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Introduction 

•VLSI testing, only from the context where the circuit needs to be 
put to a “test mode” for validating that it is free of faults.  

•Circuits tested OK are shipped to the customers with the 
assumption that they would not fail within their expected life 
time; this is called off-line testing 
•However, this assumption does not hold for modern day ICs, 
based on deep sub-micron technology, because they may 
develop failures even during operation within expected life 
time. 

•To cater to this problem sometimes redundant circuitry are kept 
on-chip which replace the faulty parts.  
•Testing a circuit every time before they startup, is called Built-In-
Self-Test (BIST).  
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Basic architecture of BIST 

Hardware Test Pattern Generator:  

•This module generates the test patterns required to sensitize the faults and 

propagate the effect to the outputs  

• As the test pattern generator is a circuit (not equipment) its area is limited.   

•So storing and then generating test patterns obtained by ATPG algorithms 

on the CUT (discussed in Module XI) using the hardware test pattern 

generator is not feasible.  

•Instead, the test pattern generator is basically a type of register which 

generates random patterns which act as test patterns. The main emphasis of 

the register design is to have low area yet generate as many different 

patterns (from 0 to 2n-1, if there are  n flip-flops in the register) as possible.   

 



Basic architecture of BIST 

Input Mux: This multiplexer is to allow normal inputs to the circuit when it is 

operational and test inputs from the pattern generator when BIST is executed. 

The control input of the multiplexer is fed by a central test controller.  

 

Output response compactor: Output response compacter performs lossy 

compression of the outputs of the CUT. The output of the CUT is to be compared 

with the expected response (called golden signature 

Similar to the situation for test pattern generator, expected output responses 

cannot be stored explicitly in a memory and compared with the responses of the 

CUT. So CUT response needs to be compacted such that comparisons with 

expected responses (golden signatures) become simpler in terms of area of the 

memory that stores the golden signatures. 

 



Basic architecture of BIST 
ROM: Stores golden signature that needs to be compared with the compacted 
CUT response. 
 
 
Comparator: Hardware to compare compacted CUT response and golden 
signature (from ROM). 
 
 
Test Controller: Circuit to control the BIST. Whenever an IC is powered up (signal 
start BIST is made active) the test controller starts the BIST procedure. Once the 
test is over, the status line is made high if fault is found. Following that, the 
controller connects normal inputs to the CUT via the multiplexer, thus making it 
ready for operation.  
 



Hardware pattern generator  

There are two main targets for the hardware pattern generator— 

(i) low area and  

(ii) pseudo-exhaustive pattern generation (i.e., generate as many 

different patterns from 0 to 2 1n  as possible, if there are n  

flip-flops in the register).  

Linear feedback shift register (LFSR) pattern generator is most 

commonly used for test pattern generation in BIST because it satisfies 

the above two conditions.  

There are basically two types of LFSRs,  

(i) standard LFSR  

(ii) modular LFSR.  



Standard LFSRs 
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A properly-designed LFSR can generate as a near-exhaustive set of patters, as it can cycle 

through distinct 2 1n   states (except 0s is all flip-flops). Such a properly designed LFSR 

is known as a maximal length LFSR. 

 



Standard LFSRs 

This LFSR in terms of the matrix can be written as ( 1) ( )SX t T X t  .  
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Standard LFSRs 

Leaving behind the first column and the last row 
ST  is an identity matrix; this indicates 

that 
0X  gets input from 

1X , 
1X  gets input from 

2X  and so on. Finally, the first element 

in the last row is 1 to indicate that 1nX  gets input from 0X . Other elements of the last row 

are the tap points 1 2 -2 -1, ,... ,n nh h h h . The value of 1,  (1 1)ih i n    , indicates that output 

of flip-flop iX  provides feedback to the linear XOR function. Similarly, the value of 

0,  (1 1)ih i n    , indicates that output of flip-flop iX  does not provide feedback to 

the linear XOR function. 

