

Dynamic Programming Applications

Optimum Geometric Layout of Truss

D Nagesh Kumar, IISc

1

Optimization Methods: M6L2

Objectives

- To discuss the design of elastic trusses
- To formulate the optimization problem as a dynamic programming model

Optimum Geometric Layout of Truss

- > Consider a planar, pin jointed cantilever multi bayed truss
- Assume the length of the bays to be unity
- > The truss is symmetric to the x axis
- Geometry or layout of the truss is defined by the y coordinates
 (y₁, y₂, ..., y_n)
- > Truss is subjected to a unit load W_1

4

- Consider a particular bay I
- > Assume the truss is statically determinate
- Forces in the bars of bay *i* depend only the coordinates y_{i-1} and y_i
- Cross sectional area of a bar can be determined, once the length and force in it are known
- > Cost of the bar can thus be determined.

- The optimization problem is to find the geometry of the truss which will minimize the total cost from all the bars
- For the three bay truss, the relation between y coordinates can be expressed as

 $y_{i+1} = y_i + d_i$ for i = 1,2,3

> This is an initial value problem since the value y_1 is known

Let the y coordinate of each node is limited to a finite number of values say 0.25, 0.5, 0.75 and 1 $y_1 \qquad y_2 \qquad y_3 \qquad y_4$

Optimization Methods: M6L2

- As shown in the figure, there will be 64 different possible ways to reach y₄ from y₁
- This can be represented as a serial multistage initial value decision problem and can be solved using dynamic programming

Thank You

Optimization Methods: M6L2