
Design Verification and Test of
Digital VLSI Circuits
NPTEL Video Course

Module-XI

Lecture-I

Built in Self Test

Introduction

•VLSI testing, only from the context where the circuit needs to be
put to a “test mode” for validating that it is free of faults.

•Circuits tested OK are shipped to the customers with the
assumption that they would not fail within their expected life
time; this is called off-line testing
•However, this assumption does not hold for modern day ICs,
based on deep sub-micron technology, because they may
develop failures even during operation within expected life
time.

•To cater to this problem sometimes redundant circuitry are kept
on-chip which replace the faulty parts.
•Testing a circuit every time before they startup, is called Built-In-
Self-Test (BIST).

Basic architecture of BIST

CUT

with

DFT

Input

MUX

Normal

Input

Hardware Test Patten

Generator

Outputs

Output Response

Compactor

Primary

Outputs

Comparator

Signature

Status

ROM

Golden

Signature

Test Controller

Start BIST

Basic architecture of BIST

Hardware Test Pattern Generator:

•This module generates the test patterns required to sensitize the faults and

propagate the effect to the outputs

• As the test pattern generator is a circuit (not equipment) its area is limited.

•So storing and then generating test patterns obtained by ATPG algorithms

on the CUT (discussed in Module XI) using the hardware test pattern

generator is not feasible.

•Instead, the test pattern generator is basically a type of register which

generates random patterns which act as test patterns. The main emphasis of

the register design is to have low area yet generate as many different

patterns (from 0 to 2n-1, if there are n flip-flops in the register) as possible.

Basic architecture of BIST

Input Mux: This multiplexer is to allow normal inputs to the circuit when it is

operational and test inputs from the pattern generator when BIST is executed.

The control input of the multiplexer is fed by a central test controller.

Output response compactor: Output response compacter performs lossy

compression of the outputs of the CUT. The output of the CUT is to be compared

with the expected response (called golden signature

Similar to the situation for test pattern generator, expected output responses

cannot be stored explicitly in a memory and compared with the responses of the

CUT. So CUT response needs to be compacted such that comparisons with

expected responses (golden signatures) become simpler in terms of area of the

memory that stores the golden signatures.

Basic architecture of BIST
ROM: Stores golden signature that needs to be compared with the compacted
CUT response.

Comparator: Hardware to compare compacted CUT response and golden
signature (from ROM).

Test Controller: Circuit to control the BIST. Whenever an IC is powered up (signal
start BIST is made active) the test controller starts the BIST procedure. Once the
test is over, the status line is made high if fault is found. Following that, the
controller connects normal inputs to the CUT via the multiplexer, thus making it
ready for operation.

Hardware pattern generator

There are two main targets for the hardware pattern generator—

(i) low area and

(ii) pseudo-exhaustive pattern generation (i.e., generate as many

different patterns from 0 to 2 1n  as possible, if there are n

flip-flops in the register).

Linear feedback shift register (LFSR) pattern generator is most

commonly used for test pattern generation in BIST because it satisfies

the above two conditions.

There are basically two types of LFSRs,

(i) standard LFSR

(ii) modular LFSR.

Standard LFSRs

DFF DFF DFF DFF

+ + + +

Xn-1 Xn-2 X1 X0

h1
h2

hn-2hn-1

DFF DFF DFF DFF

Xn-1 Xn-2 X1 X0

h1

h2

hn-2hn-1

D Q D D DQ Q Q

A properly-designed LFSR can generate as a near-exhaustive set of patters, as it can cycle

through distinct 2 1n  states (except 0s is all flip-flops). Such a properly designed LFSR

is known as a maximal length LFSR.

Standard LFSRs

This LFSR in terms of the matrix can be written as (1) ()SX t T X t  .

0

1

3

2

1

(1) 0 1 0.......0 0

(1) 0 0 1......0 0

.............

(1) 0 0 0.......1 0

0 0 0......0 1(1)

1 (1)

n

n

n

X t

X t

X t

X t

X t







 
 


 
 

 
 

 
 

  

0

1

3

2

1 2 -2 -1 1

()

()

.............

()

()

 ()

n

n

n n n

X t

X t

X t

X t

h h h h X t







  
  
  
  
  
  
  
  

      

Standard LFSRs

Leaving behind the first column and the last row
ST is an identity matrix; this indicates

that
0X gets input from

1X ,
1X gets input from

2X and so on. Finally, the first element

in the last row is 1 to indicate that 1nX  gets input from 0X . Other elements of the last row

are the tap points 1 2 -2 -1, ,... ,n nh h h h . The value of 1, (1 1)ih i n    , indicates that output

of flip-flop iX provides feedback to the linear XOR function. Similarly, the value of

0, (1 1)ih i n    , indicates that output of flip-flop iX does not provide feedback to

the linear XOR function.

