## Dynamic Programming Applications

## Capacity Expansion

## Objectives

> To discuss the Capacity Expansion Problem
> To explain and develop recursive equations for both backward approach and forward approach
> To demonstrate the method using a numerical example

## Capacity Expansion Problem

* Consider a municipality planning to increase the capacity of its infrastructure (ex: water treatment plant, water supply system etc) in future
* Sequential increments are to be made in specified time intervals
* The capacity at the beginning of time period $t$ be $S_{t}$
* Required capacity at the end of that time period be $K_{t}$
* Thus, $x_{t}$ be the added capacity in each time period
* Cost of expansion at each time period can be expressed as a function of $S_{t}$ and $x_{t}$, i.e. $C_{t}\left(S_{t}, x_{t}\right)$


## Capacity Expansion Problem ... contd.

* Optimization problem: To find the time sequence of capacity expansions which minimizes the present value of the total future costs
+ Objective function:
Minimize $\sum_{t=1}^{T} C_{t}\left(S_{t}, x_{t}\right)$
$4 C_{t}\left(S_{t}, x_{t}\right)$ : Present value of the cost of adding an additional capacity $X_{t}$ in the time period $t$
* Constraints: Capacity demand requirements at each time period
+ $S_{t}$ : Initial capacity


## Capacity Expansion Problem ... contd.

* Each period's final capacity or next period's initial capacity should be equal to the sum of initial capacity and the added capacity

$$
S_{t+1}=S_{t}+x_{t} \quad \text { for } t=1,2, \ldots, T
$$

* At the end of each time period, the required capacity is fixed

$$
S_{t+1} \geq K_{t} \quad \text { for } t=1,2, \ldots, T
$$

* Constraints to the amount of capacity added in each time period i.e. $X_{t}$ can take only some feasible values.

$$
x_{t} \in \Omega_{t}
$$

## Capacity Expansion Problem: Forward Recursion

* Stages of the model: Time periods in which capacity expansion to be made
* State: Capacity at the end of each time period $t, S_{t+1}$
+ $S_{1}$ : Present capacity before expansion
$+f_{t}\left(S_{t+1}\right)$ : Minimum present value of total cost of capacity expansion from present to the time $t$


D Nagesh Kumar, IISc
Optimization Methods: M6L5

## Capacity Expansion Problem: Forward Recursion ...contd.

* For the first stage, objective function

$$
\begin{aligned}
f_{1}\left(S_{2}\right) & =\min C_{1}\left(S_{1}, x_{1}\right) \\
& =\min C_{1}\left(S_{1}, S_{2}-S_{1}\right)
\end{aligned}
$$

$*$ Value of $S_{2}$ can be between $K_{1}$ and $K_{T}$

* where $K_{1}$ is the required capacity at the end of time period 1 and $K_{T}$ is the final capacity required
* Now, for the first two stages together,

$$
\begin{aligned}
f_{2}\left(S_{3}\right) & =\min _{\substack{x_{2} \\
x_{2} \in \Omega_{2}}}\left[C_{2}\left(S_{2}, x_{2}\right)+f_{1}\left(S_{2}\right)\right] \\
& =\min _{\substack{x_{2} \\
x_{2} \in \Omega_{2}}}\left[C_{2}\left(S_{3}-x_{2}, x_{2}\right)+f_{1}\left(S_{3}-x_{2}\right)\right]
\end{aligned}
$$

$*$ Value of $S_{3}$ can be between $K_{2}$ and $K_{T}$

## Capacity Expansion Problem: Forward Recursion ...contd.

* In general, for a time period $t$,

$$
f_{t}\left(S_{t+1}\right)=\min _{\substack{x_{t} \\ x_{t} \in \Omega_{t}}}\left[C_{t}\left(S_{t+1}-x_{t}, x_{t}\right)+f_{t-1}\left(S_{t+1}-x_{t}\right)\right]
$$

* Subjected to

$$
K_{t} \leq S_{t+1} \leq K_{T}
$$

* For the last stage, i.e. $t=T, f_{T}\left(S_{T+1}\right)$ need to be solved only for

$$
S_{T+1}=K_{T}
$$

## Capacity Expansion Problem: Backward Recursion

* Stages of the model: Time periods in which capacity expansion to be made
* State: Capacity at the beginning of each time period $t, S_{t}$
+ $f_{t}\left(S_{t}\right)$ : Minimum present value of total cost of capacity expansion in periods $t$ through $T$
* For the last period $T$, the final capacity should reach $K_{T}$ after doing the capacity expansions

$$
f_{T}\left(S_{T}\right)=\min _{\substack{x_{C} \\ x_{T} \in S_{T}}}\left[C_{T}\left(S_{T}, x_{T}\right)\right]
$$