This LFSR can also be described by the characteristic polynomial:  
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n nf x h x h x h x h x x        



Standard LFSR: Example 
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It may be noted that output of flip-flop
2X provides feedback to the XOR network, while 

flip-flop 1X does not; so 1 0h   and 2 1h  . The characteristic polynomial of the LFSR is 

2 3( ) 1f x x x   .  



Standard LFSR: Example 
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So the LFSR generates 7 patterns (excluding all 0s) after which a pattern is repeated. It 

may be noted that this LFSR generates all patters (except all 0s) which are generated by a 

3 bit counter, however, the area of the LFSR is much lower compared to a counter.  In a 

real life scenario, the number of inputs of a CUT is of the order of hundreds. So LFSR 

has minimal area compared to counters (of order of hundreds).  
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Modular LFSRs 
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.The difference in modular LFSR compared to standard LFSR is due to the positions of the XOR gates in the 

feedback function; in modular LFSR XOR gates are in between adjacent flip-flops. Modular LFSR works faster 

than standard LFSR, because it has at most one XOR gate between adjacent flip-flops, while there can be several 

levels of XOR gates in the feedback of standard LFSR. 



Modular LFSRs 

In modular LSFR the output of any flip-flop may or may not participate in the XOR 

function; if output of any flip-flop iX  say, provides input to the XOR gate which feeds the 

input of flip-flop 1iX   then corresponding tap point ih  is 1. In the circuit representation of 

ih =1, then there is an XOR gate from output of flip-flop iX  to input of flip-flop 1iX  ; else 

output of flip-flop iX  is directly fed to input of flip-flop 1iX  .  
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Modular LFSRs 

This LFSR given the matrix can be written as ( 1) ( )SX t T X t  . In this 

case
0 1( 1) ( )nX t X t  , which implies that 

1nX 
 directly feedbacks 

0X . 

1 0 1 1( 1) ( ) ( )nX t X t h X t   , which implies that depending on 1h =0 (or 1), 

input to  1X  is 0X  (or 0X XORed with output of 1nX  ). Similar logic 

holds for inputs to all flip-flops from 1X  to 1nX  .  

This LFSR can also be described by the characteristic polynomial:  

2 2 1

1 2 -2 -1( ) 1 ... n n n

n nf x h x h x h x h x x        



Modular LFSRs: Example  
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The characteristic polynomial of the LFSR is 3 4( ) 1f x x x   .  

If the initial values of the flip-flops are 0 1 2 31, 0, 0, 0X X X X      



Modular LFSRs: Example  

Now, the question arises, whether any LFSR would generate all 2 1n   patters? The 

answer is no. Only for a few characteristic polynomials the LFSR is maximal length; such 

polynomials are called primitive polynomials (List of such polynomials can be found in 

Bardell et al. 

 

P. H. Bardell, W. H. McAnney, and J. Savir, Built-In Test for VLSI: Pseudorandom 

Techniques. New York: John Wiley and Sons, Inc., 1987. 

 

 



Hardware response compactor  

•Expected output (i.e., golden response) of the CUT cannot be sorted explicitly in a 

memory and compared with response obtained from the CUT.   

 

In other words, in BIST, it is necessary to compress the large number of CUT 

responses to a manageable size that can be stored in a memory and compared. In 

response compaction, sometimes it may happen that the compacted response of the 

CUT under normal and failure conditions are same. This is called aliasing during 

compaction.  

 

•Simple techniques to compress CUT responses namely 

 (i) number of 1s in the output and 

 (ii) transition count at the output.  

 

•Other complex techniques like LFSR based compaction, multiple input signature 

register based compaction, built-in logic observer based compaction etc.  

 



Number of 1s compaction  
•Number of 1s compaction, is a very simple technique where we count the number of 

ones in the output responses from the CUT.  
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Number of 1s compaction  

•It may be noted that 7 patterns (non-similar) were generated by the LFSR, which when 

given as input to the CUT generates output as 0001000, making number of 1s as 1. 