This LFSR can also be described by the characteristic polynomial:

2 2 1

1 2 -2 -1() 1 ... n n n

n nf x h x h x h x h x x      

Standard LFSR: Example

DFF DFF DFF

X2 X1 X0

D Q D DQ Q

X2 X1 X0

h2

0 0

1 1

2 2

(1) ()0 1 0

(1) 0 0 1 ()

1 0 1(1) ()

X t X t

X t X t

X t X t

    
    

 
    
         

It may be noted that output of flip-flop
2X provides feedback to the XOR network, while

flip-flop 1X does not; so 1 0h  and 2 1h  . The characteristic polynomial of the LFSR is

2 3() 1f x x x   .

Standard LFSR: Example

DFF DFF DFF

X2 X1 X0

D Q D DQ Q

X2 X1 X0

h2
0 0

1 1

2 2

(1) ()0 1 0

(1) 0 0 1 ()

1 0 1(1) ()

X t X t

X t X t

X t X t

    
    

 
    
         

0

1

2

1 0 0 1 1 1 0 1 0

::: 0 0 1 1 1 0 1 0 0

0 1 1 1 0 1 0 0 1

X

X

X

   
   
   
     

So the LFSR generates 7 patterns (excluding all 0s) after which a pattern is repeated. It

may be noted that this LFSR generates all patters (except all 0s) which are generated by a

3 bit counter, however, the area of the LFSR is much lower compared to a counter. In a

real life scenario, the number of inputs of a CUT is of the order of hundreds. So LFSR

has minimal area compared to counters (of order of hundreds).

Design Verification and Test of
Digital VLSI Circuits
NPTEL Video Course

Module-XI

Lecture-II

Built in Self Test

Modular LFSRs

DFF DFF
DFF DFF

Xn-1Xn-2X1

X0

h1 h2

+ + +

hn-1

DFF DFF DFF DFF

Xn-1Xn-2X1X0

h1 h2 hn-1

D
Q

D D D
Q Q

Q

.The difference in modular LFSR compared to standard LFSR is due to the positions of the XOR gates in the

feedback function; in modular LFSR XOR gates are in between adjacent flip-flops. Modular LFSR works faster

than standard LFSR, because it has at most one XOR gate between adjacent flip-flops, while there can be several

levels of XOR gates in the feedback of standard LFSR.

Modular LFSRs

In modular LSFR the output of any flip-flop may or may not participate in the XOR

function; if output of any flip-flop iX say, provides input to the XOR gate which feeds the

input of flip-flop 1iX  then corresponding tap point ih is 1. In the circuit representation of

ih =1, then there is an XOR gate from output of flip-flop iX to input of flip-flop 1iX  ; else

output of flip-flop iX is directly fed to input of flip-flop 1iX  .

0

11

22

-22

1

(1) 0 0 0......0 1

1 0 0......0 (1)

0 1 0.......0 (1)

.............................

0 0 0......0 (1)

0(1)

nn

n

X t

hX t

hX t

hX t

X t





 
 


 
 

 
 
 
 

  

0

1

2

2

-1 1

()

()

()

...........

()

 0 0......1 ()

n

n n

X t

X t

X t

X t

h X t





  
  
  
  
  
  
  
  

      

Modular LFSRs

This LFSR given the matrix can be written as (1) ()SX t T X t  . In this

case
0 1(1) ()nX t X t  , which implies that

1nX 
 directly feedbacks

0X .

1 0 1 1(1) () ()nX t X t h X t   , which implies that depending on 1h =0 (or 1),

input to 1X is 0X (or 0X XORed with output of 1nX ). Similar logic

holds for inputs to all flip-flops from 1X to 1nX  .

This LFSR can also be described by the characteristic polynomial:

2 2 1

1 2 -2 -1() 1 ... n n n

n nf x h x h x h x h x x      

Modular LFSRs: Example

DFF DFF DFF DFF

X3X2X1X0

h3

D
Q

D D D
Q Q

Q

0 0

1 1

2 2

3 3

(1) ()0 0 0 1

(1) ()1 0 0 0

(1) 0 1 0 0 ()

0 0 1 1(1) ()

X t X t

X t X t

X t X t

X t X t

    
    
    
    
    

     

0

1

2

3

1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0

0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1
:::

0 0 1 0 0 0 1 1 1 1 0

X

X

X

X

 
 
 
 
 
 

1 0 1 1 0 0

0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0

 
 
 
 
 
 

The characteristic polynomial of the LFSR is 3 4() 1f x x x   .

