

Dynamic Programming Applications

Capacity Expansion

D Nagesh Kumar, IISc

Optimization Methods: M6L5

Objectives

- > To discuss the Capacity Expansion Problem
- To explain and develop recursive equations for both backward approach and forward approach
- To demonstrate the method using a numerical example

Capacity Expansion Problem

- Consider a municipality planning to increase the capacity of its infrastructure (ex: water treatment plant, water supply system etc) in future
- Sequential increments are to be made in specified time intervals
- The capacity at the beginning of time period t be S_t
- Required capacity at the end of that time period be K_t
- **4** Thus, x_t be the added capacity in each time period
- Cost of expansion at each time period can be expressed as a function of S_t and x_t , i.e. $C_t(S_t, x_t)$

Capacity Expansion Problem ... contd.

- Optimization problem: To find the time sequence of capacity expansions which minimizes the present value of the total future costs
- <u>Objective function:</u> Minimize $\sum_{t=1}^{T} C_t(S_t, x_t)$
- $C_t(S_t, x_t)$: Present value of the cost of adding an additional capacity x_t in the time period t
- <u>Constraints</u>: Capacity demand requirements at each time period
- S_t : Initial capacity

Capacity Expansion Problem ... contd.

Each period's final capacity or next period's initial capacity should be equal to the sum of initial capacity and the added capacity

$$S_{t+1} = S_t + x_t$$
 for $t = 1, 2, ..., T$

At the end of each time period, the required capacity is fixed

 $S_{t+1} \ge K_t$ for t = 1, 2, ..., T

• Constraints to the amount of capacity added in each time period i.e. X_t can take only some feasible values.

 $x_t \in \Omega_t$

Capacity Expansion Problem: Forward Recursion

- Stages of the model: Time periods in which capacity expansion to be made
- State: Capacity at the end of each time period t, S_{t+1}
- S_1 : Present capacity before expansion

6

• $f_t(S_{t+1})$: Minimum present value of total cost of capacity expansion from present to the time *t*

Capacity Expansion Problem: Forward Recursion ...contd.

For the first stage, objective function

 $f_1(S_2) = \min C_1(S_1, x_1)$

 $= \min C_1(S_1, S_2 - S_1)$

- Value of S_2 can be between K_1 and K_7
 - where K_1 is the required capacity at the end of time period 1 and K_T is the final capacity required
- Now, for the first two stages together,

$$f_{2}(S_{3}) = \min_{\substack{x_{2} \\ x_{2} \in \Omega_{2}}} \left[C_{2}(S_{2}, x_{2}) + f_{1}(S_{2}) \right]$$

$$= \min_{\substack{x_{2} \\ x_{2} \in \Omega_{2}}} \left[C_{2}(S_{3} - x_{2}, x_{2}) + f_{1}(S_{3} - x_{2}) \right]$$

• Value of S_3 can be between K_2 and K_7

Capacity Expansion Problem: Forward Recursioncontd.

4 In general, for a time period t,

$$f_t(S_{t+1}) = \min_{\substack{x_t \\ x_t \in \Omega_t}} \left[C_t(S_{t+1} - x_t, x_t) + f_{t-1}(S_{t+1} - x_t) \right]$$

Subjected to

$$K_{_{t}} \leq S_{_{t+1}} \leq K_{_{T}}$$

For the last stage, i.e. t = T, $f_T(S_{T+1})$ need to be solved only for $S_{T+1} = K_T$

Capacity Expansion Problem: Backward Recursion

- Stages of the model: Time periods in which capacity expansion to be made
- State: Capacity at the beginning of each time period t, S_t
- $f_t(S_t)$: Minimum present value of total cost of capacity expansion in periods *t* through *T*
- For the last period T, the final capacity should reach K_T after doing the capacity expansions

$$f_T(S_T) = \min_{\substack{x_T \\ x_T \in \Omega_T}} \left[C_T(S_T, x_T) \right]$$

• Value of S_{T} can be between K_{T-1} and K_{T}

Capacity Expansion Problem: Backward Recursion ...contd.