* Value of $S_{T}$ can be between $K_{T-1}$ and $K_{T}$


## Capacity Expansion Problem: Backward Recursion ...contd.

* In general, for a time period $t$,

$$
f_{t}\left(S_{t}\right)=\min _{\substack{x_{2} \\ x_{t} \in S_{t}}}\left[C_{t}\left(S_{t}, x_{t}\right)+f_{t+1}\left(S_{t}+x_{t}\right)\right]
$$

* Solved for all values of $S_{t}$ ranging from $K_{t-1}$ and $K_{t}$
* For period 1, the above equation must be solved only for $S_{t}=S_{1}$


## Capacity Expansion: Numerical Example

* Consider a five stage capacity expansion problem
* The minimum capacity to be achieved at the end of each time period is given in the table below

| $t$ | $D_{t}$ |
| :---: | :---: |
| 1 | 5 |
| 2 | 10 |
| 3 | 20 |
| 4 | 20 |
| 5 | 25 |

## Capacity Expansion: Numerical Example ...contd.

Expansion costs for each combination of expansion


D Nagesh Kumar, IISc
Optimization Methods: M6L5

## Numerical Example: Forward Recursion

> Consider the first stage, $\mathrm{t}=1$
> The final capacity for stage $1, S_{2}$ can take values between $D_{1}$ to $\mathrm{D}_{5}$
> Let the state variable can take discrete values of $5,10,15,20$ and 25
> Objective function for $1^{\text {st }}$ subproblem with state variable as $\mathrm{S}_{2}$ can be expressed as

$$
\begin{aligned}
f_{1}\left(S_{2}\right) & =\min C_{1}\left(S_{1}, x_{1}\right) \\
& =\min C_{1}\left(S_{1}, S_{2}-S_{1}\right)
\end{aligned}
$$

## Numerical Example: Forward Recursion ...contd.

Computations for stage 1 are given in the table below

## Table 2

| Stage 1 |  |  |  |
| :---: | :---: | :---: | :---: |
| State Variable, $S_{2}$ | Added Capacity, <br> $x_{1}=S_{2}-S_{1}$ | $C_{1}\left(S_{2}\right)$ | $f_{1}{ }^{*}\left(S_{2}\right)$ |
| 5 | 5 | 9 | 9 |
| 10 | 10 | 11 | 11 |
| 15 | 15 | 15 | 15 |
| 20 | 20 | 21 | 21 |
| 25 | 25 | 27 | 27 |

D Nagesh Kumar, IISc
Optimization Methods: M6L5

## Numerical Example: Forward Recursion ...contd.

> Now considering the $1^{\text {st }}$ and $2^{\text {nd }}$ stages together
> State variable $S_{3}$ can take values from $D_{2}$ to $D_{5}$
> Objective function for $2^{\text {nd }}$ subproblem is

$$
\begin{aligned}
f_{2}\left(S_{3}\right) & =\min _{\substack{x_{2} \\
x_{2} \in \Omega_{2}}}\left[C_{2}\left(S_{2}, x_{2}\right)+f_{1}\left(S_{2}\right)\right] \\
& =\min _{\substack{x_{2} \\
x_{2}=\Omega_{2}}}\left[C_{2}\left(S_{3}-x_{2}, x_{2}\right)++f_{1}\left(S_{3}-x_{2}\right)\right]
\end{aligned}
$$

> The value of $x_{2}$ should be taken in such a way that the minimum capacity at the end of stage 2 should be 10, i.e.

$$
S_{3} \geq 10
$$

## Numerical Example: Forward Recursion ...contd.

Computations for stage 2 are given in the table below


## Numerical Example: Forward Recursion ...contd.

> Like this, repeat this steps till $\mathrm{t}=5$
> The computation tables are shown
Table 4
Stage 3

| State Variable, $S_{4}$ | Added Capacity, $x_{3}$ | $C_{3}\left(S_{4}\right)$ | $\begin{gathered} S_{3}=S_{4}- \\ x_{3} \end{gathered}$ | $f_{2}{ }^{*}\left(S_{3}\right)$ | $f_{3}\left(S_{4}\right)=C_{3}\left(S_{4}\right)+f_{2}^{*}\left(S_{3}\right)$ | $f_{3}{ }^{*}\left(S_{4}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 0 | 0 | 20 | 21 | 21 | 20 |
|  | 5 | 6 | 15 | 15 | 21 |  |
|  | 10 | 9 | 10 | 11 | 20 |  |
| 25 | 0 | 0 | 25 | 24 | 24 | 23 |
|  | 5 | 6 | 20 | 21 | 27 |  |
|  | 10 | 9 | 15 | 15 | 34 |  |
|  | 15 | 12 | 10 | 11 | 23 |  |