If the initial values of the flip-flops are 0 1 2 31, 0, 0, 0X X X X   

Modular LFSRs: Example

Now, the question arises, whether any LFSR would generate all 2 1n  patters? The

answer is no. Only for a few characteristic polynomials the LFSR is maximal length; such

polynomials are called primitive polynomials (List of such polynomials can be found in

Bardell et al.

P. H. Bardell, W. H. McAnney, and J. Savir, Built-In Test for VLSI: Pseudorandom

Techniques. New York: John Wiley and Sons, Inc., 1987.

Hardware response compactor

•Expected output (i.e., golden response) of the CUT cannot be sorted explicitly in a

memory and compared with response obtained from the CUT.

In other words, in BIST, it is necessary to compress the large number of CUT

responses to a manageable size that can be stored in a memory and compared. In

response compaction, sometimes it may happen that the compacted response of the

CUT under normal and failure conditions are same. This is called aliasing during

compaction.

•Simple techniques to compress CUT responses namely

 (i) number of 1s in the output and

 (ii) transition count at the output.

•Other complex techniques like LFSR based compaction, multiple input signature

register based compaction, built-in logic observer based compaction etc.

Number of 1s compaction
•Number of 1s compaction, is a very simple technique where we count the number of

ones in the output responses from the CUT.

1001110

 0011101

0111010

0001100

0001000

 Number of 1s = 1

1001110

 0011101

0111010

0001100

0001100

 Number of 1s = 2
s-a-1

1111111

(a) Normal Circuit

(b) Circuit with s-a-1 fault

X0

X1

X2

X0

X1

X2

DFF DFF DFF

X2 X1 X0

D Q D DQ Q

X2 X1 X0

h2

0

1

2

1 0 0 1 1 1 0 1 0

::: 0 0 1 1 1 0 1 0 0

0 1 1 1 0 1 0 0 1

X

X

X

   
   
   
     

Number of 1s compaction

•It may be noted that 7 patterns (non-similar) were generated by the LFSR, which when

given as input to the CUT generates output as 0001000, making number of 1s as 1.

•The same circuit with s-a-1 fault--When the same inputs are given to the CUT the output

is 0001100, making number of 1s as 2.

•So fault can be detected by the compaction as there is difference in number of 1s at the

output of the CUT for the given input patterns.

•In other words, for the input patterns (from the LFSR), “number of 1s” based

compaction is not aliasing. It may be noted that corresponding to the input patters, value

of 1 is stored (as golden signature) in the memory which is compared with compacted

response of the CUT.

Number of 1s compaction

 Number of 1s = 2

1001110

 0011101

1000101

 0111010

0000100

 1100010

0000010

0000110

X0

X1

X2

 Number of 1s = 2

1001110

 0011101

1000101

 0111010

1000100

 0000000

0000000

1000100

X0

X1

X2

s-a-1

 1111101

(a) Normal Circuit

(b) Circuit with s-a-fault

Number of 1s compaction

The CUT generates output as 0000110, making number of 1s as 2.

The same circuit with s-a-1 fault--When the same inputs are given to the CUT the

output is 1000100, making number of 1s as 2.

So fault cannot be detected by the compaction; the number of 1s at the output of the

CUT for the given input patterns is same under normal and s-a-1 conditions. In other

words, for the input patterns (from the LFSR), “number of 1s” based compaction is

aliasing.

Transition count response compaction
•In this method of response compaction the number of transitions from 0 to 1 and 1 to 0 at

outputs of the CUT are counted.

•The CUT generates output as 0001000, making transition count as 2; in the output sequence

there is a transition from 0 to 1 and then from 1 to 0.

•The same circuit with s-a-1 fault. When the same inputs are given to the CUT the output is

0001100, making transition count as 2.

•So fault cannot be detected by the compaction.

1001110

 0011101

0111010

0001100

0001000

Transition Count = 2

1001110

 0011101

0111010

0001100

0001100

Transition Count = 2s-a-1

1111111

(a) Normal Circuit

(a) Circuit with s-a-1 fault

X0

X1

X2

X0

X1

X2

Transition count response compaction

Transition Count = 2

1001110

 0011101

1000101

 0111010

0000100

 1100010

0000010

0000110

X0

X1

X2

Transition Count = 3

1001110

 0011101

1000101

 0111010

1000100

 0000000

0000000

1000100

X0

X1

X2

s-a-1

 1111101

(a) Normal Circuit

(b) Circuit with s-a-fault

Questions and Answers

Question: In BIST how do we know which LFSR is to be used pattern generation?

