Advanced Topics in Optimization

Multi Objective
 Optimization

Introduction

Introduction

> In a real world problem it is very unlikely that we will meet the situation of single objective and multiple constraints more often than not
> There may be conflicting objectives along with the main objective like irrigation, hydropower, recreation etc.
> Generally multiple objectives or parameters have to be met before any acceptable solution can be obtained.
> Multi-criteria or multi-objective analysis are not designed to identify the best solution, but only to provide information on the tradeoffs.

Multi-objective Problem

- A multi-objective optimization problem with inequality (or equality) constraints may be formulated as

Find

- Here k denotes the number of objective functions to be minimized and m is the number of constraints.

Pareto Optimal Front

> A vector of the decision variable X is called Pareto Optimal (efficient) if there does not exist another Y such that $f_{i}(Y) \leq f_{i}(X)$ for $i=1,2, \ldots, k$ with $f_{j}(Y)<f_{i}(X)$ for at least one j
> In other words a solution vector \boldsymbol{X} is called optimal if there is no other vector Y that reduces some objective functions without causing simultaneous increase in at least one other objective function.
> For the problems of the type mentioned above the very notion of optimization changes and we try to find good trade-offs rather than a single solution as in GP.

Pareto Optimal Front...

> As shown in above figure there are three objectives i, j, k. Direction of their increment is also indicated.
> The surface (which is formed based on constraints) is efficient because no objective can be reduced without a simultaneous increase in at least one of the other objectives.

Utility Function Method (Weighting function method)

> In this method a utility function is defined for each of the objectives according to the relative importance of f_{i}.
> A simple utility function may be defined as $\alpha_{i} f_{i}(X)$ for ith objective where α_{i} is a scalar and represents the weight assigned to the corresponding objective.
> Total utility \boldsymbol{U} may be defined as weighted sum of objective functions as below

$$
\begin{equation*}
\sum_{i=1}^{k} \alpha_{i} f_{i}(X), \quad \alpha_{i}>0, \quad i=1,2, \ldots, k \tag{4}
\end{equation*}
$$

> Without any loss in generality it is customary to assume that $\sum_{i=1}^{k} \alpha_{i}=1$

Utility Function Method...

> Figure represents decision space for a given set of constraints and utility functions.
> Here $X=$ and two objectives are $f_{1}(X)$ and $f_{2}(X)$ with upper bound constraints* of type (3) as in figure 2.
> Pareto front is obtained by plotting the values of objective functions at common points (points of intersection) of constraints.

Utility Function Method...

> It should be noted that all the points on the constraint surface need not be efficient in Pareto sense as point A in the following figure.
> By looking at figure one may qualitatively infer that it follows Pareto Optimal definition.
> Now optimizing utility function means moving along efficient front and looking for the maximum value of utility function U defined by
 equation (4).

Bounded objective function method

> In this method we try to trap the optimal solution of the objective functions in a bounded or reduced feasible region.
> In formulating the problem one objective function is maximized while all other objectives are converted into constraints with lower bounds along with other constraints of the problem.
> Mathematically the problem may be formulated as

Maximize $f_{i}(X)$
Subject to

$$
\begin{array}{r}
g_{j}(X) \leq 0, \quad j=1,2, \ldots, m \tag{5}\\
f_{k}(X) \geq e_{k}
\end{array} \quad \forall \quad k \neq i
$$

here e_{k} represents lower bound on the kth objective.

Bounded objective function method...

> In this approach the feasible region \mathbf{S} represented by $g_{j}(X) \leq 0, j=$ $1,2, \ldots, m$ is further reduced to S^{\prime} by $(k-1)$ constraints $f_{k}(X) \geq$ e_{k}.
> e.g. let there are three objectives which are to be maximized in region of constraints S.
> Problem may be formulated
maximize\{objective-1\}
maximize\{objective-2\}
maximize\{objective-3\}
subject to

$$
\boldsymbol{X}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \in \mathrm{S}
$$

> In above problem S identifies the region given by $g_{j}(X) \leq 0, j=1,2$, ..., m.

Bounded objective function method...

> In bounded objective function method, same problem may be formulated as
maximize\{objective-1\} subject to

$$
\begin{gathered}
\{\text { objective- } 2\} \geq e 1 \\
\{\text { objective- } 3\} \geq e 2 \\
\boldsymbol{X} \in \mathbf{S}
\end{gathered}
$$

> As may be seen that one of the objectives (\{objective-1\}) is now the only objective and all other objectives are included as the constraints.

Bounded objective function method...

> In previous figure w^{1}, w^{2}, and w^{3} are gradients of the three objectives respectively.
> If $\{$ objective-1\} was to be maximized in region S without taking into consideration other objectives then solution point had been E.
> But due to lower bound on other objectives the feasible region reduces to S^{\prime} and solution point is P now.
> It may be seen that changing \boldsymbol{e}_{1} does not affect \{objective-1\} as much as changing \boldsymbol{e}_{2}. This fact gives rise to sensitivity analysis.

Exercise Problem

> A reservoir is planned both for gravity and lift irrigation through withdrawals from its storage. The total storage available for both the uses is limited to 5 units each year. It is decided to limit the gravity irrigation withdrawals in a year to 4 units. If $X 1$ is the allocation of water to gravity irrigation and $X 2$ is the allocation for lift irrigation, two objectives are planned to be maximized and are expressed as

Maximize $\quad Z_{1}(X)=3 x_{1}-2 x_{2} \quad$ and $\quad Z_{2}(X)=-x_{1}+4 x_{2}$ For above problem do the following
(i) Generate a Pareto Front of non-inferior (efficient) solutions by plotting Decision space and Objective space.
(ii) Formulate multi objective optimization model using weighting approach with w_{1} and w_{2} as weights for gravity and lift irrigation respectively.
(iii) Solve it, if (a) $w_{1}=1$ and $w_{2}=2$ (b) $w_{1}=2$ and $w_{2}=1$
(iv) Formulate the problem using constraint method
[Solution: (i) $\mathrm{x}_{1}=0, x_{2}=5$; (ii) $\mathrm{x}_{1}=4, x_{2}=0$ to 1]

Thank You

