

## **Integer Programming**

## **Examples**

D Nagesh Kumar, IISc



# **Objectives**

- To illustrate Gomory Cutting Plane Method for solving
  - > All Integer linear Programming (AILP)
  - Mixed Integer Linear Programming (MILP)



## **Example Problem (AILP)**

Consider the problem Maximize  $Z = 3x_1 + x_2$ subject to  $2x_1 - x_2 \le 6$  $3x_1 + 9x_2 \le 45$  $x_1, x_2 \ge 0$  $x_1, x_2$  are integers Standard form of the problem can be written as

> Maximize  $Z = 3x_1 + x_2$ subject to  $2x_1 - x_2 + y_1 = 6$  $3x_1 + 9x_2 + y_2 = 45$  $x_1, x_2, y_1, y_2 \ge 0$  $x_1, x_2, y_1$  and  $y_2$  are integers

D Nagesh Kumar, IISc



## Example Problem (AILP) ....contd.

Solve the problem as an ordinary LP (neglecting integer requirements) The final tableau of LP problem is shown below

| Thermotics | Derie          | 7 |                | Vari | ables          |                | h               | Ъ,      |
|------------|----------------|---|----------------|------|----------------|----------------|-----------------|---------|
| Iteration  | Basis          | Z | x <sub>1</sub> | x2   | У1             | ¥2             | - Ъ             | C , , , |
|            | Z              | 1 | 0              | 0    | 8<br>7         | $\frac{5}{21}$ | $\frac{123}{7}$ |         |
| 3          | x <sub>1</sub> | 0 | 1              | 0    | $\frac{6}{14}$ | $\frac{1}{21}$ | $\frac{33}{7}$  |         |
|            | x2             | 0 | 0              | 1    | $-\frac{1}{7}$ | $\frac{2}{21}$ | $\frac{24}{7}$  |         |

Optimum value of Z is  $\frac{123}{7}$  and the values of basic variables are  $x_1 = \frac{33}{7} = 4\frac{5}{7}$ ;  $x_2 = \frac{24}{7} = 3\frac{3}{7}$ 



#### Example Problem (AILP) ...contd.

Since the values of basic variables are not integers, generate Gomory constraint for  $x_1$  which has a high fractional value. For this, write the equation for  $x_1$  from the table above

$$x_{1} = \frac{33}{7} - \frac{6}{14} y_{1} - \frac{1}{21} y_{2}$$
  
Here,  $b_{1} = \frac{33}{7}, \bar{b}_{i} = 4, \beta_{i} = \frac{5}{7},$   
 $c_{11} = \frac{6}{14}, \bar{c}_{11} = 0, \alpha_{11} = \frac{6}{14},$   
 $c_{12} = \frac{1}{21}, \bar{c}_{12} = 0 \text{ and } \alpha_{12} = \frac{1}{21}$   
Thus, Gomory constraint can be written as  
 $s_{1} - \alpha_{11} y_{1} - \alpha_{12} y_{2} = -\beta_{1}$   
*i.e.*,  $s_{1} - \frac{6}{14} y_{1} - \frac{1}{21} y_{2} = -\frac{1}{21}$   
D Nagesh Kumar, IISc



#### Example Problem (AILP) ....contd.

#### Insert this constraint as a new row in the previous table

| Iteration | Basis                 | Z |                       | b,    |                 |                 |                       |                 |
|-----------|-----------------------|---|-----------------------|-------|-----------------|-----------------|-----------------------|-----------------|
| neration  | Dasis                 | 2 | <i>x</i> <sub>1</sub> | $x_2$ | $\mathcal{Y}_1$ | $y_2$           | <i>s</i> <sub>1</sub> |                 |
|           | Ζ                     | 1 | 0                     | 0     | $\frac{8}{7}$   | $\frac{5}{21}$  | 0                     | $\frac{123}{7}$ |
|           | <i>x</i> <sub>1</sub> | 0 | 1                     | 0     | $\frac{6}{14}$  | $\frac{1}{21}$  | 0                     | $\frac{33}{7}$  |
|           | <i>x</i> <sub>2</sub> | 0 | 0                     | 1     | $-\frac{1}{7}$  | $\frac{2}{21}$  | 0                     | $\frac{24}{7}$  |
|           | <i>s</i> <sub>1</sub> | 0 | 0                     | 0     | $-\frac{6}{14}$ | $-\frac{1}{21}$ | 1                     | $-\frac{5}{7}$  |

