraic if the SOP expression obtained 

by multiplying F out directly (i.e., without using 1 1' 0x x   and 1 1 1x x x  and single-

cube containment) is algebraic. F is a Boolean factored form if it is not algebraic. 

For example, each of the following is an algebraic factored form. 

1 2 3

( 1 2)( 3 4 5) 6

x x x

x x x x x x



  
 

and each of the following is a Boolean factored form.  

1 1 2 3

( 1 2)( 1' 3 4 5) 6

x x x x

x x x x x x x



   
 

As disused in the introduction section, there are many equivalent factored 
forms of  a given SOP expression. Also, the difference in number of literals of 
these equivalent factored forms can be significant. This point is illustrated using 
an example in Question and Answers section.  



Factoring an SOP 

For a given SOP expression we may have different factored forms having different 
number of literals. 
 
Therefore, algorithms need to be designed which can generate   factored forms 
having minimal number of literals and that would lead to multilevel circuit 
implementation that is efficient in terns of area.  
 
In others words, we need schemes for obtaining “factored forms which are 
maximally factored” for efficient  multilevel circuit implementation.  
 
 
Definition 4. A factored form is maximally factored, if 
For every sum of products, there are no two syntactically equivalent factors in the 
products. 
 
For every product of sums, there are no two syntactically equivalent factors in the 
sums. 
  
 



Factoring an SOP 

For example, the following factored forms are not maximally factored 

1 2 1 3

( 1 2)( 1 3)

x x x x

x x x x



 
 

because they contain trivial syntactically equivalent factors 1x  in their products 

and sums, respectively.  Hence, they can be further factored to 

1( 2 3)

1 2 3

x x x

x x x




 

The first transformation is  obvious. The second is obtained as follows 

( 1 2)( 1 3)

1 1 2 1 1 3 2 3

1 1( 2 3) 2 3

1(1 2 3) 2 3

1 2 3

x x x x

x x x x x x x x

x x x x x x

x x x x x

x x x

 

  

  

  



 



Division for factoring  

We start this subsection with some definitions.  

Definition 5. The product of two cubes A and B is a cube defined by  

  (  and ' )

A B, else

if x x A B x A B
AB

     
  

 
 

 

Definition 6. AB is an algebraic product if A and B have disjoint variable sets, 

otherwise AB is a Boolean product.  

For example, ( 1 2)( 3 4)x x x x   is an algebraic product because 

( 1 2), ( 3 4)A x x B x x     and they have disjoint variable sets i.e., 

{ 1 2} { 3 4}x x x x    .  ( 1 2)( 2 4)x x x x   is an example of Boolean product i.e., 

{ 1 2} { 2 4} 2x x x x x    . 



Division for factoring  

Definition 7. Division of SOP is an operation where, given two SOP expressions F 

and D, it generates SOP expressions Q and R such that F = DQ + R. 

If DQ is an algebraic product, the operation is an algebraic division; otherwise if DQ 

is a Boolean product and the operation is called a Boolean division. If  R   is then 

D is a factor; otherwise, D is a divisor. 

Given a SOP form of Boolean expression F, to convert it into maximally factored 

from (for efficient  multilevel circuit implementation) we need the following steps 

1. Find a good candidate divisor D (there are exact and heuristics 

algorithms), such that F = DQ + R,  where R has as few cubes as 

possible 

2. Perform the division F/D to generate Q and R. This step is simple and 

explained with examples as follows  



Division for factoring  

Let 1 4 1 2 3 2 3 4F x x x x x x x x    and 1 2 3D x x x  ; the processing of determining D 

will be discussed latter in this lecture. For each cube of D, 
id  we look for cubes of F, 

jf such that 
jf  has all the literals of 

id .  

 

In this example, for 1 1d x  we get 1 11 4 4f x x d x   and 2 11 2 3 2 3f x x x d x x  ; we 

write 1 { 4, 2 3}dV x x x . For 2 2 3d x x  we get 2 21 2 3 1f x x x x d    and 

3 22 3 4 3f x x x d x  ; we write 2 { 1, 4}dV x x . It may be noted that 4x  multiplies both 1d  

and 2d  because 1 2 { 4}d dV V x   Hence, we can factor F using 4x  and write 

( 1 2 3) 4 1 2 3F x x x x x x x   . So, we get 1 2 3R x x x .  



Division for factoring  

Let 1 3 1 4 2 3 2 4 5F x x x x x x x x x      and 1 2D x x  . For 1 1d x  we get 

1 { 3, 4}dV x x . For 2 2d x  we get 2 { 3, 4}dV x x . It may be noted that 3x  and 4x  

multiplies both 1d  and 2d  because 1 2 { 3, 4}d dV V x x   Hence, we can factor F using 3x  

and 4x  and write ( 1 2)( 3 4) 5F x x x x x    . So, we get 5R x .  

From the above discussion we many understand that once a good divisor is 

determined division procedure is straight forward. However, if a good divisor is not 

used than both Q and R can be factorized again (i.e., Q and R may not have minimum 

cubes). In such a case both Q and R are factorized again and the process is repeated 

till no more factorization is possible. A typical generic recursive factoring algorithm 

is given below. 



