Dynamic Programming

Other Topics

Objectives

- To explain the difference between discrete and continuous dynamic programming
- To discuss about multiple state variables
- To discuss the curse of dimensionality in dynamic programming

Discrete versus Continuous Dynamic Programming

+ Discrete dynamic programming problems: Number of stages is finite
* When the number of stages tends to infinity then it is called a continuous dynamic programming problem
+ Also called as infinite-stage problem
+ Continuous dynamic problems are used to solve continuous decision problem
* The classical method of solving continuous decision problems is by the calculus of variations

Discrete versus Continuous Dynamic Programming ...contd.

* However, the analytical solutions, using calculus of variations is applicable only for very simple problems
* The infinite-stage dynamic programming approach provides a very efficient numerical approximation procedure for solving continuous decision problems
* For discrete dynamic programming model, the objective function value is the sum of individual stage outputs
* For a continuous dynamic programming model, summation is replaced by integrals of the returns from individual stages
* Such models are useful when infinite number of decisions have to be made in finite time interval

Multiple State Problems

* Problems in which there are more than one state variable
* For example, consider a water allocation problem to n irrigated crops
* Let S_{i} be the units of water available to the remaining $n-i$ crops
* Considering only the allocation of water, the problem can be solved as a single state problem, with S_{i} as the state variable
* Now, assume that L units of land are available for all these n crops
* Allocation of land also to be done to each crop after considering the units of water required for each unit of irrigated land containing each crop

Multiple State Problems ...contd.

* Let R_{i} be the amount of land available for $n-i$ crops
* An additional state variable R_{i} is included while sub-optimizing different stages
* Thus, in this problem two allocations need to be made: water and land.
* A single stage problem consisting of two state variables, $S_{1} \& R_{1}$ is shown below

Multiple State Problems ...contd.

* In general, for a multistage decision problem of T stages, containing two state variables S_{t} and R_{t}, the objective function can be written as

$$
f=\sum_{t=1}^{T} N B_{t}=\sum_{t=1}^{T} h\left(X_{t}, S_{t}, R_{t}\right)
$$

where the transformation equations are given as
$+S_{t+1}=g\left(X_{t}, S_{t}\right) \quad$ for $t=1,2, \ldots, T \quad$ \&
$+R_{t+1}=g^{\prime}\left(X_{t}, R_{t}\right) \quad$ for $t=1,2, \ldots, T$

Curse of Dimensionality

* Limitation of dynamic programming: Dimensionality restriction
* The number of calculations needed increases rapidly as the number of variables and stages increase
* Increases the computational effort
* Increase in the number of stage variables causes an increase in the number of combinations of discrete states to be examined at each stage
* For a problem consisting of 100 state variables and each variable having 100 discrete values, the sub-optimization table will contain 100^{100} entries

Curse of Dimensionality ...contd.

* The computation of one table may take 100^{96} seconds (about 100^{92} years) even on a high speed computer
* Like this 100 tables have to be prepared for which computation is almost impossible
* This phenomenon as termed by Bellman, is known as "curse of dimensionality" or "Problem of dimensionality" of multiple state variable dynamic programming problems

Thank You

