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Introduction 

The functionality of electronics equipments and gadgets has achieved a 
phenomenal while their physical sizes and weights have come down drastically.  
The major reason is due to the rapid advances in integration technologies, which 
enables fabrication of millions of transistors in a single Integrated Circuit (IC) or 
chip.   
 
IC (used interchangeably with “chip” in this course) is a device having multiple 
transistors with interconnects manufactured on a single silicon substrate. 
 
 Integration with a complexity of 10’s of transistors is called Small Scale Integration, 
with 100’s is Medium Scale Integration (MSI), with 1000’s is Large Scale Integration 
(LSI), with 10,000 it is Very Large Scale Integration (VLSI)  
 
Systems of systems can be implemented in a VLSI IC. However, with this rise in 
functionality of VLSI ICs, design problem has become huge and complex.  



Introduction 

• To address this complexly issue, after the design specifications are complete 
almost all the other steps are automated using CAD tools. 

•However, even designs automated using CAD tools may have bugs.  
 

•Also, due to extremely large size of the design space it is not 
possible to verify correctness of the design under all possible 
situations.  

•So technique are required that can verify, without exercising exhaustive 
input-output combinations, that the design meets all the input specifications; 
this technique is called formal verification.  

 

•In VLSI designs millions of transistors are packed into a single chip. This leads to 
manufacturing defects and all the chips need to be physically tested by giving input 
signals from a pattern generator and comparing responses using a logic analyzer; 
this process is called Testing.  
 

So, in the process of manufacturing a VLSI IC there are three broad 
steps: DESIGN-VERIFICATION-TEST.   



Introduction 
• VLSI ICs can be divided into analog, digital or mixed-signal (both analog and 
digital on the same chip) based on their functionality.  
 

•Digital ICs can contain logic gates, flip-flops, multiplexers,  
•Work using binary mathematics to process "one" and "zero" signals.   
 

•Analog ICs, such as current mirrors, voltage followers, filters, OPAMPs etc. work by 
processing continuous signals.  
 

•When single IC has both analog and digital components it is called mixed signal IC 
e.g, Analog to Digital Converter (ADC).  
 

•The automation algorithms and CAD tools are mainly available for digital ICs 
because transformation of design specifications to silicon implementation can be 
accomplished using logical procedures (which can be converted to algorithms and 
tools).  
•However, most of the analog circuits design is like an “art” which is best 
performed by designers with “aid” of some CAD tools (which provides feedback to 
designer if the manual design is progressing fine etc.) 



Introduction 

• In this course we will deal only with digital VLSI circuits. Henceforth, in this course 
VLSI IC would imply digital VLSI ICs only and whenever we want to discuss about 
analog or mixed signal ICs it will be mentioned explicitly. Also, in this course the 
terms ICs and chips would mean VLSI ICs and chips.  
 
 
 

• This course is concerned with algorithms required to automate the three steps 
“DESIGN-VERIFICATION-TEST” for Digital VLSI ICs.  
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Digital Design, Verification and Test Flow 



Digital Design, Verification and Test Flow 

Step1: Specification Design 
 In a typical VLSI flow, we start with system specifications, which is nothing but technical 
representation of design intent. To explain the flow, the following example will be used 
through this section. 
 
Example:   
Specification: out1=a+b; out2=c+d; where a,b,c,d are single bit inputs and out1,out2 are 
two bit outputs (sum and carry). 
 
  
 



Digital Design, Verification and Test Flow: HLS 

Step 2: High level Synthesis  
High-level synthesis (HLS) algorithms are used to convert specifications into 
Register Transfer Level (RTL) circuits.    
 
•HLS, sometimes referred to as architectural synthesis is an automated design 
procedure that interprets an algorithmic description of the design intent and 
creates hardware at RTL that implements that behavior.  
 

•The input to a HLS tool is design intent written in some high level hardware 
definition language like SystemC, System Verilog etc.  
 

•The HLS tool first schedules the computations (required to meet the 
specifications) at different control steps.  
 

•Following that, depending on availability of hardware units and time 
constraints, the scheduled computations (comprising instructions and variables) 
are allocated and binded to the hardware units like adders, multipliers, 
multiplexors, registers, wires etc. 



Digital Design, Verification and Test Flow: HLS 

HLS Example:   
In the example there are two operations (addition of single bit numbers) and 
none of them depend on each other. So both the operations can be scheduled 
in a single control step.  However, if there are dependencies e.g., out1=a+b; 
out2=out1+d; then “out1=a+b;” is scheduled in 1st control step whereas 
“out2=out1+d;” is scheduled in 2nd control step.  
 
 

+ +

a b c d

out1
out2



Digital Design, Verification and Test Flow: HLS 

•Depending on availability of hardware resources and time constraints the 
scheduled operators and variables are allocated and binded to hardware units.  
 
Let there be one adder and two registers in the library.  

