

Dynamic Programming Applications

Water Allocation – Numerical Example

D Nagesh Kumar, IISc

1

Objectives

- To demonstrate the water allocation problem through a numerical example using
 - Backward approach
 - Forward approach

Numerical Problem

- Consider a canal supplying water for three different crops
- Maximum capacity of the canal is 4 units of water.

• Optimization Problem: Determine the optimal allocations x_i to each crop that maximizes the total net benefits from all the three crops

Numerical Problemcontd.

Net benefits from producing the crops can be expressed as a function of the water allotted. $NB_1(x_1) = 5x_1 - 0.5x_1^2$

$$NB_{2}(x_{2}) = 8x_{2} - 1.5x_{2}^{2}$$
$$NB_{3}(x_{3}) = 7x_{3} - x_{3}^{2}$$

The net benefit values are calculated for each crop and are as shown

D Nagesh

	<u>Lable L</u>										
	x_i	$NB_1(x_1)$	$NB_2(x_2)$	$NB_3(x_3)$							
	0	0.0	0.0	0.0							
	1	4.5	6.5	6.0							
	2	8.0	10.0	10.0							
	3	10.5	10.5	12.0							
	4	12.0	8.0	12.0							
Kur.	,	•									

4

Numerical Problemcontd.

X₁

Representation of the problem as a set of nodes and links

X3

X₂

Optimization Methods: M6L4

Numerical Problem ...contd.

- The values inside the node show the value of state variable at each stage
- Number of nodes for any stage corresponds to the number of discrete states possible for each stage.
- The values over the links show the different values taken by decision variables corresponding to the value taken by state variables

Numerical Problem: Solution by Backward recursion

Sub-optimization function for the 3rd crop:

 $f_3(S_3) = \max_{\substack{x_3 \ 0 \le x_3 \le S_3}} NB_3(x_3)$ with the range of S_3 from 0 to 4.

Table 2

State		f.(S.)	*					
.S ₃	<i>x</i> ₃ :	0	1	2	3	4	- /3(03)	×3
0		0				•	0	0
1	·	0	б				6	1
2		0	б	10			10	2
3		0	б	10	12		12	3
4	•	0	б	10	12	12	12	3,4

D Nagesh Kumar, IISc

• Next, by considering last two stages together, the sub-optimization function is $f_2(S_2) = \max_{\substack{x_2 \\ x_2 \le S_2}} [NB_2(x_2) + f_1(S_2 - x_2)]$

Table 3

The calculations are shown below

State S ₂	<i>x</i> ₂	$NB_2(x_2)$	$(S_2 - x_2)$	$f_3(S_2 - x_2)$	$\begin{array}{l} f_2(S_2) = \\ NB_2(x_2) + \\ f_3(S_2 - x_2) \end{array}$	$f_2^{*}(S_2)$	x2*
0	0	0	0	0	0	0	0
1	0	0	1	6	6	6.5	1
I _	1	6.5	0	0	6.5	0.5	1
Table con	ntd. on n	ext slide				• •	

	0	0	2	10	10	•	
2 -	1	6.5	1	6	12.5	12.5	1
-	2	10	0	0	10	_	
	0	0	3	12	12	• • • • •	
2	1	6.5	2	10	16.5	165	1
5 -	2	10	1	6	16	_ 10.5	1
-	3	10.5	0	0	10.5	_	
	0	0	4	12	12		
-	1	6.5	3	12	18.5	_	
4 -	2	10	2	10	20	20	2
-	3	10.5	1	6	16.5	_	
	4	8	0	0	8	_	

Considering all the three stages together

$f_1(Q) = \max[NB_1(x_1) + f_2(Q - x_1)]$	with	$S_1 = Q = 4$
$x_1 \\ 0 \le x_1 \le Q$		

State $S_1 = Q$	x ₁	$NB_1(x_1)$	$(Q-x_1)$	$f_2(Q-x_1)$	$f_1(S_1) =$ $NB_1(x_1) +$ $f_2(Q - x_1)$	$f_1^*(S_1)$	x1*
	0	0	4	20	20	•	
	1	4.5	3	16.5	21	-	
4	2	8	2	12.5	20.5	21	1
	3	10.5	1	6.5	17	-	
	4	12	0	0	12	-	

