Integer Programming

Examples

Objectives

> To illustrate Gomory Cutting Plane Method for solving
> All Integer linear Programming (AILP)
> Mixed Integer Linear Programming (MILP)

Example Problem (AILP)

\square

Consider the problem Maximize $Z=3 x_{1}+x_{2}$

$$
\text { subject to } \quad 2 x_{1}-x_{2} \leq 6
$$

$$
3 x_{1}+9 x_{2} \leq 45
$$

$$
x_{1}, x_{2} \geq 0
$$

$$
x_{1}, x_{2} \text { are integers }
$$

Standard form of the problem can be written as

$$
\begin{array}{cl}
\text { Maximize } & Z=3 x_{1}+x_{2} \\
\text { subject to } & 2 x_{1}-x_{2}+y_{1}=6 \\
& 3 x_{1}+9 x_{2}+y_{2}=45 \\
& x_{1}, x_{2}, y_{1}, y_{2} \geq 0 \\
& x_{1}, x_{2}, y_{1} \text { and } y_{2} \text { are integers }
\end{array}
$$

Example Problem (AILP) ...contd.

Solve the problem as an ordinary LP (neglecting integer requireme

The final tableau of LP problem is shown below

Iteration	Basis	Z	Variables				b,	$\frac{b_{r}}{c_{n}}$
			x_{1}	x_{2}	y_{1}	y_{2}		
3	Z	1	0	0	$\frac{8}{7}$	$\frac{5}{21}$	$\frac{123}{7}$	--
	x_{1}	0	1	0	$\frac{6}{14}$	$\frac{1}{21}$	$\frac{33}{7}$	--
	x_{2}	0	0	1	$-\frac{1}{7}$	$\frac{2}{21}$	$\frac{24}{7}$	--

Optimum value of Z is $\frac{123}{7}$ and the values of basic variables are
$x_{1}=\frac{33}{7}=45 / 7 ; \quad x_{2}=\frac{24}{7}=33 / 7$

Example Problem (AILP) ...contd.

Since the values of basic variables are not integers, generate Gomory constraint for x_{1} which has a high fractional value. For this, write the equation for x_{1} from the table above

$$
x_{1}=33 / 7-6 / 14^{y_{1}-1 / 21^{y_{2}}}
$$

Here, $\quad b_{1}=33 / 7, \bar{b}_{i}=4, \beta_{i}=5 / 7$,

$$
\begin{aligned}
& c_{11}=6 / 14, \bar{c}_{11}=0, \alpha_{11}=6 / 14, \\
& c_{12}=1 / 21, \bar{c}_{12}=0 \text { and } \alpha_{12}=1 / 21
\end{aligned}
$$

Thus, Gomory constraint can be written as

$$
\begin{aligned}
& s_{1}-\alpha_{11} y_{1}-\alpha_{12} y_{2}=-\beta_{1} \\
& \text { i.e., } s_{1}-6 / 144_{\text {D Nagesh Kumar, IISc }}^{y_{1}-1 / 21} y_{2}=-1 / 21
\end{aligned}
$$

Example Problem (AILP) ...contd.

Insert this constraint as a new row in the previous table

Iteration	Basis	Z	Variables						
			x_{1}	x_{2}	y_{1}	y_{2}	s_{1}	b_{r}	
	Z	1	0	0	$\frac{8}{7}$	$\frac{5}{21}$	0	$\frac{123}{7}$	
	x_{1}	0	1	0	$\frac{6}{14}$	$\frac{1}{21}$	0	$\frac{33}{7}$	
x_{2}	0	0	1	$-\frac{1}{7}$	$\frac{2}{21}$	0	$\frac{24}{7}$		
s_{1}	0	0	0	$-\frac{6}{14}$	$-\frac{1}{21}$	1	$-\frac{5}{7}$		

Solve this using Dual Simplex method

Example Problem (AILP) ...contd.

Iteration	Basis	Z	Variables						
			x_{1}	x_{2}	y_{1}	y_{2}	s_{1}	b_{r}	
	Z	1	0	0	0	$\frac{1}{9}$	$\frac{8}{3}$	$\frac{47}{3}$	
4	x_{1}	0	1	0	0	0	1	4	
	x_{2}	0	0	1	0	$\frac{1}{9}$	$-\frac{1}{3}$	$\frac{11}{3}$	

Optimum value of Z is $\frac{47}{3}$ and the values of basic variables are $x_{1}=4 ; x_{2}=\frac{11}{3} ; \quad$ and $y_{1}=-\frac{7}{3}$

Example Problem (AILP) ...contd.

Since the values of basic variable x_{2} from this table is not an integer, generate Gomory constraint for x_{2}. For this, write the equation for x_{2} from the table above

$$
x_{2}=11 / 3-1 / 9 y_{2}+1 / 3 s_{1}
$$

Thus, Gomory constraint can be written as

$$
s_{2}-1 / 9 y_{2}+1 / 3 s_{1}=-2 / 3
$$

Insert this constraint as a new row in the last table and solve using dual simplex method

Example Problem (AILP) ...contd.