+

+

a b

c d
out1

out2

1 bit adder

"out1=a+b"

a b

Register2Register1

out1

1 bit adder

"out2=c+d"

c d

Register2Register1

out2



Digital Design, Verification and Test Flow: HLS 

There is one adder and two registers in the library. So the two operations 
(addition) of the example, even if scheduled in one control step, cannot be 
allocated to the single adder. Similarly, the four variables cannot be allocated to 
two registers.   
 
In the running example with the given resource constraints, the two operations 
can be done in two control steps:  
 
Step 1- variable a is allocated to Register1, variable b is allocated to Register2 
and operation “out1=Register1+Register2;” is allocated to adder;  
 
Step 2- variable c is allocated to Register1, variable d is allocated to Register2 
and operation “out2=Register1+Register2;” is allocated to adder.  
 
 
 



Digital Design, Verification and Test Flow: HLS 
However, if there are two adders and four registers in the library then both the 
operations can be carried out in one control step.  
 
 

adder1

"out1=a+b"

a b

Register2Register1

out1

adder2

"out2=c+d"

c d

Register4Register3

out2



Digital Design, Verification and Test Flow: HLS 

•Finally, based on allocation and binding, the control unit is to be designed (at 
high level).  
 

•If the allocation/binding is according to (2 adders + 4 registers), the control is 
trivial.  
 

•However, if the allocation is according to (1 adder + 2 registers), then the 
control circuit needs to provide signals that can do multiplexing between a and 
c, b and d;  
 

•In 1st control step, a should be fed to Register1 and b should be fed to 
Register2,  
•In 2nd control step, c should be fed to Register1 and d should be fed to 
Register2.  

 
 



Digital Design, Verification and Test Flow: HLS 

•Figure below illustrates the block diagram where control modules are added 
after allocation and binding (1 adder + 2 registers).  
•It may be noted that control signal is not available as an external pin which can 
be controlled by the user. “Control” is connected to some signal generated by 
the system, which alternates in every control step thereby making its value 0 in 
1st step and 1 in the 2nd. 
 

adder

Register2  Register1

out1

out2

Mux Mux

a c b d

control



Digital Design, Verification and Test Flow: HLS 

The HLS tool generates output comprising,  
(i) operations-variables allocated-binded to hardware units and  
(ii) control modules.  
 
The output of HLS tool is called Register Transfer Level (RTL) circuit because data 
flow, data operations and control flow are captured between registers.  
 
 
After HLS, RTL circuits are transformed into logic gate level implementation; the 
step is called logic synthesis.  



Digital Design, Verification and Test Flow: 
Verification 

Before the staring of logic synthesis, one needs to verify if the RTL is equivalent 
to the specifications.   
 
In the running example, we can verify by applying all possible input conditions 
of a,b,c,d  (along with control) to the RTL and checking if out1 and out2 are as 
expected.  
 
However, if the RTL has about hundreds of inputs then exercising all possible  
inputs is impossible because of the exponential complexity (i.e., if there are n 
inputs then all possible input combinations are 2n).  
 
 
So we need to have formal verification methods which verify equivalence of RTL 
with input specifications.  



Broadly speaking, for formal verification we need to model the RTL circuit and 
the specifications using some formal modeling techniques and verify that both 
of them are equivalent.  
 
In other words, equivalence is determined without applying inputs.  
 
Control and Data Flow Diagram (CDFG), a formal modeling, to capture the RTL. 
Finite State Machine (FSM) to model the control logic.  
 
This example being very simple, we can see that both specifications and the 
model are equivalent.  Formal techniques for checking equivalence can be will 
be elaborated in “VERIFICATION” section of the course.  

Digital Design, Verification and Test Flow: 
Verification 



This example being very simple, we can see that both specifications and the 
model are equivalent.  Formal techniques for checking equivalence can be will 
be elaborated in “VERIFICATION” section of the course.  

control

0 1

read bread a

+

write out1

read dread c

+

write out2

s0 s1

control=1/1

control=0/0

Digital Design, Verification and Test Flow: Verification 



Digital Design, Verification and Test Flow: 
Logic Synthesis 

•After the RTL is verified to be equivalent to system specification, logic synthesis 
is performed by CAD tools.  
•In logic synthesis all blocks of the RTL circuit is transformed into logic gates and 
flip-flops.  

•For the running example all the blocks namely, adder, multiplexers, control 
logic etc. need to be synthesized to logic gates.  

 
Will illustrate synthesis only for the adder module and for the rest, similar 
procedure holds. Details will be explained in the “DESIGN” module of the 
course.  
 
We first determine the Boolean function of the adder module, in terms of mean 
terms.  

a b Out1(sum) Out1(carry) 

0 0 0 0 

0 1 1 0 

1 0 1 0 

1 1 0 1 



Digital Design, Verification and Test Flow: 
Logic Synthesis 

•From the table we have Boolean equations for  
Out1(sum)=  and Out1(carry)=a.b 
 
•After the equations are obtained they need to be minimized so that the circuit 
can be implemented using minimal number of gates. Karnaugh map, Quine–
McCluskey algorithm etc. [6] are some standard techniques to minimize 
Boolean functions.  
 