#### Solve this using Dual Simplex method

D Nagesh Kumar, IISc



#### Example Problem (AILP) ...contd.

| Iteration | Basis                 | Z |                       | Variables |                 |               |                |                |  |  |  |
|-----------|-----------------------|---|-----------------------|-----------|-----------------|---------------|----------------|----------------|--|--|--|
| neration  | Dasis                 | L | <i>x</i> <sub>1</sub> | $x_2$     | $\mathcal{Y}_1$ | $y_2$         | $s_1$          |                |  |  |  |
|           | Ζ                     | 1 | 0                     | 0         | 0               | $\frac{1}{9}$ | <u>8</u><br>3  | $\frac{47}{3}$ |  |  |  |
| -         | $x_1$                 | 0 | 1                     | 0         | 0               | 0             | 1              | 4              |  |  |  |
| 4         | <i>x</i> <sub>2</sub> | 0 | 0                     | 1         | 0               | $\frac{1}{9}$ | $-\frac{1}{3}$ | $\frac{11}{3}$ |  |  |  |
|           | <i>y</i> <sub>1</sub> | 0 | 0                     | 0         | 1               | $\frac{1}{9}$ | $-\frac{7}{3}$ | $\frac{5}{3}$  |  |  |  |

Optimum value of Z is  $\frac{47}{3}$  and the values of basic variables are  $x_1 = 4; x_2 = \frac{11}{3}; \text{ and } y_1 = -\frac{7}{3}$ D Nagesh Kumar, IISc Optimization Methods: M7L3



#### Example Problem (AILP) ....contd.

Since the values of basic variable  $x_2$  from this table is not an integer, generate Gomory constraint for  $x_2$ . For this, write the equation for  $x_2$  from the table above

$$x_2 = \frac{11}{3} - \frac{1}{9}y_2 + \frac{1}{3}s_1$$

Thus, Gomory constraint can be written as

$$s_2 - \frac{1}{9}y_2 + \frac{1}{3}s_1 = -\frac{2}{3}$$

Insert this constraint as a new row in the last table and solve using dual simplex method



#### Example Problem (AILP) ... contd.

| Iteration | Pasis                 | Z |                       | b,                    |       |       |                       |                       |    |
|-----------|-----------------------|---|-----------------------|-----------------------|-------|-------|-----------------------|-----------------------|----|
| Iteration | Dasis                 | Z | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | $y_1$ | $y_2$ | <i>s</i> <sub>1</sub> | <i>s</i> <sub>2</sub> |    |
|           | Ζ                     | 1 | 0                     | 0                     | 0     | 0     | $\frac{8}{3}$         | $\frac{1}{3}$         | 15 |
|           | <i>x</i> <sub>1</sub> | 0 | 1                     | 0                     | 0     | 0     | 1                     | 0                     | 4  |
| 5         | <i>x</i> <sub>2</sub> | 0 | 0                     | 1                     | 0     | 0     | $-\frac{1}{3}$        | $\frac{1}{3}$         | 3  |
|           | <i>y</i> <sub>1</sub> | 0 | 0                     | 0                     | 1     | 0     | $-\frac{7}{3}$        | $\frac{1}{3}$         | 1  |
|           | <i>s</i> <sub>2</sub> | 0 | 0                     | 0                     | 0     | 1     | 0                     | -3                    | 6  |

Optimum value of Z is 15 and the values of basic variables are

$$x_1 = 4$$
,  $x_2 = 3$ ,  $y_1 = 1$ ,  $s_2 = 6$  and  $y_2 = s_1 = 0$ .

These are satisfying the constraints and hence the desired solution.



# **Example Problem (MILP)**

Consider the previous problem with integer constraint only on  $x_2$ 

| Maximize            | $Z = 3x_1 + x_2$                                        |
|---------------------|---------------------------------------------------------|
| subject to          | $2x_1 - x_2 \le 6$                                      |
|                     | $3x_1 + 9x_2 \le 45$                                    |
|                     | $x_1, x_2 \ge 0$ ; $x_2$ is an integer                  |
| Standard form of th | e problem can be written as                             |
| Maximize            | $Z = 3x_1 + x_2$                                        |
| subject to          | $2x_1 - x_2 + y_1 = 6$                                  |
|                     | $3x_1 + 9x_2 + y_2 = 45$                                |
|                     | $x_1, x_2, y_1, y_2 \ge 0$ ; $x_2$ should be an integer |