Answer: Firstly, (obviously) the width of the LFSR is same as that of the number of
inputs of the circuit.

Secondly, the characteristic polynomial of the LFSR should be primitive polynomial. This
ensures that the LFSR generates all possible patterns (except all 0s).

Thirdly, the seed will decide the sequence of patterns. By fault simulation the test
patterns can be decided.

Following that a proper compaction technique with minimal aliasing property for the
circuit needs to be chosen. Then the seed is to be chosen in a manner so that the
required test patterns among all the patterns generated by the LFSR should be
generated initially. In other words, the seed should be chosen such that patterns of LFSR
which do not test any faults (or any new faults compared to previous patterns) should
be generated at latter phases. When all the required patterns have been generated and
all faults have been tested the LFSR can be stopped (without requirement to generate
the full cycle of patterns).

Questions and Answers

Question: Why LFSR cannot have all 0 state?

 Answer:
 If the seed is all 0 state, then the LFSR will be stuck at all 0 state as the feedback logic is
XOR gates.

Thank You

Design Verification and Test of
Digital VLSI Circuits
NPTEL Video Course

Module-XI

Lecture-III

Memory Testing

Introduction

•VLSI testing, only from the context where the circuit is composed of logic gates and flip-

flops.

• However, memory blocks form a very important part of digital circuits but are not

composed of logic gates and flip-flops. This necessitates different fault models and test

techniques for memory blocks.

•In memory technology, the capacity quadruples roughly every 3 years, which leads to

decrease in memory price per bit (being stored).

•High storage capacity is obtained by raise in density, which implies decrease in the size of

circuit (capacitor) used to store a bit. Experiments with new materials having high dielectric

constant like barium strontium titanate are being done that facilitate greater capacitance to

be maintained in the same physical space.

•Further, for faster access of the memory, various methods are being developed which

includes fast page mode (FP), extended data output (EDO), synchronous DRAM

(SDRAM), double data rate etc.

Introduction
•Unlike general circuits we generally do not discard faulty memory chips.

•Multiple faults will be present in any memory chip. The yield of memory chips would be

nearly 0%, since every chip has defects. During manufacturing test, the faults are not only

to be detected but also their locations (in terms of cell number) are to be diagnosed.

•As almost all memories will have faults in some cells, there are redundant (extra) cells in

the memory. One a fault is diagnosed, the corresponding cell is disconnected and a new

fault free cell is connected in the appropriate position. This replacement is achieved by

blowing fuses (using laser) to reroute defective cells to normal spare cells.

•The sole functionality of a cell is to sore a bit information which is implemented using a

capacitor; when the capacitor is charged it represents 1 and when there is no charge it

represents 0. No logic gates are involved in a memory. Use of logic gates (in flip-flops)

instead of capacitors to store bit information would lead to a very large area.

•The above two points basically differentiate testing of logic gate circuits from memory.

•New fault models and test procedures are required for testing memories. In this lecture we

will study the most widely used fault models and test techniques for such fault models in

memories.

Memory fault models

Memory Cells

Row

Decoder

Column Decoder

Sense Amplifiers

(read from cells)

Driver

(write to cells)

Address Bus

Read/write

Data IN

Data out

Memory fault models

• When data is to be read from the memory, first the row and column decoders determine

the location (i.e., the cell) from the address (sent in the address bus) that needs to be

accessed.

• Based on the address in the row and column decoders the cell of the appropriate row and

column gets connected to the sense amplifier, which sends the data out.

• Similar situation (for accessing the required cells) holds when data is to be written in the

memory, however, in case of writing, special driver circuitry writes the values in the

cells from the data bus.

It may be noted that from the testing perspective we would only check if

•Required value (0/1) can be written to a cell

•The stored value can be read from a cell

•The proper cell is accessed, i.e., the row and column decoder do not have faults.

Memory fault models

The row and column decoders are digital circuits implemented using logic gates (which are
different from memory cell implementation).

The sense amplifier and driver are analog circuits.

In testing of memory, we do not consider the decoders as gate level digital circuits nor the
sense amplifier and driver as analog circuits. For the decoders, we test the functionality
whether they can access the desired cells based on the address in the address bus. For the
amplifier and driver we check if they can pass the values to and from the cells correctly.