•In this example of the adder, the equations are already minimized and can be 
directly converted to Boolean gate implementation as shown.  
 

•Karnaugh map and Quine–McCluskey techniques work well if the number of 
inputs is less. However, in case of practical VLSI circuits the number of inputs 
are in orders of hundreds, so minimization is carried out using heuristics 
techniques, which will be discussed in the “DESIGN” module of the course.  
 

•Again equivalence of logic synthesis output should be established with RTL 
design.  



a

a

b

b

Out1(sum)

a

b

Out1(carry)

Digital Design, Verification and Test Flow: 
Logic Synthesis 



Digital Design, Verification and Test Flow: 
Backend 

•Once the logic level output of the circuit is obtained we move to backend 
phase of the design process.  
 
In backend we start with a software version of the silicon die where the chip will 
be finally fabricated.  

•Broad plan regarding placement of gates, flip-flops etc. (output of logic 
synthesis) in appropriate places in the software representation of the chip; 
this process is called Floorplan.  

 
•Exact locations in the die (software representation) where the circuit 
components are placed; this is called Placement.  
 

•Required interconnections (as given in the logic circuit) among the gates 
that are placed in exact positions in the die; this process is called routing.   

 
 
Again equivalence of output of Backend process should be established with 
logic design.  
 



Digital Design, Verification and Test Flow: 
Test 

•In VLSI designs millions of transistors are packed into a single chip, thereby 
leading to manufacturing defects. So all chips need to be physically tested by 
providing input signals from a pattern generator and comparing responses using 
a logic analyzer. 
 
• As in the case of verification, testing by applying all possible input 
combinations is prohibitive, due to curse of dimensionality problem.  
 
•The testing problem is more time hungry than verification because all chips 
need to be tested while only “one” design is to be verified.  
 
•Testing by applying all possible input combinations is called exhaustive 
functional testing, which is avoided because of prohibitive time requirements.  
 



Digital Design, Verification and Test Flow: 
Test 

•Testing is therefore done based on “structure” of the circuit and is called 
structural testing.   
 

•In structural testing we first decide on set of faults that can occur, called Fault 
Models; stuck-at, bridging etc. are some well known fault models.  
 

•Then we apply only those inputs which are required to validate that faults (as 
per fault model) are not present.  
 

•Number of patterns required to perform structural testing is exponentially 
lower than that required for exhaustive functional testing.  
 

• In Test Planning step, given a logic level circuit and fault model, we generate 
patterns, which when applied to a circuit determines that no fault from the fault 
model exists in the circuit.   
 



Digital Design, Verification and Test Flow: Test 

•Test planning for the adder module of the example assuming that fault model 
is “stuck-at”.  

•In “stuck-at” fault model each line of the circuit is assumed to have two 
types of faults i.e., s-a-0 and s-a-0.  
•So if there are n lines in a circuit then in all there can be 2n stuck-at faults 
in the circuit.  

•In test planning we need to find input patterns which can determine that none 
of the stuck-at faults are present.     
•In the circuit of Figure 8 as there are 12 lines (9 lines in circuit for “sum” and 3 
lines in the circuit for “carry”), there can be 24 stuck-at faults.  

a

a

b

b

Out1(sum)

a

b

Out1(carry)



Digital Design, Verification and Test Flow: Test 

•Here we will illustrate for only one fault and the same holds for all the other 23 
faults. Let there be a stuck-at-0 fault in the output of one AND gate of the circuit 
for “sum”.  

•If a=1 and b=0 is applied as inputs, then “output1(sum)” is 0 if fault is 
present, 1 otherwise. So a=1 and b=0 can verify the absence of fault by 
comparing output with 1.   

 
•. Algorithms and techniques to perform test planning will be covered in 
“TESTING” part of the course.  
 

a=1

a=1

b=0

b=0

Out1(sum)

s-a-0

0

(0 if fault is there

else 1)

(0 if fault is there

else 1)



Digital Design, Verification and Test Flow: 
Fabrication, Test and Marketing 

Once all steps are completed and verification after each level of transformations 
are done, the chips are fabricated, physically tested and fault free chips are sent 
for marketing.  



Digital Design, Verification and Test 

The breakup of the modules in this course is as follows:  
  
Design 
Module I: Introduction 
       Lecture I: Introduction to Digital VLSI Design Flow 
       Lecture II:  High Level Design Representation 
       Lecture III: Transformations for High Level Synthesis 
  
Module II: Scheduling, Allocation and Binding 
            Lecture I:   Introduction to HLS: Scheduling, Allocation and Binding 
Problem 
            Lecture II and III:  Scheduling Algorithms             
Lecture IV: Binding and Allocation Algorithms 
. 
Module III: Logic Optimization and Synthesis 
            Lecture I,II and III:  Two level Boolean Logic Synthesis 
            Lecture IV: Heuristic Minimization of Two-Level Circuits 
            Lecture V: Finite State Machine Synthesis 
            Lecture VI: Multilevel Implementation 