 

•The same circuit with s-a-1 fault--When the same inputs are given to the CUT the output 

is 0001100, making number of 1s as 2.  

 

•So fault can be detected by the compaction as there is difference in number of 1s at the 

output of the CUT for the given input patterns.  

 

•In other words, for the input patterns (from the LFSR), “number of 1s” based 

compaction is not aliasing. It may be noted that corresponding to the input patters, value 

of 1 is stored (as golden signature) in the memory which is compared with compacted 

response of the CUT.   

 



Number of 1s compaction  
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Number of 1s compaction  

The CUT generates output as 0000110, making number of 1s as 2.  

 

The same circuit with s-a-1 fault--When the same inputs are given to the CUT the 

output is 1000100, making number of 1s as 2.  

 

So fault cannot be detected by the compaction; the number of 1s at the output of the 

CUT for the given input patterns is same under normal and s-a-1 conditions. In other 

words, for the input patterns (from the LFSR), “number of 1s” based compaction is 

aliasing.  



Transition count response compaction  
•In this method of response compaction the number of transitions from 0 to 1 and 1 to 0 at 

outputs of the CUT are counted.  

 

•The CUT generates output as 0001000, making transition count as 2; in the output sequence 

there is a transition from 0 to 1 and then from 1 to 0.  

•The same circuit with s-a-1 fault. When the same inputs are given to the CUT the output is 

0001100, making transition count as 2.  

•So fault cannot be detected by the compaction.  
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Transition count response compaction  

Transition Count = 2
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Questions and Answers 

Question: In BIST how do we know which LFSR is to be used pattern generation?  
  
Answer:  Firstly, (obviously) the width of the LFSR is same as that of the number of 
inputs of the circuit.  
 
Secondly, the characteristic polynomial of the LFSR should be primitive polynomial. This 
ensures that the LFSR generates all possible patterns (except all 0s). 
 
Thirdly, the seed will decide the sequence of patterns. By fault simulation the test 
patterns can be decided.  
 
Following that a proper compaction technique with minimal aliasing property for the 
circuit needs to be chosen.  Then the seed is to be chosen in a manner so that the 
required test patterns among all the patterns generated by the LFSR should be 
generated initially. In other words, the seed should be chosen such that patterns of LFSR 
which do not test any faults (or any new faults compared to previous patterns) should 
be generated at latter phases. When all the required patterns have been generated and 
all faults have been tested the LFSR can be stopped (without requirement to generate 
the full cycle of patterns).  



Questions and Answers 

Question: Why LFSR cannot have all 0 state? 
 
 Answer:  
 If the seed is all 0 state, then the LFSR will be stuck at all 0 state as the feedback logic is 
XOR gates.  
 



Thank You 
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Introduction 

•VLSI testing, only from the context where the circuit is composed of logic gates and flip-

flops. 

 

• However, memory blocks form a very important part of digital circuits but are not 

composed of logic gates and flip-flops. This necessitates different fault models and test 

techniques for memory blocks.  

 

•In memory technology, the capacity quadruples roughly every 3 years, which leads to 

decrease in memory price per bit (being stored).  

 

•High storage capacity is obtained by raise in density, which implies decrease in the size of 

circuit (capacitor) used to store a bit. Experiments with new materials having high dielectric 

constant like barium strontium titanate are being done that facilitate greater capacitance to 

be maintained in the same physical space.  

 

•Further, for faster access of the memory, various methods are being developed which 

includes fast page mode (FP), extended data output (EDO), synchronous DRAM 

(SDRAM), double data rate etc.  

 
 
 



Introduction 
•Unlike general circuits we generally do not discard faulty memory chips.  

 

•Multiple faults will be present in any memory chip. The yield of memory chips would be 

nearly 0%, since every chip has defects. During manufacturing test, the faults are not only 

to be detected but also their locations (in terms of cell number) are to be diagnosed.  