The following faults called “reduced functional faults” are sufficient for functional memory
testing

•Stuck-at fault
•Transition fault
•Coupling fault
•Neighborhood pattern sensitive fault
•Address decoder faults

Stuck-at fault

S0 S1

w1

w0

w0

w1

0

w0

w1
1

w0

w1

s-a-0 s-a-1

State diagram for a good memory cell

State diagram for a s-a1 memory cell and s-a-0 memory cell

Stuck-at-fault in memory is the one in which the logic value of a cell (or line in the
sense amplifier or driver) is always 0 or always 1.

S0 is the state where the cell contains 0, while is S1 is the state where it contains 1.
w1 (w0) indicates value of (0) 1 being written.

Transition fault

0 1

w0
w0

w1
w2

State diagram for up transition fault in a memory cell

In transition fault a cell fails to make a (0 to 1) transition or a (1 to 0)

transition when it is written; up transition fault is denoted as | 0 and a

down transition fault is denoted as |1 . A cell having up transition fault is

same a s-a-0 fault, however, the cell can take and retain value 1 if a 0 has not

yet been written to the cell. The dual happens for down transition fault.

Coupling Faults:

Coupling fault, as the name suggests, implies deviation from normal behavior of a cell

because of coupling with others.

As there can be exponential number of combinations of coupling of a cell with others

cells, we assume that in coupling faults a faulty cell can get coupled with another faulty

cell.

In other words, in the widely used coupling fault model it is assumed that any “two” cells

can couple and normal behavior changes in these two cells; it is called 2-coupling fault

model.

So if there are n cells in a memory then there can be
2

nC number of 2-coupling faults.

To reduce the number of 2-coupling faults further from
2

nC , we assume that only

neighboring cells (decided on threshold distance) can be involved in the fault. We

consider two types of coupling faults namely, (i) inversion coupling faults and (ii)

idempotent coupling faults.

Inversion coupling faults

In a 2-inversion coupling fault
,i jcfinv say, involving cells i and j , a transition (0 to1 or

1 to 0) in memory cell j causes an unwanted change in memory cell i . Memory cell i is

the coupled cell (where fault occurs) and memory cell j is the coupling cell. The two

possible 2-inversion coupling faults involving cells ,i j (denoted as
,i jcfinv) are

 Rising: | (implying 0 to1 change in cell j complements the content of

cell i)

 Falling: | (implying 1 to 0 change in cell j complements the content of

cell i)

Inversion coupling faults

S00 S01

S10 S11

w0@i

w0@j
w1@j

w0@j

w0@i

w1@j

w1@i

w0@i

w1@i

w1@j
w1@i

w0@j

w0@i
w1@i

w1@j

w0@j

The state diagram for two cells i and j under normal condition.

State 00S implies that both the cells have 0 values

The self loop at state 00S , marked w0@i implies that if 0 is written to cell i then the same state is

retained; another transition w0@j is associated with the same self loop which implies that if 0 is

written to cell j then 00S retained.

If we write 1 to cell j (from state 00S) i.e., w1@j, we go to state 01S ; this is indicated by the

transition from 00S to 01S marked w1@j.

Inversion coupling faults

S00 S01

S10 S11

w0@i

w0@j

w0@j

w0@i

w1@j

w1@i

w0@i

w1@i

w1@j
w1@i

w0@j

w0@i
w1@i

w0@j

w1@j

w1@j

State machine for two cells i and j under rising inversion coupling fault
,i jcfinv .

Under normal condition if we write 1 to cell j (from state 00S) we go to state 01S ,

however, under rising
,i jcfinv we go to state 11S .

When we write 1 to cell j in 00S it makes a 0 to 1 (rising) transition. As j is the

coupling cell it complements the value of the coupled cell i (from 0 to 1).

The faulty transitions are indicated by thick arrows; 00S to 11S and 10S to 01S are

two such transitions.

Idempotent coupling faults

In a 2-indempotent coupling fault
,i jcfid say, involving cells i and j , a transition (0 to1

or 1 to 0) in memory cell j sets the value in memory cell i to be 0 or 1. The four

possible 2- idempotent coupling faults involving cells ,i j (denoted as
,i jcfid) are

 Rising-0: | 0 (0 to1 change in cell j sets the content of cell i to be 0)

 Rising-1: |1 (0 to1 change in cell j sets the content of cell i to be 1)

 Falling-0: | 0 (1 to 0 change in cell j sets the content of cell i to be 0)

 Falling-1: |1 (1 to 0 change in cell j sets the content of cell i to be 1)

Idempotent coupling faults

00 01

10 11

w0@i

w0@j

w0@j

w0@i

w1@j

w1@i

w0@i

w1@i

w1@j
w1@i

w0@j

w0@i
w1@i

w0@j

w1@j

w1@j

The state machine for two cells i and j under rising-1 idempotent coupling fault
,i jcfid .