Iteration	Basis	Z	Variables						b_{r}
			x_{1}	x_{2}	y_{1}	y_{2}	s_{1}	s_{2}	
5	Z	1	0	0	0	0	$\frac{8}{3}$	$\frac{1}{3}$	15
	x_{1}	0	1	0	0	0	1	0	4
	x_{2}	0	0	1	0	0	$-\frac{1}{3}$	$\frac{1}{3}$	3
	y_{1}	0	0	0	1	0	$-\frac{7}{3}$	$\frac{1}{3}$	1
	s_{2}	0	0	0	0	1	0	-3	6

Optimum value of Z is 15 and the values of basic variables are
$x_{1}=4, x_{2}=3, y_{1}=1, s_{2}=6$ and $y_{2}=s_{1}=0$.
These are satisfying the constraints and hence the desired solution.

Example Problem (MILP)

Consider the previous problem with integer constraint only on x_{2}

$$
\begin{array}{ll}
\text { Maximize } & Z=3 x_{1}+x_{2} \\
\text { subject to } & 2 x_{1}-x_{2} \leq 6 \\
& 3 x_{1}+9 x_{2} \leq 45 \\
& x_{1}, x_{2} \geq 0 ; x_{2} \text { is an integer }
\end{array}
$$

Standard form of the problem can be written as

$$
\begin{array}{ll}
\text { Maximize } & Z=3 x_{1}+x_{2} \\
\text { subject to } & 2 x_{1}-x_{2}+y_{1}=6 \\
& 3 x_{1}+9 x_{2}+y_{2}=45 \\
& x_{1}, x_{2}, y_{1}, y_{2} \geq 0 ; \quad x_{2} \text { should be an integer }
\end{array}
$$

Example Problem (MILP) ...contd.

Solve the problem as an ordinary LP (neglecting integer requirements)

The final tableau of LP problem is shown below

Iteration	Basis	Z	Variables				b,	$\frac{b_{r}}{c_{r s}}$
			x_{1}	x_{2}	y_{1}	y_{2}		
3	Z	1	0	0	$\frac{8}{7}$	$\frac{5}{21}$	$\frac{123}{7}$	--
	x_{1}	0	1	0	$\frac{6}{14}$	$\frac{1}{21}$	$\frac{33}{7}$	--
	x_{2}	0	0	1	$-\frac{1}{7}$	$\frac{2}{21}$	$\frac{24}{7}$	--

Optimum value of Z is $\frac{123}{}$ and the values of basic variables are
$x_{1}=\frac{33}{7}=45 / 7 ; \quad x_{2}=\frac{24}{7}=33 / 7$

Example Problem (MILP) ...contd.

Since the value of x_{2} is not an integer, generate Gomory constraint for x_{2}. For this, write the equation for x_{2} from the table above

$$
x_{2}=24 / 7+1 / 7 y_{2}-2 / 21 y_{1}
$$

Here, $\quad b_{2}=24 / 7, c_{21}=1 / 7, c_{22}=-2 / 21$
Thus, the value of $\bar{b}_{2}=3$ and $\beta_{2}=3 / 7$
Since, $c_{21}=\bar{c}_{21}^{+}+\bar{c}_{21}^{-}$and $c_{22}=\bar{c}_{22}^{+}+\bar{c}_{22}^{-}$,

$$
\begin{array}{ll}
\bar{c}_{21}^{+}=0, \bar{c}_{21}^{-}=-1 / 7 & \text { since } \bar{c}_{21} \text { is negative } \\
\bar{c}_{22}^{+}=2 / 21, \bar{c}_{22}^{-}=0 & \text { since } \bar{c}_{22}
\end{array} \text { is positive }
$$

Example Problem (MILP) ...contd.

Thus, Gomory constraint can be written as

$$
\begin{aligned}
& s_{i}-\sum_{j=1}^{m} \bar{c}_{i j}^{+} y_{j}-\frac{\beta_{i}}{\beta_{i}-1} \sum_{j=1}^{m} \bar{c}_{i j}^{-} y_{j}=-\beta_{i} \\
& \text { i.e., } s_{2}-2 / 21^{y_{2}-3 / 28} y_{1}=-3 / 7
\end{aligned}
$$

Insert this constraint as a new row to the previous table and solve it using Dual Simplex method

Example Problem (MILP) ...contd.

Iteration	Basis	Z	Variables					
		x_{1}	x_{2}	y_{1}	y_{2}	s_{2}	b_{r}	
	Z	1	0	0	$\frac{7}{8}$	0	1	$\frac{33}{2}$
4	x_{1}	0	1	0	$\frac{3}{8}$	0	1	$\frac{9}{2}$
	x_{2}	0	0	1	$-\frac{1}{4}$	0	1	3
	y_{2}	0	0	0	$\frac{9}{8}$	1	$-\frac{21}{2}$	$\frac{9}{2}$

Optimum value of Z is $\frac{33}{2}$ and the values of basic variables are $x_{1}=4.5 ; x_{2}=3 ; y_{2}=4.5$ and that of non-basic variables are zero. This solution is satisfying all the constraints an hence the desired.

Thank You