 

•As almost all memories will have faults in some cells, there are redundant (extra) cells in 

the memory. One a fault is diagnosed, the corresponding cell is disconnected and a new 

fault free cell is connected in the appropriate position. This replacement is achieved by 

blowing fuses (using laser) to reroute defective cells to normal spare cells.  

 

 

•The sole functionality of a cell is to sore a bit information which is implemented using a 

capacitor; when the capacitor is charged it represents 1 and when there is no charge it 

represents 0.  No logic gates are involved in a memory. Use of logic gates (in flip-flops) 

instead of capacitors to store bit information would lead to a very large area.  

 

 

•The above two points basically differentiate testing of logic gate circuits from memory.     

•New fault models and test procedures are required for testing memories. In this lecture we 

will study the most widely used fault models and test techniques for such fault models in 

memories.   



Memory fault models 
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Memory fault models 

• When data is to be read from the memory, first the row and column decoders determine 

the location (i.e., the cell) from the address (sent in the address bus) that needs to be 

accessed.  

 

 

• Based on the address in the row and column decoders the cell of the appropriate row and 

column gets connected to the sense amplifier, which sends the data out.  

 

 

• Similar situation (for accessing the required cells) holds when data is to be written in the 

memory, however, in case of writing, special driver circuitry writes the values in the 

cells from the data bus.  

 

 

It may be noted that from the testing perspective we would only check if  

•Required value (0/1) can be written to a cell 

•The stored value can be read from a cell 

•The proper cell is accessed, i.e., the row and column decoder do not have faults.  

 



Memory fault models 

The row and column decoders are digital circuits implemented using logic gates (which are 
different from memory cell implementation).  
 
The sense amplifier and driver are analog circuits.  
 
In testing of memory, we do not consider the decoders as gate level digital circuits nor the 
sense amplifier and driver as analog circuits. For the decoders, we test the functionality 
whether they can access the desired cells based on the address in the address bus. For the 
amplifier and driver we check if they can pass the values to and from the cells correctly.  
  
The following faults called “reduced functional faults” are sufficient for functional memory 
testing  

•Stuck-at fault 
•Transition fault 
•Coupling fault 
•Neighborhood pattern sensitive fault 
•Address decoder faults 

 
  



Stuck-at fault 

S0 S1

w1

w0

w0

w1

0

w0
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s-a-0 s-a-1

State diagram for a good memory cell 

 

State diagram for a s-a1 memory cell and s-a-0 memory cell 

Stuck-at-fault in memory is the one in which the logic value of a cell (or line in the 
sense amplifier or driver) is always 0 or always 1.  
 
S0 is the state where the cell contains 0, while is S1 is the state where it contains 1. 
w1 (w0) indicates value of (0) 1 being written.  



Transition fault  

0 1

w0
w0

w1
w2

State diagram for up transition fault in a memory cell 
 

In transition fault a cell fails to make a (0 to 1) transition or a (1 to 0) 

transition when it is written; up transition fault is denoted as | 0  and a 

down transition fault is denoted as |1 . A cell having up transition fault is 

same a s-a-0 fault, however, the cell can take and retain value 1 if a 0 has not 

yet been written to the cell. The dual happens for down transition fault.  



Coupling Faults: 

Coupling fault, as the name suggests, implies deviation from normal behavior of a cell 

because of coupling with others.  

As there can be exponential number of combinations of coupling of a cell with others 

cells, we assume that in coupling faults a faulty cell can get coupled with another faulty 

cell.  

In other words, in the widely used coupling fault model it is assumed that any “two” cells 

can couple and normal behavior changes in these two cells; it is called 2-coupling fault 

model.  

So if there are n  cells in a memory then there can be 
2

nC  number of 2-coupling faults.  

To reduce the number of 2-coupling faults further from
2

nC , we assume that only 

neighboring cells (decided on threshold distance) can be involved in the fault. We 

consider two types of coupling faults namely, (i) inversion coupling faults and (ii) 

idempotent coupling faults.  



