Integer Programming

Mixed Integer Linear Programming

Objectives

> To discuss about the Mixed Integer Programming (MIP)
> To discuss about the Mixed Integer Linear Programming (MILP)
> To discuss the generation of Gomory constraints

- To describe the procedure for solving MILP

Introduction

Mixed Integer Programming:

> Some of the decision variables are real valued and some are integer valued

Mixed Integer Linear Programming:

> MIP with linear objective function and constraints The procedure for solving an MIP is similar to that of All Integer LP with some exceptions in the generation of Gomory constraints.

Generation of Gomory Constraints

> Consider the final tableau of an LP problem consisting of n basic variables (original variables) and m non basic variables (slack variables)
> Let x_{i} be the basic variable which has integer restrictions

Generation of Gomory Constraints ...contd.

> From the $i^{\text {th }}$ equation,

$$
x_{i}=b_{i}-\sum_{j=1}^{m} c_{i j} y_{j}
$$

> Expressing b_{j} as an integer part plus a fractional part,

$$
b_{i}=\bar{b}_{i}+\beta_{i}
$$

> Expressing $c_{i j}$ as $c_{i j}=\bar{c}_{i j}^{+}+\bar{c}_{i j}^{-} \quad$ where

$$
\begin{aligned}
& \bar{c}_{i j}^{+}=\left\{\begin{array}{l}
c_{i j} \text { if } c_{i j} \geq 0 \\
0 \text { if } c_{i j}<0
\end{array}\right. \\
& \bar{c}_{i j}^{-}=\left\{\begin{array}{lll}
0 & \text { if } c_{i j} \geq 0 \\
c_{i j} & \text { if } & c_{i j}<0
\end{array}\right.
\end{aligned}
$$

Generation of Gomory Constraints ...contd.

> Thus,

$$
\sum_{j=1}^{m}\left(\bar{c}_{i j}^{+}+\bar{c}_{i j}^{-}\right) y_{j}=\beta_{i}+\left(\bar{b}_{i}-x_{i}\right)
$$

$>$ Since x_{i} and \bar{b}_{i} are restricted to take integer values and also $0<\beta_{i}<1$ the value of $\beta_{i}+\left(\bar{b}_{i}-x_{i}\right)$ can be ≥ 0 or <0
> Thus we have to consider two cases.

Generation of Gomory Constraints ...contd.

Case I: $\quad \beta_{i}+\left(\bar{b}_{i}-x_{i}\right) \geq 0$
> For x_{i} to be an integer,

$$
\beta_{i}+\left(\bar{b}_{i}-x_{i}\right)=\beta_{i} \text { or } \beta_{i}+1 \text { or } \beta_{i}+2, \ldots
$$

> Therefore,

$$
\sum_{j=1}^{m}\left(\bar{c}_{i j}^{+}+\bar{c}_{i j}^{-}\right) y_{j} \geq \beta_{i}
$$

> Finally it takes the form,

$$
\sum_{j=1}^{m} \bar{c}_{i j}^{+} y_{j} \geq \beta_{i}
$$

Generation of Gomory Constraints ...contd.

Case II: $\beta_{i}+\left(\bar{b}_{i}-x_{i}\right)<0$
> For x_{i} to be an integer,

$$
\beta_{i}+\left(\bar{b}_{i}-x_{i}\right)=-1+\beta_{i} \text { or }-2+\beta_{i} \text { or }-3+\beta_{i}, \ldots
$$

> Therefore,

$$
\sum_{j=1}^{m}\left(\bar{c}_{i j}^{+}+\bar{c}_{i j}^{-}\right) y_{j} \leq \beta_{i}-1
$$

> Finally it takes the form,

$$
\sum_{j=1}^{m} \bar{c}_{i j}^{-} y_{j} \leq \beta_{i}-1
$$

Generation of Gomory Constraints ...contd.

> Dividing this inequality by $\left(\beta_{i}-1\right)$ and multiplying with β_{i}, we have

$$
\frac{\beta_{i}}{\beta_{i}-1} \sum_{j=1}^{m} \bar{c}_{i j}^{-} y_{j} \geq \beta_{i}
$$

> Now considering both cases I and II, the final form of the Gomory constraint after adding one slack variable s_{i} is,

$$
s_{i}-\sum_{j=1}^{m} \bar{c}_{i j}^{+} y_{j}-\frac{\beta_{i}}{\beta_{i}-1} \sum_{j=1}^{m} \bar{c}_{i j}^{-} y_{j}=-\beta_{i}
$$

Procedure for solving Mixed-Integer LP

> Solve the problem as an ordinary LP problem neglecting the integrality constraints.
> Generate Gomory constraint for the fractional valued variable that has integer restrictions.
> Insert a new row with the coefficients of this constraint, to the final tableau of the ordinary LP problem.
> Solve this by applying the dual simplex method
$>\quad$ The process is continued for all variables that have integrality constraints

Thank You