We note that under normal condition if we write 1 to cell j (from state 00S) we go to

state 01S , however, under rising-1
,i jcfid we go to state 11S . This situation is similar to

inverse coupling fault

However, unlike  inverse coupling fault, in rising-1 idempotent coupling fault we do

not have a faulty transition from 10S to 01S .

Bridging fault
A bridging fault is a short circuit between two or more cells. As in the case of coupling
faults, to keep the number of faults within a practical number, it is assumed that only two
cells can be involved in a bridging fault. There are two types of bridging faults

 AND bridging fault
,i jANDbf (involving cells i and j) which results in values in cells

i and j to be logic AND of the values in these cells under normal condition. AND

bridging fault is represented by , | ,i j i j i jv v v ANDv v ANDv where the first two places

represent the values in cells i and j under normal condition and the two values

following “|”represent the values in cells i and j under AND bridging fault.

0,0|0,0 , 0,1|0,0 , 1,0|0,0 , 1,1|1,1 are the four types of AND bridging faults

possible.

Bridging fault

 OR bridging fault
,i jORbf (involving cells i and j) which results in values in cells i

and j to be logic OR of the values in these cells under normal condition.

0,0|0,0 , 0,1|1,1 , 1,0|1,1 , 1,1|1,1 are the four types of OR bridging faults

possible.

Neighborhood pattern sensitive coupling faults

One of the most important and different kind of fault in memory compared logic gate

circuits is neighborhood pattern sensitive faults (NPSFs). As memory cells are very close

to each other, the cells behave normally except for certain patterns in the neighborhood

cells. For example, if a cell i has 0 and all the neighboring cells have 1, then the value of

cell i may be pulled up to 1. It is obvious that given a cell there can be infinite number of

neighborhood combinations. However for all practical cases there are two types of

neighborhoods used in fault modeling for the cell under test.

Neighborhood pattern sensitive coupling faults

Cells

Cell under test

Cells under coupling

0

1 3

4

Cells

Cell under test

(2)

Cells under coupling

Type-1 neighborhood
The black colored cell is the one under test and the four cells around it (filled by small
check boxes) are called neighborhood cells. Patterns in the neighborhood cells cause
faults in the cell under test.

Neighborhood pattern sensitive coupling faults

Type-2 neighborhood
Complex than Type-1 neighborhood

Cells

Cell under test

Cells under coupling

0 1 2

3 5

6 7 8

Cells

Cell under test (4)

Cells under coupling

Neighborhood pattern sensitive coupling faults

 Active NPSF (ANPSF)

The value in the cell under test changes due to a change in ONE cell of the neighborhood

(type-1 or type-2 depending on the one being used); all other cells of the neighborhood

make a pattern. An ANPSF is represented as “ vcut 0 1 3 4, , , |v v v v fe ”, where vcut is the

value in the cell under test, 0 1 3 4, , ,v v v v represent the values in the neighboring cells (at

cell no. 0,1,3,4 respectively) including the one which changes and fe represents fault

effect in the cell under test. For example, 1 0, ,0,0 | 0 represents the ANPSF were the

cell under test initially has value of 1, the pattern made by neighboring cells is 0000

(values at cell no. 0,1,3,4 respectively) and fault effect at cell under test is 0 when a 1 to 0

transition in made in cell 1.

Neighborhood pattern sensitive coupling faults

 Passive NPSF (PNPSF)

PNPSF implies that a certain neighborhood pattern prevents the cell under test from

changing its value. An PNPSF is represented as vcut 0 1 3 4, , , |v v v v fe , where vcut is

the value in the cell under test,
0 1 3 4, , ,v v v v represent the values in the neighboring

cells and fe represents fault effect in the cell under test. There can be three types of

fe PNPSF:

o | 0 : cell under test cannot be changed from 0 to 1 (initial value of cell

under test is 0)

o |1 : cell under test cannot be changed from 1 to 0 (initial value of cell

under test is 1)

o | x : cell under test cannot be changed regardless of content.