D Nagesh Kumar, IISc
Optimization Methods: M6L5

## Numerical Example: Forward Recursion ...contd.



For the $5^{\text {th }}$ subproblem, state variable $S_{6}=D_{5}$
Table 6


## Numerical Example: Forward Recursion ...contd.



## Numerical Example: Backward Recursion

> Capacity at the final stage is given as $\mathrm{S}_{6}=25$
> Consider the last stage, $\mathrm{t}=5$
> Initial capacity for stage $5, \mathrm{~S}_{5}$ can take values between $\mathrm{D}_{4}$ to $\mathrm{D}_{5}$
> Objective function for $1^{\text {st }}$ subproblem with state variable as $\mathrm{S}_{5}$ can be expressed as

$$
f_{5}\left(S_{5}\right)=\min _{\substack{x_{t} \\ x_{T} \in \Omega_{T}}}\left[f_{5}\left(S_{5}, x_{5}\right)\right]
$$

> The optimal cost of expansion can be achieved by following the same procedure to all stages

D Nagesh Kumar, IISc

## Numerical Example: Backward Recursion ...contd.

Table 7
Stage 5

Computations for all stages

| State <br> Variable, <br> $S_{s}$ | Added <br> Capacity, $x_{5}$ | $C_{5}\left(S_{5}\right)$ | $f_{s}^{*}\left(S_{s}\right)$ |
| :---: | :---: | :---: | :---: |
| 20 | 5 | 4 | 4 |
| 25 | 0 | 0 | 0 |

Table 8
Stage 4

| State |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable, <br> $S_{4}$ | Added <br> Capacity,,$x_{4}$ | $C_{4}\left(S_{4}\right)$ | $S_{5}=S_{4}+x_{4}$ | $f_{5}^{*}\left(S_{5}\right)$ | $f_{4}\left(S_{4}\right)=C_{4}\left(S_{4}\right)+f_{5}^{*}\left(S_{5}\right)$ | $f_{4}^{*}\left(S_{4}\right)$ |
| 20 | 0 | 0 | 20 | 4 | 4 |  |
|  | 5 | 5 | 25 | 0 | 5 | 4 |
| 25 | 0 | 0 | 25 | 0 | 0 | 0 |

D Nagesh Kumar, IISc
Optimization Methods: M6L5

## Numerical Example: Backward Recursion ...contd.

Table 9
Stage 3

| State <br> Variable, $S_{3}$ | Added <br> Capacity, $x_{3}$ | $C_{3}\left(S_{3}\right)$ | $S_{4}=S_{3}+$ <br> $x_{3}$ | $f_{4}{ }^{*}\left(S_{4}\right)$ | $f_{3}\left(S_{3}\right)=C_{3}\left(S_{3}\right)+$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f_{4}^{*}\left(S_{4}\right)$ |  |  |  |  |  |$f_{3}^{*}{ }_{3}^{*}\left(S_{3}\right)$

D Nagesh Kumar, IISc
Optimization Methods: M6L5

## Numerical Example: Backward Recursion ...contd.



D Nagesh Kumar, IISc
Optimization Methods: M6L5

## Numerical Example: Backward Recursion ...contd.

Table 11

| State Variable, $S_{I}$ | Added Capacity, $x_{1}$ | $C_{1}\left(S_{1}\right)$ | $S_{2}=S_{1}+$ <br> $x_{1}$ | $f_{2}{ }^{*}\left(S_{2}\right)$ | $\begin{gathered} f_{1}\left(S_{1}\right)=C_{1}\left(S_{1}\right)+ \\ f_{2}^{*}\left(S_{2}\right) \end{gathered}$ | $f_{1}{ }^{*}\left(S_{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 5 | 9 | 5 | 17 | 26 | 23 |
|  | 10 | 11 | 10 | 12 | 23 |  |
|  | 15 | 15 | 15 | 9 | 24 |  |
|  | 20 | 21 | 20 | 4 | 25 |  |
|  | 25 | 27 | 25 | 0 | 27 |  |

D Nagesh Kumar, IISc
Optimization Methods: M6L5

## Numerical Example: Backward Recursion ...contd.

> Optimal cost of expansion is obtained from the node value at the first node i.e. 23 units
> Optimal expansions to be made are 10 units at the first stage and 15 units at the last stage


## Capacity Expansion Problem: Uncertainty

* The future demand and the future cost of expansion in this problem are highly uncertain
* Hence, the solution obtained cannot be used for making expansions till the end period, T
* But, decisions about the expansion to be done in the current period can be very well done through this
* For the uncertainty on current period decisions to be less , the final period T should be selected far away from the current period



## Thank You