Digital Design, Verification and Test 

The breakup of the modules in this course is as follows:  
  
Verification 
Module - IV: Binary Decision Diagram 
        Lecture-I: Binary Decision Diagram: Introduction and construction 
        Lecture-II: Ordered Binary Decision Diagram 
        Lecture-III: Operations on Ordered Binary Decision Diagram 
        Lecture-IV: Ordered Binary Decision Diagram for Sequential Circuits 
  
Module - V: Temporal Logic 
        Lecture-I: Introduction and Basic Operations on Temporal Logic 
        Lecture-II: Syntax and Semantics of CLT 
        Lecture-III: Equivalence between CTL Formulas 
  
Module-VI: Model Checking 
        Lecture-I: Verification Techniques 
        Lecture-II, III and IV: Model Checking Algorithm 
        Lecture-V: Symbolic Model Checking 



Digital Design, Verification and Test 

Test 
Module  VII: Introduction to Digital Testing 
        Lecture-I: Introduction to Digital VLSI Testing 
        Lecture-II:  Functional and Structural Testing 
        Lecture-III: Fault Equivalence 
  
Module  VIII: Fault Simulation and Testability Measures 
        Lecture-I, II and III: Fault Simulation 
        Lecture-IV: Testability Measures (SCOAP) 
  
Module IX: Combinational Circuit Test Pattern Generation 
        Lecture-I: Introduction to Automatic Test Pattern Generation (ATPG) and ATPG  
                         Algebras 
        Lecture-II and III: D-Algorithm 
  
Module  X: Sequential Circuit Testing and Scan Chains 
        Lecture-I:  ATPG for Synchronous Sequential Circuits 
        Lecture-II and III: Scan Chain based Sequential Circuit Testing 

  
Module XI: Built in Self test (BIST) 
         Lecture I and II: Built in Self Test          
         Lecture III and IV:  Memory Testing 



Design Verification and Test of 
Digital VLSI Circuits 
NPTEL Video Course 

Module-I 

Lecture-II 

High Level Design Representation 



Introduction 

•Almost all steps of VLSI design are automated.  
 

•Any automated procedure requires that input data being provided is in some 
predefined format. Also, the models used to represent the inputs and 
transformations (changes of the input) should be efficient for execution of the 
procedure.  

•For example, in case of HLS the input specifications are generally in some 
Hardware Definition Language  (HDSs) like Verilog, VHDL, System C  etc. 

 
•The HDL specifications are represented using several modeling paradigms like 
Control and Data Flow Diagram (CDFG) , DeJong’s hybrid flow graph, SSIM flow 
graph, Finite state machine with data etc., which are suitable for scheduling, 
allocation and binding procedures.  
 
•Sometimes timing constrains (on execution of steps) are also given in the 
specifications, which are modeled by the above paradigms, however, with timing 
parameter included e.g., CDFG with timing, DF with timing and CF with timing.  



Introduction 

•In this lecture, we will discuss CDFG paradigm for modeling of high-level hardware 
descriptions (given in Verilog).  
 
•CDFG is one of the most widely used modeling paradigm and the others 
mentioned above are not much different; for details of other paradigms the reader 
may look into the respective references.   

 



Control and Data Flow Diagram (CDFG) 

In general, the nodes in a CDFG can be classified into one of the following types: 
 
•Operational nodes: These are responsible for arithmetic, logical or relational 
operations (or computations); e.g., addition, equality checking etc.  
 

•Control nodes: These nodes are responsible for control operations like conditions, 
loop constructs etc.; e.g., case statements, while loop etc. 
 
•Storage nodes: These nodes represent assignment operations associated with 
variables and signals; e.g., reading an input value to register etc.  

A CDFG is a directed graph  ( , )G V E , where 1{ ,... , }nV v v  is the set of nodes 

and 1{ ,  ... , }mE e e V V    the set of directed edges ( ,  )i j ke v v .  



Control and Data Flow Diagram (CDFG) 

The edges in a CDFG represent: 
 
 
•Transfer of values (in variables that are changed due to processing in 
operational and storage nodes). A node needs data generated by its 
predecessor nodes and generates new data needed by its successors. Nodes 
operate on the data of the incoming edges. The resulting data is put on the 
outgoing edges. 
 
 

•Control flow from one node to another. An edge can also represent a 
condition, e.g., while implementing loop constructs, if/case statements etc. 



Control and Data Flow Diagram (CDFG): Example 

module CDFG_example (A,B,C,D); 
input [3:0] B,C,D; 
 reg [7:0] A; 
output [7:0] A; 
initial begin A = B * C + D; end 
while ( A > 0 ) begin 
A : = A − 1; 
end 
endmodule 

0 1

-

read Cread B

x

+

read D

write A

>

0

END
1

B1

B2 B3

B4

B5

B6

B7

B8

B9

C1



Control and Data Flow Diagram (CDFG): Example 

•There are three input variables (B,C and D) which must be read from input 
lines to registers. So corresponding to reading of each variable in registers we 
have a storage nodes; B1,B2 and B3 are storage nodes. 
 