Address decoder faults

From the context of memory testing four types of faults are considered in address decoder

(for both reading and writing)

•No cell is accessed for a certain address

•No address can access a certain cell

•With a particular address, multiple cells are simultaneously accessed

•A particular cell can be accessed with multiple addresses.

Testing of memory faults

“March Test” which is used widely for memory testing.
March testing basically involves applying (writing and reading) patterns to each cell in
memory before proceeding to the next cell and if a specific pattern is applied to one cell,
then it must be applied to all cells. This is either done in increasing memory address order
or decreasing order.

Match test basically involves the following steps:

1. In increasing order of address of the memory cells, write 0s to the cells;

1. In decreasing order of address of the memory cells, read the cells (expected
value 0) and write 1 to the cells;

2. In increasing order of address of the memory cells, read the cells (expected value
1) and write 0 to the cells;

3. In decreasing order of address of the memory cells, read the cells (expected
value 0);

Testing of memory faults

9 x

8 x

7 x

6 x

5 x

4 x

3 x

2 x

1 x

0 x

Initial Content
Address

9 0

8 0

7 0

6 0

5 0

4 0

3 0

2 0

1 0

0 0

Write each cell with 0
Address

0 to 9

Testing of memory faults

9 1

8 1

7 1

6 1

5 1

4 1

3 1

2 1

1 1

0 1

Read each cell (should get 0)

and write 1

Address

9 to 0

9 0

8 0

7 0

6 0

5 0

4 0

3 0

2 0

1 0

0 0

Address

0 to 9
Read each cell (should get 1)

and write 0

9 0

8 0

7 0

6 0

5 0

4 0

3 0

2 0

1 0

0 0

Address

9 to 0

Read each cell

(should get 0)

March Test: Stuck at fault model

March test obviously tests s-a-0 and s-a-1 faults in the cells because 0 and 1 in
each cell is written and read back.

In March test during Step 1 all cells are written with 0 and in Step 2 all cells are written

with 1s, thereby making a 0 to 1 transition in the cells. In Step 2 it is verified if cells have

0 in them and in Step 3 it is verified if cells have 1, thereby verifying 0 to 1 transition in

the cells. So, Step 1 through Step 3 tests absence of | 0 fault. In a similar manner, Step

3 through Step 5 tests absence of | 0 fault.

March Test: Transition fault

Thank you

Design Verification and Test of
Digital VLSI Circuits
NPTEL Video Course

Module-XI

Lecture-IV

Memory Testing

March Test: Coupling Faults
March tests cannot detect all coupling faults. Let is consider three cells , ,i j k such that address of

 address of i j and address of address of j k . Cell i is coupled with cell j and cell k by fault

| ; j and k are the coupling cell. In march test as we go either in ascending order or

descending order of memory address of cells, both i and j are either visited before or after cell

k .

W
rite

 e
a

ch
 c

ell w
ith

 0

Cell traversal

order

k 0

j 0

i 0

Write each cell with 1
Cell traversal

order

k 1

j 1

i 0 1 0

March Test: Coupling Faults

As Step-1 of March test all the cells , ,i j k are written with 0. Following that in Step 2, all the

cells (in order of) , ,k j i are written with 1 (after successful reading of 0 from the cells). It may

be noted that first cell k is written with 1; as cell i is coupled with cell k having fault | , the

0 to 1 transition in cell k inverts the content of cell i . Following that, cell j is written with 1; as

cell i is also coupled with cell j having fault | , the 0 to 1 transition in cell j inverts the

content of cell i again. Now when cell i is read, the value determined is 0 which means absence

of two coupling faults (i) rising
,i jcfinv and (ii) rising

,i kcfinv . In other words, “rising
,i kcfinv ”

masks “rising
,i jcfinv ”.

March Test: Coupling Faults

Inverting rising coupling fault | between cell i (coupled cell) and j (coupling cell): (i)

Cell j is to be written with a 0 and read back, (ii) value at cell i is to be read and remembered,

(iii) cell j is to be written with a 1 and read back, and (iv) value at cell i is to be read and

checked that it is same as the one remembered (i.e., no inversion has happened).

Inverting falling coupling fault | between cell i and j : (i) Cell j is to be written with a

1 and read back, (ii) value at cell i is to be read and remembered, (iii) cell j is to be written with

a 0 and read back, and (iv) value at cell i is to be read and checked that it is same as the one

remembered (i.e., no inversion has happened).

March Test: Coupling Faults

Idempotent Rising-0 coupling fault | 0 between cell i and j : (i) Cell j is to be written

with a 0 and read back, (ii) cell i is to be written with 1 and read back, (iii) cell j is to be written

with a 1 and read back, and (iv) value at cell i is to be read and checked to be 1.

