Integer Programming

All Integer Linear Programming

Objectives

> To discuss the need for Integer Programming (IP)
> To discuss about the types of IP
> To explain Integer Linear Programming (ILP)
> To discuss the Gomory Cutting Plane method for solving ILP
> Graphically
> Theoretically

Introduction

In many practical problems, the values of decision variables are constrained to take only integer values
> For example, in minimization of labor needed in a project, the number of labourers should be an integer value
By rounding off a real value to an integer value have several fundamental problems like
> Rounded solutions may not be feasible
> Even if the solutions are feasible, the objective function given by the rounded off solutions may not be the optimal one
> Finally, even if the above two conditions are satisfied, checking all the rounded-off solutions is computationally expensive (2^{n} possible solutions to be considered for an n variable problem)
This demands the need for Integer Programming

Types of IP

* All Integer Programming:
* All the variables are restricted to take only integer values
* Discrete Programming:
* All the variables are restricted to take only discrete values
* Mixed Integer or Discrete Programming:
* Only some variables are restricted to take integer or discrete values
* Zero - One Programming:
* Variables are constrained to take values of either zero or 1

Integer Linear Programming (ILP)

> An extension of linear programming (LP)
> Additional constraint: Variables should be integer valued Standard form of an ILP:

$$
\begin{array}{cc}
\max & c^{T} X \\
\text { subject to } & A X \leq b \\
& X \geq 0 \\
& X \text { must be integer valued }
\end{array}
$$

> Associated linear program, dropping the integer restrictions, is called linear relaxation ($L R$)

Checks for ILP:

> Minimization: Optimal objective value for LR is less than or equal to the optimal objective for ILP
> Maximization: Optimal objective value for LR is greater than or equal to that of ILP
> If LR is infeasible, then ILP is also infeasible
> If LR is optimized by integer variables, then that solution is feasible and optimal for IP

All - Integer Programming

- Most popular method: Gomory's Cutting Plane method
- Original feasible region is reduced to a new feasible region by including additional constraints such that all vertices of the new feasible region are now integer points
- Thus, an extreme point of the new feasible region becomes an optimal solution after accounting for the integer constraints
- Consider the optimization problem

$$
\begin{array}{ll}
\text { Maximize } & Z=3 x_{1}+x_{2} \\
\text { subjectto } & 2 x_{1}-x_{2} \leq 6 \\
& 3 x_{1}+9 x_{2} \leq 45 \\
& x_{1}, x_{2} \geq 0 ; \quad x_{1} \text { and } x_{2} \text { are integers }
\end{array}
$$

Graphical Illustration

Graphical solution for the linear approximation (neglecting the integer requirements) is shown in figure

Graphical Illustration ...contd.

> Optimal value of $Z=174 / 7$ and the solution is $x_{1}=45 / 7, x_{2}=33 / 7$
> Red dots in the figure show the feasible solutions accounting for the integer requirements
> These points are called integer lattice points
> Now to reduce the original feasible region to a new feasible region (considering x_{1} and x_{2} as integers) is done by including additional constraints
> Graphical solution for the IP is shown in figure below
> Two additional constraints (MN and OP) are included so that the original feasible region $A B C D$ is reduced to a new feasible region AEFGCD

Graphical Illustration ...contd.

Optimal value of ILP is $Z=15$ and the solution is $x_{1}=4 x_{2}=3$

Generation of Gomory Constraints

> Consider the final tableau of an LP problem consisting of n basic variables (original variables) and m non basic variables (slack variables)
> The basic variables are represented as x_{i} ($\mathrm{i}=1,2, \ldots, \mathrm{n}$) and the non basic variables are represented as y_{j} ($\mathrm{j}=1,2, \ldots, \mathrm{~m}$).

Basis	Z	Variables												b,
		x_{1}	x_{2}	..	x_{i}	...	x_{n}	y_{1}	y_{2}	\cdots	y_{j}	...	y_{m}	
Z	1	0	0		0		0	c_{1}	c_{2}		c_{j}		$\boldsymbol{c}_{\text {m }}$	b
x_{1}	0	1	0		0		0	$c_{\text {II }}$	c_{12}		$c_{t j}$		$c_{\text {Im }}$	b_{1}
x_{2}	0	0	1		0		0	$c_{2 I}$	c_{22}		$\boldsymbol{c}_{3,}$		$c_{2 m}$	b_{2}
:														
x_{i}	0	0	0		1		0	c_{31}	c_{32}		c_{3}		$\boldsymbol{c}_{3 m}$	b_{i}
:														
x_{n}	0	0	0		0		1	c_{41}	c_{42}		$c_{4 j}$		$c_{\text {dm }}$	b_{n}

Generation of Gomory Constraints ...contd.

> Pick the variable x_{i} having the highest fractional value. In case of a tie, choose arbitrarily any variable as X_{i}
> From the $\mathrm{i}^{\text {th }}$ equation,

$$
x_{i}=b_{i}-\sum_{j=1}^{m} c_{i j} y_{j}
$$

> Expressing both b_{j} and $c_{i j}$ as an integer part plus a fractional part,

$$
\begin{aligned}
& b_{i}=\bar{b}_{i}+\beta_{i} \\
& c_{i j}=\bar{c}_{i j}+\alpha_{i j}
\end{aligned}
$$

Generation of Gomory Constraints ...contd.

$>\bar{b}_{i}, \bar{c}_{i j}$ denote the integer part and
$>\beta_{i}, \alpha_{i j}$ denote the fractional part for which $\left(0<\beta_{i}<1\right)$ and $\left(0 \leq \alpha_{i j}<1\right)$
> Thus, the equation becomes,

$$
\beta_{i}-\sum_{j=1}^{m} \alpha_{i j} y_{j}=x_{i}-\overline{b_{i}}-\sum_{j=1}^{m} \bar{c}_{i j} y_{j}
$$

Generation of Gomory Constraints ...contd.

> Considering the integer reuirements, the RHS of the equation also should be an integer.
> Thus, we have $\left(\beta_{i}-\sum_{j=1}^{m} \alpha_{i j} y_{j}\right) \leq \beta_{i}<1$
> Hence, the constraint can be expressed as,

$$
\beta_{i}-\sum_{j=1}^{m} \alpha_{i j} y_{j} \leq 0
$$

> After introducing a slack variable s_{i}, the final Gomory constraint can be written as, $s_{i}-\sum_{j=1}^{m} \alpha_{i j} y_{j}=-\beta_{i}$

Procedure for solving All-Integer LP

> Solve the problem as an ordinary LP problem neglecting the integer requirements.
> If the optimum values of the variables are not integers, then choose the basic variable which has the largest fractional value, and generate Gomory constraint for that variable.
> Insert a new row with the coefficients of this constraint, to the final tableau of the ordinary LP problem.
> Solve this by applying the dual simplex method

Procedure for solving All-Integer LP ...contd.

> Check whether the new solution is all-integer or not.
> If all values are not integers, then a new Gomory constraint is developed for the non-integer valued variable from the new simplex tableau and the dual simplex method is applied again.
> The process is continued until
> An optimal integer solution is obtained or
> It shows that the problem has no feasible integer solution.

Thank You