Inversion coupling faults 

In a 2-inversion coupling fault 
,i jcfinv  say, involving cells i  and j , a transition (0 to1 or 

1 to 0) in memory cell j  causes an unwanted change in memory cell i . Memory cell i  is 

the coupled cell (where fault occurs) and memory cell j  is the coupling cell. The two 

possible 2-inversion coupling faults involving cells ,i j  (denoted as
,i jcfinv ) are  

 Rising: |  (implying 0 to1 change in cell j  complements the  content of 

cell i )  

 Falling: |  (implying 1 to 0 change in cell j  complements the content of 

cell i ) 



Inversion coupling faults 
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w1@i
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w1@i

w1@j
w1@i

w0@j

w0@i
w1@i

w1@j

w0@j

The state diagram for two cells i  and j  under normal condition.  

State 00S  implies that both the cells have 0 values 

The self loop at state 00S , marked w0@i  implies that if 0 is written to cell i  then the same state is 

retained; another transition w0@j is associated with the same self loop which implies that if 0 is 

written to cell j  then 00S  retained.  

If we write 1 to cell j  (from state 00S ) i.e., w1@j, we go to state 01S ; this is indicated by the 

transition from 00S  to 01S  marked w1@j.   



Inversion coupling faults 
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State machine for two cells i  and j  under rising inversion coupling fault 
,i jcfinv .  

Under normal condition if we write 1 to cell j  (from state 00S ) we go to state 01S , 

however, under rising 
,i jcfinv  we go to state 11S .  

When we write 1 to cell j  in 00S  it makes a 0 to 1 (rising) transition. As j is the 

coupling cell it complements the value of the coupled cell i  (from 0 to 1).  

The faulty transitions are indicated by thick arrows;  00S  to 11S  and 10S  to 01S  are 

two such transitions.  



Idempotent coupling faults 

In a 2-indempotent coupling fault 
,i jcfid  say, involving cells i  and j , a transition (0 to1 

or 1 to 0) in memory cell j  sets the value in memory cell i  to be 0 or 1. The four 

possible 2- idempotent coupling faults involving cells ,i j  (denoted as
,i jcfid ) are  

 Rising-0: | 0  (0 to1 change in cell j  sets the content of cell i  to be 0)  

 Rising-1: |1  (0 to1 change in cell j  sets the content of cell i  to be 1)  

 Falling-0: | 0  (1 to 0 change in cell j  sets the content of cell i  to be 0) 

 Falling-1: |1  (1 to 0 change in cell j  sets the content of cell i  to be 1) 



Idempotent coupling faults 
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The state machine for two cells i  and j  under rising-1 idempotent coupling fault
,i jcfid .  

We note that under normal condition if we write 1 to cell j  (from state 00S ) we go to 

state 01S , however, under rising-1 
,i jcfid  we go to state 11S . This situation is similar to  

inverse coupling fault  

However, unlike   inverse coupling fault, in rising-1 idempotent coupling fault we do 

not have a faulty transition from 10S  to 01S .  



Bridging fault 
A bridging fault is a short circuit between two or more cells. As in the case of coupling 
faults, to keep the number of faults within a practical number, it is assumed that only two 
cells can be involved in a bridging fault. There are two types of bridging faults  

 AND bridging fault 
,i jANDbf (involving cells i  and j ) which results in values in cells 

i  and j  to be logic AND of the values in these cells under normal condition. AND 

bridging fault is represented by  , | ,i j i j i jv v v ANDv v ANDv  where the first two places 

represent the values in cells i  and j  under normal condition and the two values 

following “|”represent the values in cells i  and j  under AND bridging fault.  

0,0|0,0 , 0,1|0,0 , 1,0|0,0 , 1,1|1,1  are the four types of  AND bridging faults 

possible.  



Bridging fault 

 OR bridging fault 
,i jORbf (involving cells i  and j ) which results in values in cells i  

and j  to be logic OR of the values in these cells under normal condition. 