4 In general, for a time period t,

$$f_t(S_t) = \min_{\substack{x_t \\ x_t \in \Omega_t}} \left[C_t(S_t, x_t) + f_{t+1}(S_t + x_t) \right]$$

- Solved for all values of S_t ranging from K_{t-1} and K_t
- For period 1, the above equation must be solved only for $S_t = S_1$

Capacity Expansion: Numerical Example

- Consider a five stage capacity expansion problem
- The minimum capacity to be achieved at the end of each time period is given in the table below

t	D_t
1	5
2	10
3	20
4	20
5	25

Capacity Expansion: Numerical Examplecontd.

Expansion costs for each combination of expansion

Numerical Example: Forward Recursion

- > Consider the first stage, t = 1
- > The final capacity for stage 1, S_2 can take values between D_1 to D_5
- Let the state variable can take discrete values of 5, 10, 15, 20 and 25
- Objective function for 1st subproblem with state variable as S₂ can be expressed as

 $f_1(S_2) = \min \ C_1(S_1, x_1)$ = min \ C_1(S_1, S_2 - S_1)

D Nagesh Kumar, IISc

Computations for stage 1 are given in the table below

Table 2

Stage	1

State Variable, S ₂	Added Capacity, $x_I = S_2 - S_I$	$C_I(S_2)$	$f_1^*(S_2)$
5	5	9	9
10	10	11	11
15	15	15	15
20	20	21	21
25	25	27	27

- > Now considering the 1st and 2nd stages together
- > State variable S_3 can take values from D_2 to D_5
- > Objective function for 2nd subproblem is

$$f_{2}(S_{3}) = \min_{\substack{x_{2} \\ x_{2} \in \Omega_{2}}} \left[C_{2}(S_{2}, x_{2}) + f_{1}(S_{2}) \right]$$

$$= \min_{\substack{x_{2} \\ x_{2} \in \Omega_{2}}} \left[C_{2}(S_{3} - x_{2}, x_{2}) + f_{1}(S_{3} - x_{2}) \right]$$

> The value of x_2 should be taken in such a way that the minimum capacity at the end of stage 2 should be 10, i.e.

$$S_3 \ge 10$$

Table 3

Computations for stage 2 are given in the table below

			Table 5			
Stage 2						
State Variable, S3	Added Capacity, x ₂	$C_2(S_3)$	$S_2 = S_3 - x_2$	$f_1^*(S_2)$	$f_2(S_3) = C_2(S_3) + f_1^*(S_2)$	$f_2^{*}(S_3)$
10	0	0	10	11	11	11
10	5	8	5	9	17	11
	0	0	15	15	15	
15	5	8	10	11	19	15
	10	10	5	9	19	
	0	0	20	21	21	
20	5	7	15	15	22	21
20	10	10	10	11	21	21
	15	13	5	9	22	
	0	0	25	27	27	
	5	7	20	21	28	
25	10	9	15	15	24	24
	15	14	10	11	25	
	20	20	5	9	29	
			•	•	· · ·	

16

- > Like this, repeat this steps till t = 5
- > The computation tables are shown

Table 4

State Variable, <i>S</i> 4	Added Capacity, x₃	$C_3(S_4)$	$S_3 = S_4 - x_3$	$f_2^{*}(S_3)$	$f_3(S_4) = C_3(S_4) + f_2^*(S_3)$	$f_3^*(S_4)$
	0	0	20	21	21	
20	5	б	15	15	21	20
	10	9	10	11	20	
	0	0	25	24	24	
25	5	б	20	21	27	23
25	10	9	15	15	34	25
	15	12	10	11	23	

<u>Table 5</u>									
Stage 4									
State Variable, S₅	Added Capacity, x4	$C_4(S_5)$	S ₄ = S ₅ -	$f_3^*(S_4)$	$f_4(S_5) = C_4(S_5) + f_3^*(S_4)$	$f_4^{*}(S_5)$			
20	0	0	20	20	20	20			
25	0	0	25	23	23	23			
25	5	5	20	20	25	20			