#### Example Problem (MILP) ...contd.

Solve the problem as an ordinary LP (neglecting integer requirements) The final tableau of LP problem is shown below

| Ta a una di a un | Desia          | 7 |                | Vari | ables           |                | h                | Ъ,                |
|------------------|----------------|---|----------------|------|-----------------|----------------|------------------|-------------------|
| Iteration        | Basis          | Z | x <sub>1</sub> | x2   | $\mathcal{Y}_1$ | ¥2             | . b <sub>,</sub> | $\frac{b_r}{c_m}$ |
|                  | Z              | 1 | 0              | 0    | 8<br>7          | $\frac{5}{21}$ | $\frac{123}{7}$  |                   |
| 3                | x <sub>1</sub> | 0 | 1              | 0    | $\frac{6}{14}$  | $\frac{1}{21}$ | $\frac{33}{7}$   |                   |
|                  | x2             | 0 | 0              | 1    | $-\frac{1}{7}$  | $\frac{2}{21}$ | $\frac{24}{7}$   |                   |

Optimum value of Z is  $\frac{123}{7}$  and the values of basic variables are  $x_1 = \frac{33}{7} = 4\frac{5}{7}$ ;  $x_2 = \frac{24}{7} = 3\frac{3}{7}$ 



#### Example Problem (MILP) ...contd.

Since the value of  $x_2$  is not an integer, generate Gomory constraint for  $x_2$ . For this, write the equation for  $x_2$  from the table above

$$x_2 = \frac{24}{7} + \frac{1}{7}y_2 - \frac{2}{21}y_1$$

Here, 
$$b_2 = \frac{24}{7}, c_{21} = \frac{1}{7}, c_{22} = -\frac{2}{21}$$

Thus, the value of  $\overline{b}_2 = 3$  and  $\beta_2 = \frac{3}{7}$ Since,  $c_{21} = \overline{c}_{21}^+ + \overline{c}_{21}^-$  and  $c_{22} = \overline{c}_{22}^+ + \overline{c}_{22}^-$ ,  $\overline{c}_{21}^+ = 0, \overline{c}_{21}^- = -\frac{1}{7}$  since  $\overline{c}_{21}$  is negative  $\overline{c}_{22}^+ = \frac{2}{21}, \overline{c}_{22}^- = 0$  since  $\overline{c}_{22}$  is positive



#### Example Problem (MILP) ...contd.

Thus, Gomory constraint can be written as

$$s_i - \sum_{j=1}^m \overline{c}_{ij}^+ y_j - \frac{\beta_i}{\beta_i - 1} \sum_{j=1}^m \overline{c}_{ij}^- y_j = -\beta_i$$

*i.e.*, 
$$s_2 - \frac{2}{21}y_2 - \frac{3}{28}y_1 = -\frac{3}{7}$$

Insert this constraint as a new row to the previous table and solve it using Dual Simplex method



#### Example Problem (MILP) ....contd.

|  | Iteration | Basis                 | Z |                       |       | Variable        | es              |                 | b <sub>r</sub> |
|--|-----------|-----------------------|---|-----------------------|-------|-----------------|-----------------|-----------------|----------------|
|  | Inclution | Dusis                 | 2 | <i>x</i> <sub>1</sub> | $x_2$ | $\mathcal{Y}_1$ | $\mathcal{Y}_2$ | s <sub>2</sub>  |                |
|  |           | Ζ                     | 1 | 0                     | 0     | $\frac{7}{8}$   | 0               | 1               | $\frac{33}{2}$ |
|  | 4         | <i>x</i> <sub>1</sub> | 0 | 1                     | 0     | $\frac{3}{8}$   | 0               | 1               | $\frac{9}{2}$  |
|  |           | <i>x</i> <sub>2</sub> | 0 | 0                     | 1     | $-\frac{1}{4}$  | 0               | 1               | 3              |
|  |           | $\mathcal{Y}_2$       | 0 | 0                     | 0     | <u>9</u><br>8   | 1               | $-\frac{21}{2}$ | $\frac{9}{2}$  |

Optimum value of Z is  $\frac{33}{2}$  and the values of basic variables are  $x_1 = 4.5$ ;  $x_2 = 3$ ;  $y_2 = 4.5^2$  and that of non-basic variables are zero. This solution is satisfying all the constraints an hence the desired. D Nagesh Kumar, IISc Optimization Methods: M7L3



# Thank You

D Nagesh Kumar, IISc