0,0|0,0 , 0,1|1,1 , 1,0|1,1 , 1,1|1,1  are the four types of  OR bridging faults 

possible.  



Neighborhood pattern sensitive coupling faults 

One of the most important and different kind of fault in memory compared logic gate 

circuits is neighborhood pattern sensitive faults (NPSFs). As memory cells are very close 

to each other, the cells behave normally except for certain patterns in the neighborhood 

cells. For example, if a cell i  has 0 and all the neighboring cells have 1, then the value of 

cell i  may be pulled up to 1. It is obvious that given a cell there can be infinite number of 

neighborhood combinations. However for all practical cases there are two types of 

neighborhoods used in fault modeling for the cell under test.  



Neighborhood pattern sensitive coupling faults 

Cells

Cell under test

Cells under coupling

0

1 3

4

Cells

Cell under test

(2)

Cells under coupling

Type-1 neighborhood  
The black colored cell is the one under test and the four cells around it (filled by small 
check boxes) are called neighborhood cells. Patterns in the neighborhood cells cause 
faults in the cell under test.  



Neighborhood pattern sensitive coupling faults 
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Neighborhood pattern sensitive coupling faults 

 Active NPSF (ANPSF)  

The value in the cell under test changes due to a change in ONE cell of the neighborhood 

(type-1 or type-2 depending on the one being used); all other cells of the neighborhood 

make a pattern.  An ANPSF is represented as “ vcut 0 1 3 4, , , |v v v v fe ”, where  vcut  is the 

value in the cell under test, 0 1 3 4, , ,v v v v  represent the values in the neighboring cells (at 

cell no. 0,1,3,4 respectively) including the one which changes and fe  represents fault 

effect in the cell under test. For example, 1 0, ,0,0 | 0  represents the ANPSF were the 

cell under test initially has value of 1, the pattern made by neighboring cells is 0000 

(values at cell no. 0,1,3,4 respectively) and fault effect at cell under test is 0 when a 1 to 0 

transition in made in cell 1.  



Neighborhood pattern sensitive coupling faults 

 Passive NPSF (PNPSF)  

PNPSF implies that a certain neighborhood pattern prevents the cell under test from 

changing its value. An PNPSF is represented as vcut 0 1 3 4, , , |v v v v fe , where  vcut  is 

the value in the cell under test, 
0 1 3 4, , ,v v v v  represent the values in the neighboring 

cells and fe  represents fault effect in the cell under test. There can be three types of 

fe  PNPSF:  

o | 0 : cell under test cannot be changed from 0 to 1 (initial value of cell 

under test is 0) 

o |1 : cell under test cannot be changed from 1 to 0 (initial value of cell 

under test is 1) 

o | x : cell under test cannot be changed regardless of content.  



Address decoder faults 

From the context of memory testing four types of faults are considered in address decoder 

(for both reading and writing)  

 

•No cell is accessed for a certain address 

•No address can access a certain cell 

•With a particular address, multiple cells are simultaneously accessed  

•A particular cell can be accessed with multiple addresses. 

 



Testing of memory faults 

“March Test” which is used widely for memory testing.  
March testing basically involves applying (writing and reading) patterns to each cell in 
memory before proceeding to the next cell and if a specific pattern is applied to one cell, 
then it must be applied to all cells. This is either done in increasing memory address order 
or decreasing order.   
 
Match test basically involves the following steps: 
  

1. In increasing order of address of the memory cells, write 0s to the cells;  
 

1.  In decreasing order of address of the memory cells, read the cells (expected 
value 0) and write 1 to the cells;  
 

2. In increasing order of address of the memory cells, read the cells (expected value 
1) and write 0 to the cells;  
 

3. In decreasing order of address of the memory cells, read the cells (expected 
value 0);  

 



Testing of memory faults 
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Testing of memory faults 

9 1

8 1

7 1

6 1

5 1

4 1

3 1

2 1

1 1

0 1

Read each cell (should get 0 )

and write 1

Address

9 to 0

9 0

8 0

7 0

6 0

5 0

4 0

3 0

2 0

1 0

0 0

Address

0 to 9
Read each cell (should get 1 )

and write 0

9 0

8 0

7 0

6 0

5 0

4 0

3 0

2 0

1 0

0 0

Address

9 to 0

Read each cell

(should get 0 )



March Test: Stuck at fault model  

March test obviously tests s-a-0 and s-a-1 faults in the cells because 0 and 1 in 
each cell is written and read back.  
 