• In the Verilog code there is a one time computation “initial begin A: = B * C + 
D; end”. For this computation we see that there are 2 sub-computations, 
namely “*” and “+”. So we have two operational nodes, B4 and B5 for “*” and 
“+”, respectively.  
 
 

The edge 1, 4B B  corresponds to transfer of value of B, which gets changed (i.e., new 

value read) due to processing (reading) in B1. The edge 4, 5B B  corresponds to transfer 

of values (B and C to “B*C”), which get changed due to processing (“*”) in B4. After the 

computation “initial begin A: = B * C + D; end”, the value is stored in A; this is captured 

by storage node B6.  



Control and Data Flow Diagram (CDFG): Example 

B7 is the operational node that checks 0 with A; output is 0 if 0A  and 1, 

otherwise. The output of B7 (carried by edge 7, 1B C ) controls the control node C1. 

7, 1B C  is the control flow edge, which corresponds to the condition (A>0) required 

for execution/exit of the while loop.  

 

Node C1 is a control node responsible for deciding data flow direction after the 

condition “A>0” is checked at B7. If value transferred by 7, 1B C  is 0 then the loops 

exits at B8, else computation “A=A-1” is done at B9 and the loop continues.  



CDFG for “case” statement in Verilog  

1 2.............................n

B1 B2 Bn

CDFG for “for loop” in Verilog  

F T

>

B3

B1

C1

i (Variable) Constant

B2



CDFG with timing  

•Sometimes minimum required delay needs to be mentioned in the 
specifications.  
 

•Delay information is required in logic synthesis. Delay of a circuit depends on 
gates and architecture.  
 

•For example, speed of ripple-carry adder is lower compared to carry-look-
ahead adder; however, area of carry-look-ahead adder is higher than ripple-
carry adder.  
•Also, faster gates consume more area and power compared to slower gates. 
So, if tolerable delay of some operation in a circuit is low (which depends on 
application), realizing it with faster circuitry unnecessarily leads to high area 
and power overheads.  
 

•In CDFG, delay information is modeled using a node between the required 
points, where the delay is specified. The points can be between single 
operational nodes, between multiple operational nodes, loop  etc.  



CDFG with timing requirements between a single operational node  

read Cread B

x

+

read D

delay
min=50

CDFG with timing requirements between multiple operational nodes 

read Cread B

x

+

read D

delay
min=90



CDFG with timing requirements in loops 

0 1

-

write A

>

0

END
1

delay
min=100



CDFG:   Control flow based representation and 
Data flow based representation 

CDFG can be control flow based or data flow based.  
 
Example: The Verilog code involves some computations over inputs B,C and D depending 
on value of “cond”.  

module example1(A,B,C,D,cond); 
input [3:0] B,C,D; 
input [1:0] cond; 
 reg [3:0] A; 
output [3:0] A; 
case (cond) 
    00: A = B + C + D; 
    01: A = B - C + D; 
    default: A = B + C - D; 
endcase 
endmodule 



CDFG:   Control flow based representation 

00 01 Default

read B read C

read D

write A

+

+

read B read C

read D

write A

-

-

read B read C

read D

write A

+

-

cond



CDFG:   Control flow based representation 

•It may be noted that for each value of “cond” there is a sub-sequence of 
operations represented by storage and operational nodes.  
•Here, the operations are classified based on three values of “cond”: 00, 01, 
default (10,11) and the corresponding sub-sequence of operations involving 
storage and operational nodes are enclosed by three squares.  
 

•Therefore, the control flow based CDFG has almost a one to one mapping with 
the lines of Verilog code. So, control flow based CDFG gives an idea that, 
depending on value of condition of a control node (“cond” in this example) only 
one sub-set of operators and storages are executed.  
 

•It may be noted that this is software concept because in a program only those 
parts of a code are executed which satisfy conditional statements like “if-then-
else”, “case” etc. 



CDFG:   Control flow based representation 

However, in hardware there is no concept of execution of a “sub-set” of 
operators/storages (i.e., statements of an HDL code), based on value of 
condition of a control node.  
 
In the example, variable “A” can be assigned three different values through 
three different computations depending on value of “cond”.  
 
 

•So, three hardware circuitry are to be kept in the chip and depending 
on the value of “cond”, the output of appropriate circuitry would write 
“A”.  
 
 

•In other words, unlike a software code, where parts of a code can be 
invoked based on values of a condition, in hardware, all the different 
types of circuitry are to be implemented in the chip (and would be 
executed) and the output being used depends on the value of a 
condition 



CDFG:   Data flow based representation 

01 Default

read B

write A

read C read D

+

+

00

-

-

-



CDFG:   Data flow based representation 

The control node is after the operational and storage nodes.  
 
•There are three circuits for computing different values of “A" , depending 
on “cond”.  
•The three circuits evaluate three different outputs irrespective of the value 
of “cond”; “A” is written by the output of the appropriate circuit depending 
on value of “cond”.  
 