Idempotent Rising-1 coupling fault |1 between cell i and j : (i) Cell j is to be written

with a 0 and read back, (ii) cell i is to be written with 0 and read back, (iii) cell j is to be written

with a 1 and read back, and (iv) value at cell i is to be read and checked to be 0.

March Test: Coupling Faults

Idempotent Falling-0 coupling fault | 0 between cell i and j : (i) Cell j is to be

written with a 1 and read back, (ii) cell i is to be written with 1 and read back, (iii) cell j is to be

written with a 0 and read back, and (iv) value at cell i is to be read and checked to be 1.

Idempotent Falling-1 coupling fault |1 between cell i and j : (i) Cell j is to be written

with a 1 and read back, (ii) cell i is to be written with 0 and read back, (iii) cell j is to be written

with a 0 and read back, and (iv) value at cell i is to be read and checked to be 0.

March Test: Bridging faults

Like coupling faults March tests cannot detect all bridging faults.

0,0|0,0 , 0,1|0,0 , 1,0|0,0 , 1,1|1,1 are the four types of AND bridging faults

possible.

This implies that cells ,i j which are involved in bridging faults must have the four

combinations of inputs 00,01,10 and 11.

No cell pairs have all the four combinations 00,01,10 and 11. So to test bridging

faults the following test pattern sequences are required.

March Test: Bridging faults

AND bridging fault
,i jANDbf (involving cells i and j):

(i) write 0 in cell i and 0 in cell j and read back the values (which must remain same),

(ii) write 0 in cell i and 1 in cell j and read back the values,

(iii) write 1 in cell i and 0 in cell j and read back the values, and

(iv) write 1 in cell i and 1 in cell j and read back the values.

It may be noted that the above four test pattern sequence are enough to test OR bridging fault

also because we write all possible combinations in the two cells (involved in fault) and read back

to check if they retain their values.

March Test: Address decoder faults

A little variation of March test can test all four address decoder faults. The test
sequence (of modified March test) and that tests all four address decoder faults
are as follows

•In increasing order of address of the memory cells, read the value of the
memory cells and write complement value in the cell. If 1 is read at cell 0,
value of 1 is written to cell 0; following that same procedure is followed for
cell 2 and so on for entire memory.

•In decreasing order of address of the memory cells, read the cells (match
with expected value) and write complement value in the cell.

The basic principle is that as the memory writing and examination operation moves
through memory, any address decoder fault that causes unexpected accesses of memory
locations will cause those locations to be written to an unexpected value. As the test
proceeds, it will discover those locations and report a fault.

Basics of memory BIST

• For March test an address generator (increasing and decreasing
order) and a data reader cum writer is required. So BIST for
March test will be simply an LFSR and a data reader cum writer.
As in the case of logic BIST, the LFSR should have primitive
polynomial (so that it generates all numbers from 1 to 2n), and
along with this the LFSR for memory BIST should the following
features

– Be able to generate all the 0 pattern to access the last memory

location
– Be able to generate forward and reverse order patterns i.e., if 1-

0-2-3 be the sequence of the LFSR (when initialized with 1) then
there should be a mode to generate the sequence 1-3-2-0.

Basics of memory BIST

• March test can be modified by replacing “sequential
read/write” with “arbitrary order read/write, but covering
all cells” without loss in test capability.

• We illustrated cell traversal from 0 to 9 and then from 9 to
0.

• However, the test capability will not change if sequence of
cell traversal is any other sequence, for example, 1-0-2-5-7-
3-4-6-9-8 while moving in ascending order and 1-8-9-6-4-3-
7-5-2-0 in reverse order.

Basics of memory BIST

• March test can be modified by replacing “sequential
read/write” with “arbitrary order read/write, but covering
all cells” without loss in test capability.

• We illustrated cell traversal from 0 to 9 and then from 9 to
0.

• However, the test capability will not change if sequence of
cell traversal is any other sequence, for example, 1-0-2-5-7-
3-4-6-9-8 while moving in ascending order and 1-8-9-6-4-3-
7-5-2-0 in reverse order.

Basics of memory BIST

DFF DFF DFF

X0 X1 X2

D Q D DQ Q

X2 (LSB)
X1

X0 (MSB)

0

1

2

() 0 0 1 1 1 0 1 0 0

::: 0 0 0 1 1 1 0 1 0

1 0 0 0 1 1 1 0 1()

X MSB

X

X LSB

   
   
   
     

Thank You