For the 5th subproblem, state variable $S_6 = D_5$

Table 6

18

- Figure showing the solutions with the cost of each addition along the links and the minimum total cost at each node
- Optimal cost of expansion is 23 units
- By doing backtracking from the last stage (farthest right node) to the initial stage, the optimal expansion to be done at 1st stage = 10 units, 3rd stage = 15 units and rest all stages = 0 units

Optimization Methods: M6L5

Numerical Example: Backward Recursion

- > Capacity at the final stage is given as $S_6 = 25$
- > Consider the last stage, t = 5
- > Initial capacity for stage 5, S_5 can take values between D_4 to D_5
- Objective function for 1st subproblem with state variable as S₅
 can be expressed as

$$f_5(S_5) = \min_{\substack{x_T \\ x_T \in \Omega_T}} [f_5(S_5, x_5)]$$

The optimal cost of expansion can be achieved by following the same procedure to all stages D Nagesh Kumar, IISc
Optimization Methods: M6L5

			Table 7	-	
	<u>Stage 5</u>				
	[State	Added	$C_5(S_5)$	$f_{5}^{*}(S_{5})$
		Variable,	Capacity, x5		
Computations for all stages		S5			
		20	5	4	4
		25	0	0	0
	·				
	Table	8			
Stage 4					
State					

20	0	0	20	4	4	4
20 _	5	5	25	0	5	
25	0	0	25	0	0	0

D Nagesh Kumar, IISc

Optimization Methods: M6L5

Table 9

State Variable, S₃	Added Capacity, x₃	$C_3(S_3)$	$S_4 = S_3 + x_3$	$f_4^*(S_4)$	$f_3(S_3) = C_3(S_3) + f_4^*(S_4)$	$f_3^*(S_3)$
10	10	9	20	4	13	12
	15	12	25	0	12	. 12
15	5	6	20	4	10	10
15	10	9	25	0	10	10
20	0	0	20	4	4	4
	5	б	25	0	5	
25	0	0	25	0	0	0

			Table 10			
Stage 2						
State	Added	$C_2(S_2)$	$S_3 = S_2 +$	$f_{3}^{*}(S_{3})$	$f_2(S_2) = C_2(S_2) + f_3^*(S_3)$	$f_2^{*}(S_2)$
Variable, S_2	Capacity, x_2	C ₂ (5 ₂)	x_2	J3 (133)	$f_3^*(S_3)$	$J_2(S_2)$
	5	8	10	12	20	
5	10	10	15	10	20	17
5	15	13	20	4	17	17
	20	20	25	0	20	
10 .	0	0	10	12	12	
	5	8	15	10	18	12
	10	10	20	4	14	
	15	14	25	0	14	
	0	0	15	10	10	
15	5	7	20	4	11	9
	10	9	25	0	9	
20	0	0	20	4	4	4
20	5	7	25	0	7	+
25	0	0	25	0	0	0

Optimization Methods: M6L5

State	Added	$C_I(S_I)$	$S_2 = S_1 +$	$f_2^{*}(S_2)$	$f_1(S_1) = C_1(S_1) + f_2^*(S_2)$	$f_1^*(S_2)$
Variable, S _I	Capacity, x_I		x_I		$f_2(S_2)$	
	5	9	5	17	26	
	10	11	10	12	23	
0	15	15	15	9	24	23
	20	21	20	4	25	
-	25	27	25	0	27	

Table 11

Stage 2

> Optimal cost of expansion is obtained from the node value at the first node i.e. 23 units

> Optimal expansions to be made are 10 units at the first stage and 15 units at the last stage

Capacity Expansion Problem: Uncertainty

- The future demand and the future cost of expansion in this problem are highly uncertain
- Hence, the solution obtained cannot be used for making expansions till the end period, T
- But, decisions about the expansion to be done in the current period can be very well done through this
- For the uncertainty on current period decisions to be less, the final period T should be selected far away from the current period

Thank You

D Nagesh Kumar, IISc

Optimization Methods: M6L5