It may also be noted that even if three different circuitry are required to 
compute different possible values of “A”, many operational and storage 
nodes are common among these circuits and redundancy can be eliminated.   
 
 
For example, reading of B,C,D are required by all the three circuits and they 
may be implemented by storage nodes common to all the three circuits. 
Also, operational node for “B+C” is common to circuit for “A = B + C + D” and 
circuit for “A = B + C - D”, which can be merged.  



Question and Answer 

Question: What are the advantages and disadvantages of Control flow 
based CDFG over Data flow based CDFG?  
 
In data flow based CDFG, we can represent parallel evaluation by 
operational and storage nodes for all branches of a control node. This is in 
real sense more near to hardware realization of the circuit, compared to 
that of the control flow based CDFG, where only that set of operational and 
storage nodes are executed for which (branch) the value of control node is 
satisfied. Therefore, optimizations and other steps of HLS are more suitable 
to be performed on data flow based CDFG.  
 
On the hand, data flow based CDFG is more tedious to draw from the 
specifications compared to the control flow based counterpart. In control 
flow based CDFG there is almost one-to-one mapping between the nodes of 
the CDFG and the lines of DHL code. If there are nested loops and conditions 
in the input specifications then it should be flattened before extracting the 
data flow based CDFG. Further, in such cases the CDFG may have a large 
number of nodes. 
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Lecture-III 

Transformations for High Level Synthesis 



Introduction 

•Any VLSI design starts with specifications and the first step is to obtain the 
Register Transfer Level (RTL) circuit.  

•RTL circuit is obtained from specifications using High Level Synthesis (HLS) 
algorithms.   
 
 

•As specifications are processed by HLS algorithms, they need to be represented 
using some modeling language. 

•Control and Data Flow Graph (CDFG), is one of the most widely accepted 
modeling paradigm for specifications that are processed by HLS tools.  
 



Introduction 

•In last Lecture , we saw several examples where specifications written in terms of 
Verilog were translated into CDFGs.  In the examples, there was almost one-to-one 
mapping of the lines of Verlog codes with CDFG nodes and edges. 
 
• It must be noted that specifications and HDL codes are written by humans, which 
have errors, redundancies and may be inefficient. So, before processing the CDGFs 
using HLS tools we need to do some transformations to eliminate redundancies, 
inefficiencies etc. In this lecture, we will discuss some well-known transformations 
made in the CDFGs, which make them more amiable for HLS.  
  
•The transformations that can be performed on CDFGs can be classified into the 
following broad categories: 

Compiler based transformations  
Flow-graph based transformations  
Hardware library based transformations  

 



Compiler based transformations 
•In programming paradigm, “code optimization” is a very important step carried 
out by the compiler. The compiler improves the quality of a program in terms of 
runtime; this is called code optimization.  
 

•Program improvement may comprise change of instruction sequence, elimination 
of instructions, changes in instructions itself, while retaining the meaning of the 
original code; these changes are called code transformations.  
 

•Code optimization process has four components: (i) discovering opportunities to 
apply a transformation, (ii) proving that the transformation can be applied safely at 
those sites, (iii) ensuring that its application is profitable, and (iv) actually rewriting 
the code.  
 

•The same philosophy can also be applied to transform a CDFG that models 
hardware. In case of software, code optimization reduces runtime by 
eliminating/reducing unnecessary computations and in case of hardware, code 
optimization would reduce circuit modules thereby resulting in lower area, lower 
power and high frequency (i.e., less computation).  



Loop Invariant computations and code hoisting 
An expression evaluated inside a loop that uses operands whose values do not 
change from iteration to iteration is called a loop invariant computation. So the 
evaluation of a loop invariant expression can be moved out of the loop.  
 
If the loop’s body executes more than once, this should reduce the number of 
times the expression is evaluated. Further, the scheme also speeds up overall 
system clock because time required to evaluate a loop decreases (as hardware for 
computing the invariant code is removed out of the loop).  

module CDFG_tr_example (A,B,C,D,E); 

input [3:0] B,C,D,E; 

 reg [7:0] A,F; 

output [7:0] A,F; 

initial begin A = B * C + D; end 

while ( A > 0 ) begin 

A  = A − 1; 

F = E + B; 

           end 

endmodule 



Loop Invariant computations and code hoisting 
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Loop Invariant computations and code hoisting 

It may be noted that the computation “F = E + B;” is loop invariant, because the 
operands (E and B) used is the computation (to calculate F) do no change with 
iteration of the while loop. So we can bring the loop invariant computation “F = E + 
B;” before the loop begins; this is called code hosting. 



Loop Invariant computations and code hoisting 
The conditions required to determine loop invariant computations are as follows.  
 
Any computation (or expression) can be written as 
“assigned variable= operand1 OPERATOR operand2… OPERATOR operandn” 
 
In terms of a CDFG, in the computation, “assigned variable” and “operand1” 
through “operandn” correspond to storage nodes while “OPERATOR”s corresponds 
to operational nodes.  
  