In March test during Step 1 all cells are written with 0 and in Step 2 all cells are written 

with 1s, thereby making a 0 to 1 transition in the cells.  In Step 2 it is verified if cells have 

0 in them and in Step 3 it is verified if cells have 1, thereby verifying 0 to 1 transition in 

the cells. So, Step 1 through Step 3 tests absence of | 0  fault. In a similar manner, Step 

3 through Step 5 tests absence of | 0  fault.  

March Test: Transition fault  



Thank you  
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March Test: Coupling Faults 
March tests cannot detect all coupling faults. Let is consider three cells , ,i j k such that address of 

 address of i j and address of address of j k . Cell i is coupled with cell j and cell k  by fault 

| ; j  and k  are the coupling cell. In march test as we go either in ascending order or 

descending order of memory address of cells, both i and j  are either visited before or after cell 

k .  

W
rite

 e
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ch
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ell w
ith

 0

Cell traversal

order

k 0

j 0

i 0

Write each cell with 1
Cell traversal

order

k 1

j 1
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March Test: Coupling Faults 

As Step-1 of March test all the cells , ,i j k  are written with 0. Following that in Step 2, all the 

cells (in order of) , ,k j i  are written with 1 (after successful reading of 0 from the cells). It may 

be noted that first cell k  is written with 1; as cell i  is coupled with cell k having fault | , the 

0 to 1 transition in cell k  inverts the content of cell i . Following that, cell j  is written with 1; as 

cell i  is also coupled with cell j  having fault | , the 0 to 1 transition in cell j  inverts the 

content of cell i  again. Now when cell i  is read, the value determined is 0 which means absence 

of two coupling faults (i) rising 
,i jcfinv and (ii) rising 

,i kcfinv . In other words, “rising 
,i kcfinv ” 

masks “rising 
,i jcfinv ”.  



March Test: Coupling Faults 

Inverting rising coupling fault |  between cell i  (coupled cell) and j  (coupling cell): (i) 

Cell j  is to be written with a 0 and read back, (ii) value at cell i is to be read and remembered, 

(iii) cell j  is to be written with a 1 and read back, and (iv) value at cell i is to be read and 

checked that it is same as the one remembered (i.e., no inversion has happened).  

 

 

Inverting falling coupling fault |  between cell i  and j : (i) Cell j  is to be written with a 

1 and read back, (ii) value at cell i is to be read and remembered, (iii) cell j  is to be written with 

a 0 and read back, and (iv) value at cell i is to be read and checked that it is same as the one 

remembered (i.e., no inversion has happened).  



March Test: Coupling Faults 

Idempotent Rising-0 coupling fault | 0  between cell i and j : (i) Cell j  is to be written 

with a 0 and read back, (ii) cell i is to be written with 1 and read back, (iii) cell j  is to be written 

with a 1 and read back, and (iv) value at cell i is to be read and checked to be 1.  

 

 

Idempotent Rising-1 coupling fault |1  between cell i  and j : (i) Cell j  is to be written 

with a 0 and read back, (ii) cell i is to be written with 0 and read back, (iii) cell j  is to be written 

with a 1 and read back, and (iv) value at cell i is to be read and checked to be 0.  



March Test: Coupling Faults 

Idempotent Falling-0 coupling fault | 0  between cell i  and j :       (i) Cell j  is to be 

written with a 1 and read back, (ii) cell i is to be written with 1 and read back, (iii) cell j  is to be 

written with a 0 and read back, and (iv) value at cell i is to be read and checked to be 1.  