Table 4

- Backtrack through each table,
- Optimal allocation for crop 1, $x_1^* = 1$ and $S_1 = 4$
- Thus, $S_2 = S_1 x_1 = 3$
- From 2nd stage, the optimal allocation for crop 2, $x_2 = 1$.
- Now, $S_3 = S_2 x_2 = 2$
- From 3rd stage calculations, $x_3^* = 2$
- Maximum total net benefit from all the crops = 21

Numerical Problem: Solution by Forward recursion

- Start from the first stage and proceed towards the final stage
- Suboptimization function for the first stage

$$f_1(S_1) = \max_{x_1 \le S_1} NB_1(x_1)$$

- Range of values for S_1 is from 0 to 4
- The calculations are shown in the table

		<u>Table 5</u>		
State S ₁	<i>x</i> ₁	$NB_1(x_1)$	$f_2^{*}(S_2)$	x1*
0	0	0	0	0
1	0	0		. 1
1	1	4.5	- 4.5	1
	0	0	•	•
2	1	4.5	8	2
	2	8		
	0	0	- _ 10.5 -	•
2	1	4.5		3
5	2	8		
	3	10.5		
	0	0		
	1	4.5	-	
4	2	8	12	4
	3	10.5	-	
	4	12	-	
	•	•	•	•

D Nagesh Kumar, IISc

Solution by Forward recursion ...

ooman	State S ₂	<i>x</i> ₂	$NB_2(x_2)$	$(S_2 - x_2)$	$f_1(S_2 - x_2)$	$\begin{array}{l} f_{2}(S_{2}) = \\ NB_{2}(x_{2}) + \\ f_{2}(S_{2} - x_{2}) \end{array}$	$f_2^{*}(S_2)$	x2*
$f_2(S_2) =$	0	0	0	0	0	0	0	0
$\begin{bmatrix} \mathbf{N}\mathbf{D} & (\mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \end{bmatrix}$	1	0	0	1	4.5	4.5	6.5	1
$\max NB_2(x_2) + $	1 _	1	6.5	0	0	6.5	0.5	1
$\frac{x_2}{x_2} \int_{-\infty} f_1(S_2 - x_2)$		0	0	2	8	8	· · ·	
$x_2 \leq S_2 \square \circ 1 + 2 = 2 + \square$	2 -	1	6.5	1	4.5	11	11	1
	-	2	10	0	0	10	-	
		0	0	3	10.5	10.5		
	-	1	6.5	2	8	14.5	145	1,2
	<u> </u>	2	10	1	4.5	14.5	_ 14.5	
	-	3	10.5	0	0	10.5		
		0	0	4	12	12		
	-	1	6.5	3	10.5	17	-	
	4	2	10	2	8	18	18	2
	-	3	10.5	1	4.5	15	-	
	-	4	8	0	0	8	-	
	D Nages	n Kum	ar, IISc		Opt	timization M	lethods:	M6L4

•
$$f_3(S_3) = \max_{\substack{x_3 \\ x_3 \le S_3 = Q}} \left[NB_3(x_3) + f_2(S_3 - x_3) \right]$$
 with $S_3 = 4$

<u>Table 7</u>										
State S ₃	<i>x</i> ₃	$NB_3(x_3)$	S ₃ - x ₃	$f_2(S_3 - x_3)$	$f_3(S_3) = \\NB_3(x_3) + \\f_2(S_3 - x_3)$	$f_{3}^{*}(S_{3})$	x3*			
•	0	0	4	18	18	· · ·				
	1	б	3	14.5	20.5					
4	2	10	2	. 11	21	21	2			
	3	12	1	6.5	18.5					
	4	12	0	0	12					

- Backtrack through each table,
- Optimal allocation for crop 3, $x_3^* = 2$ and $S_3 = 4$
- Then, $S_2 = S_3 x_3 = 2$
- The optimal allocation for crop 2, $x_2^* = 1$

• Now,
$$S_1 = S_2 - x_2 = 1$$

- From 1st stage calculations, $x_1^* = 1$
- Maximum total net benefit from all the crops = 21
- These solutions are the same as those we got from backward recursion method.

Thank You

D Nagesh Kumar, IISc