A computation “assigned variable=(operand1,operand2,……,operandn)” that is 
inside a loop, is loop invariant if 
1. If all the operands are constants 
2. All the computations that assign values to the operands are located outside 

the loop 
3. All the computations that assign values to the operands are themselves loop 

invariant 
In the above example (Figure 1), “F = E + B;” is loop invariant because 
computations that assign values to the operands (F and B) are located outside the 
loop (taken from inputs).   



Constant folding 

An expression  
“assigned variable= operand1 OPERATOR operand2, … OPERATOR operandn”  
where all the operands are constants can be replaced with the pre-computed final 
result directly written to assigned variable.  
 
This principal of code optimization is called constant folding. Expressions, which 
involve computations over constants, always generate the same output 
irrespective of inputs. So the output of the   computation over constants can be 
pre-computed by looking statically at the code and that output value can be 
directly used.  So resources required for computing such expressions can be 
avoided.   



Constant folding 

Given below is a Verilog code having an expression where all the operands are 
constants.  It may be noted that the computation “A = 1 + 2;” always results in A 
having the value of 3, irrespective of inputs. Also the final value of A (i.e., 3) can be 
pre-computed by statically looking at the code. Finally, the expression “A = 1 + 2;” 
can be replaced with “A = 3;”, which saves an adder and a register.  

Const. 2Const. 1

+

write A
write A

Const. 2

module CDFG_trexample (A); 
reg [3:0] A; 
output [3:0] A;  
initial begin A = 1 + 2 ; end 
           end 
endmodule 



Redundant computation elimination 

If there are two expressions  
“assigned variable1=operand11 OPERATOR11,..,OPERATOR1(n-1) operand1n”   
and 
“assigned variable2=operand21 OPERATOR21,..,OPERATOR2(n-1) operand2n”   
where,  
operand11=operand21, OPERATOR12=OPERATOR22, …., operand1n= 
operand2n 
 
and the operands of the computations do not get modified in between 
evaluating “assigned variable1” and   “assigned variable2”, then we can 
perform the computation (i.e., “operand11 OPERATOR11 ……OPERATOR1n 
operand1n”) only once and assign “assigned variable2”= “assigned variable1”.  
 
This reduction is called redundant computation elimination. Obviously, 
redundant computation elimination reduces hardware requirements.   



Redundant computation elimination 
Verilog code below has an expression with redundant computation.  It may be 
noted that computations “C = A + B” and “D = A + B” will result in same value 
assigned to C and D. This is because operands and operators of the both the 
computations are same and operands A, B are not changed in between “C = A + 
B” and “D = A + B”.  
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+

write C

Read B Read A

+

write D

Read B
Read A

+

write C

Read B

write D

module CDFG_tr_example (A,B,C,D); 
input [3:0] A,B; 
 reg [3:0] C,D; 
output [3:0] C,D; 
initial begin  
C = A + B;  
D = A + B; 
           end 
endmodule 



Common Sub-computation elimination 

If there are two expressions  
“assigned variable1=operand11 OPERATOR11 ……OPERATOR1n operand1n”   
and 
“assigned variable2=operand21 OPERATOR21 ….,OPERATOR2n operand2n”   
where,  
operand1k=operand2k, OPERATOR1k=OPERATOR2k,…., operand1m= 
operand2m 
and , 
and the operands operand1k, operand1(k+1),….. operand2m do not get 
modified in between evaluating “assigned variable1” and   “assigned variable2”, 
then we can perform the sub-computation (i.e., “operand1k OPERATOR1k,…., 
OPERATOR1(k-1) operand2m”) only once for “assigned variable1” and use the 
value for “assigned variable2”.  
 
This reduction is called common sub-computation elimination. So, redundant 
computation elimination is a special case of common sub-computation 
elimination, where k=1 and m=n. Like redundant computation elimination, 
common sub-computation elimination also reduces hardware requirements.   
   



Common Sub-computation elimination 

There is a small change in common sub-computation elimination procedure 
compared to redundant computation elimination. In common sub-computation 
elimination procedure we need to have an extra temporary variable which 
stores the value of the common sub-computation for future use.   

module CDFG_tr_example (A,B,C,D,E,F); 
input [3:0] A,B,C,E; 
 reg [3:0] D,F; 
output [3:0] D,F; 
initial begin  
D = A + B + C;  
F = A + B + E; 
           end 
endmodule 
 

The Verilog code has a common sub-computation.  It may be noted that 
computations “D = A + B + C” and “F = A + B + E” have “A+B” as the common sub-
computation. This is because operands and operators of the both the sub-
computations are same and operands A, B are not changed in between “D = A + B + 
C” and “F = A + B + E 



Common Sub-computation elimination 

It may be noted that in the CDFG a new temporary variable T1 (represented by 
a storage node) is used to store the value of the common sub-computation and 
it is used for computing both “D = A + B + C” and “F = A + B + E”.   
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Dead-computation elimination 

Dead-computation elimination is one of the most simple transformation where 
a computation that has no effect on the output of a code is eliminated. In the 
CDFG the corresponding nodes are eliminated.   