 

 

 

Idempotent Falling-1 coupling fault |1  between cell i  and j : (i) Cell j  is to be written 

with a 1 and read back, (ii) cell i is to be written with 0 and read back, (iii) cell j  is to be written 

with a 0 and read back, and (iv) value at cell i is to be read and checked to be 0.  



March Test: Bridging faults 

Like coupling faults March tests cannot detect all bridging faults.  

0,0|0,0 , 0,1|0,0 , 1,0|0,0 , 1,1|1,1  are the four types of AND bridging faults 

possible.  

This implies that cells ,i j  which are involved in bridging faults must have the four 

combinations of inputs 00,01,10 and 11.  

 

No cell pairs have all the four combinations 00,01,10 and 11. So to test bridging 

faults the following test pattern sequences are required.  

 



March Test: Bridging faults 

AND bridging fault 
,i jANDbf (involving cells i  and j ):  

(i) write 0 in cell i and 0 in cell j  and read back the values (which must remain same),  

(ii) write 0 in cell i and 1 in cell j  and read back the values,  

(iii) write 1 in cell i and 0 in cell j  and read back the values, and  

(iv) write 1 in cell i and 1 in cell j  and read back the values.  

 

It may be noted that the above four test pattern sequence are enough to test OR bridging fault 

also because we write all possible combinations in the two cells (involved in fault) and read back 

to check if they retain their values.  



March Test: Address decoder faults 

A little variation of March test can test all four address decoder faults. The test 
sequence (of modified March test) and that tests all four address decoder faults 
are as follows 
 
 

•In increasing order of address of the memory cells, read the value of the 
memory cells and write complement value in the cell. If 1 is read at cell 0, 
value of 1 is written to cell 0; following that same procedure is followed for 
cell 2 and so on for entire memory.   
 
 
•In decreasing order of address of the memory cells, read the cells (match 
with expected value) and write complement value in the cell.  

 
 

The basic principle is that as the memory writing and examination operation moves 
through memory, any address decoder fault that causes unexpected accesses of memory 
locations will cause those locations to be written to an unexpected value. As the test 
proceeds, it will discover those locations and report a fault. 



Basics of memory BIST 
 

• For March test an address generator (increasing and decreasing 
order) and a data reader cum writer is required. So BIST for 
March test will be simply an LFSR and a data reader cum writer. 
As in the case of logic BIST, the LFSR should have primitive 
polynomial (so that it generates all numbers from 1 to 2n), and 
along with this the LFSR for memory BIST should the following 
features 

 
– Be able to generate all the 0 pattern to access the last memory 

location 
– Be able to generate forward and reverse order patterns i.e., if 1-

0-2-3 be the sequence of the LFSR (when initialized with 1) then 
there should be a mode to generate the sequence 1-3-2-0.   

 



Basics of memory BIST 
 

• March test can be modified by replacing “sequential 
read/write” with “arbitrary order read/write, but covering 
all cells” without loss in test capability.  

 

• We illustrated cell traversal from 0 to 9 and then from 9 to 
0.   

 

• However, the test capability will not change if sequence of 
cell traversal is any other sequence, for example, 1-0-2-5-7-
3-4-6-9-8 while moving in ascending order and 1-8-9-6-4-3-
7-5-2-0 in reverse order.  

 



Basics of memory BIST 
 

• March test can be modified by replacing “sequential 
read/write” with “arbitrary order read/write, but covering 
all cells” without loss in test capability.  

 

• We illustrated cell traversal from 0 to 9 and then from 9 to 
0.   

 

• However, the test capability will not change if sequence of 
cell traversal is any other sequence, for example, 1-0-2-5-7-
3-4-6-9-8 while moving in ascending order and 1-8-9-6-4-3-
7-5-2-0 in reverse order.  

 



Basics of memory BIST 
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