Division for factoring  

FACTOR(F, DIVISOR, DIVIDE) BEGIN 

if (F cannot be factored) return (F) 

D = DIVISOR(F) // selected based on heuristics or exact algorithms 

[1,2,3]  

(Q, R) = F/D // Division as explained by two examples above 

return (FACTOR(Q) FACTOR(D) + FACTOR(R)) 

END 

Given an expression F in SOP form, Procedure DIVISOR (F) used to find a candidate 

divisor, D, which, when substituted into F, can simplify the expression. Then, the 

quotient Q is found by dividing D into F using procedure DIVIDE(F,D). Now, the 

function can be represented as a partial factored form F = QD + R where R is the 

remainder. The algorithm then proceed to factor Q, D, and R separately using the 

same method. 



Division for factoring  

Let us consider the example given below.  

1 2 3 1 2 4 1 5 1 6 7

3 4

1 2

1 5 1 6 7

1 2( 3 4) 1 5 1 6 7

F x x x x x x x x x x x

D x x

Q x x

R x x x x x

F x x x x x x x x x

    

 



  

    

 

In this case D is considered to be 3 4x x  and after the division 1 2Q x x  and 

1 5 1 6 7R x x x x x   . We may note that Q  cannot be factorized but  R  can be 

further factorized as 1( 5 6) 7x x x x   . So the maximally factored form is 

1 2( 3 4) 1( 5 6) 7F x x x x x x x x     . So when we take 3 4D x x  , we reach the 

maximum factored form in two steps having 8 literals.  



Division for factoring  

Now if we take the same F but consider 1D x , then 2 3 2 4 5 6Q x x x x x x     and 

7R x  (shown below) . 

1 2 3 1 2 4 1 5 1 6 7

1

2 3 2 4 5 6

7

( 2 3 2 4 5 6) 1 7

F x x x x x x x x x x x

D x

Q x x x x x x

R x

F x x x x x x x x

    



   



    

 

Here Q  can be further factorized  but R cannot be.  So the maximally factored form 

(after factorizing 2 3 2 4 5 6x x x x x x   ) is 1( 2( 3 4) 5 6) 7F x x x x x x x     . So 

when we take 1D x  we reach the maximum factored form in two steps having 7 

literals.  



Division for factoring  

Let us consider the example now with 2D x .  

1 2 3 1 2 4 1 5 1 6 7

2

1 3 1 4

1 5 1 6 7

F x x x x x x x x x x x

D x

Q x x x x

R x x x x x

    



 

  

 

In this case after the division 1 3 1 4Q x x x x   and 1 5 1 6 7R x x x x x   . We may 

note that Q  can be factorized as 1( 3 4)x x x  and  R  can be further factorized as 

1( 5 6) 7x x x x   . So the maximally factored form is 

1 2( 3 4) 1( 5 6) 7F x x x x x x x x     . So when we take 2D x , we reach the 

maximum factored form in two steps having 8 literals.  



Division for factoring  

Let us consider another example given below.  

1 3 5 1 4 5 2 3 5 2 4 5 3 6 4 6

3 4

1 5 2 5 6

( 3 4)( 1 5 2 5 6)

F x x x x x x x x x x x x x x x x

D x x

Q x x x x x

R

F x x x x x x x

     

 

  



    

 

In this case D is considered to be 3 4x x  and after the division 1 5 2 5 6Q x x x x x    

and R  .  

We may note that Q  can be further factorized as 5( 1 2) 6x x x x  .  

 

So the maximally factored form is ( 3 4)( 5( 1 2) 6)F x x x x x x    . So when we take 

3 4D x x  , we reach the maximum factored form in two steps (basically one and a 

half step as R  ) having 6 literals.  



Division for factoring  

Now if we take the same F but consider 1 2D x x  , then 3 5 4 5Q x x x x   and 

3 6 4 6R x x x x   (shown below) . 

1 3 5 1 4 5 2 3 5 2 4 5 3 6 4 6

1 2

3 5 4 5

3 6 4 6

( 1 2)( 3 5 4 5) 3 6 4 6

F x x x x x x x x x x x x x x x x

D x x

Q x x x x

R x x x x

F x x x x x x x x x x

     

 

 

 

    

 

Here Q  and R  can be further factorized leading to 

5( 1 2)( 3 4) 5( 3 4)F x x x x x x x x     . So when we take 1 2D x x   we reach the 

maximum factored form in two steps having 8 literals.  



Division for factoring  

•From the discussion we may note that computation efficiency (i.e., 
number of steps) and area of the multi-level circuit (i.e., number of 
literals) depend on the divisor D being selected.  
 
•There are several exact algorithms and heuristics for selection of 
the divisor.  
 
•It may be noted that due to the extremely large number of all 
possible divisors exact algorithms are highly time complex. To cater 
to this issue heuristic algorithms are proposed.  
 
•For example, very simple heuristic is the one were the divisor is a 
single cube and involves literals that occur  in most of the cubes of 
F.  
 



Question and Answer 

Question: Give an example to show that Boolean division provides better 
solution that Algebraic division.  



Question and Answer 

Answer: 
 
  
  
  
  

For example, given the SOP expression 

1 2 7 1 3 7 1 4 6 1 5 6 1 6 7 2 4 3 5 2 5 3 4x x x x x x x x x x x x x x x x x x x x x x x         

 

the following are three equivalent factored forms, where the first has 12 literals, 

the second has 11 literals and the third has 8 literals.   

 

( 2 3)( 4 5) (( 4 5 7) 6 ( 2 3) 7) 1

( 2 3)( 4 5 1 7) ( 4 5 7) 1 6

( 1 6 2 3)( 1 7 4 5)

x x x x x x x x x x x x

x x x x x x x x x x x

x x x x x x x x

      

     

   

 

 

The first two of these equivalent factored forms are algebraic, whereas the third 

one is Boolean. 



Thank You 