It may be noted that computation “E = A + 1;” is dead because it has no effect on 
the output of the code.  
 

module CDFG_tr_example (A,B,C,D); 
input [3:0] B,C,D; 
 reg [3:0] A,E; 
output [3:0] A; 
initial begin  
A = B + C + D;  
E = A + 1; 
           end 
endmodule 
 



Dead-computation elimination 
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Flow-graph based transformations 

In flow-graph based transformations the major objecting is to change the graph 
so that parallelism of the design can be explored. In this section, we will see 
two types of flow-graph transformations  

•Tree height reduction based transformation 
•Control flow to data flow based transformation 
 
 
 
 

 



Tree height reduction based transformation  

Tree height reduction based transformation uses the commutative and the 
distributive properties of expressions to decrease the length. Let there be an 
expression  
“assigned variable1=operand11 OPERATOR11 ……OPERATOR1n operand1n”, 
which can be reduced in length by breaking it into sub-computations and 
storing their outputs in temporary variables.  
 
Finally, operations are done on the temporary variables to determine the value 
of “assigned variable1”.  
 
It may be noted that evaluation of a long expression involves more steps 
because operations are done in sequence   (on order of precedence of the 
operators). On the other hand, if we break the expression into sub-expressions 
then they can be evaluated in parallel, there by speeding up the computation.  
 
However, in the case of sequential evaluation, less hardware is required as the 
same circuit can be reused (in different steps), which is not possible in case of 
parallel evaluation.   



Tree height reduction based transformation  

Verilog code below having a computation “G = A+ B + C + D + E + F ;”.  
 
This computation requires 1 adder which can be used in a sequential fashion, 
first adding A with B, then C with the result, and so on.  

module CDFG_tr_example 
(A,B,C,D,E,F,G); 
input [3:0] A,B,C,D,E,F; 
 reg [3:0] G; 
output [3:0] G; 
initial begin  
G = A+ B + C + D + E + F;  
           end 
endmodule 
 



Tree height reduction based transformation  



Tree height reduction based transformation  



Tree height reduction based transformation  

From the CDFG it may be noted that sequential computation requires 5 steps.  
 
Now, if we have more adders, then some of the sub-computations can be done 
in parallel; A+B, C+D and E+F can be done concurrently and results stored in 
three temporary variables. Finally G can be determined by adding the 
temporary variables. This parallel computation takes 3 steps.  
 



CDFG:   Control flow based representation 
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CDFG:   Control flow based representation 
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Hardware library based transformations 

•Any operational node of a CDFG has a corresponding circuit capable of performing the 
operation e.g., adder to do addition, comparator for equality checking etc.   
 

•This mapping of an operational node with hardware circuit depends on circuits available for 
implementation in the design library. For example, checking equality of a variable A (6 bit 
number say) with zero can be done using a 6-bit comparator or simply feeding all the 6 bits 
of A to an OR gate (if A is 0 then all the bits are 0 thereby generating 0 from the OR gate).  
 

•The OR gate implementation consumes less hardware than the comparator, however, 
depends of availability of a 6 input OR gate in the library.  
 

•Hardware library based transformations are modifications in the operational nodes of a 
CDFG, depending on availability of corresponding circuits in the design library, for achieving 
efficient circuit implementation in terms of area, frequency, power etc.   
 



Hardware library based transformations 

•Computation is “A=B+1”, involves an operational node for addition; this can be 
implemented using an adder where one operand is B and the other is 1. 
 

• This computation can also be implemented using “INCR” circuit, which increments the 
input by 1. INCR block involves less resources than an adder.  
 

•So, if the library has INCR block then CDFG can be transformed by replacing the adder 
operational node with INCR operational node 
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Hardware library based transformations 

CDFG for computation “B=A*2”, involves an operational node for multiplication; this can be 
implemented using a multiplier where one operand is A and the other is 2.  
 
This computation can also be implemented using “left shift” circuit, which multiplies the 
input by 2.  
 
“Left shift” block is a shift register and therefore involves much less resources than a 
multiplier.  
 
So, if the library has “left shift” block then CDFG can be transformed by replacing the 
multiply operational node with “left shift” operational node  
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Question and Answer 

Question: After transformation of CDFGs and HDL codes, what step is 
required before processing them through HLS tools?  
 
After the CDFG / HDL code is transformed, it needs to be verified if their 
meaning (i.e., input-output behavior) remains same. In other words formal 
verification schemes are required to establish equivalence between the 
original and transformed CDFG/ HDL code. Although the techniques 
discussed above preserve equivalence, however, sometimes some parts of 
specifications may be missed resulting in behavioral difference.   For 
example, sometimes dead-computations are kept in a loop to increase delay 
(for synchronization). If dead-code elimination is applied without looking 
into the timing specification then behavioral difference in terms of timing 
mismatch may occur.   



Thank You 


