

Dynamic Programming

Computational Procedure in Dynamic Programming

1

Objectives

 To explain the computational procedure of solving the multistage decision process using recursive equations for backward approach

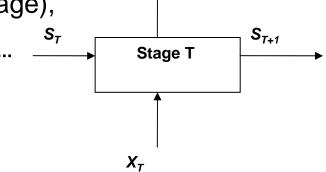
Computational Procedure

- Consider a serial multistage problem and the recursive equations developed for backward recursion
- The objective function is

$$f = \sum_{t=1}^{T} NB_{t} = \sum_{t=1}^{T} h_{t}(X_{t}, S_{t})$$

Considering first sub-problem (last stage), the objective function is S_{T} Stage T Stage T

$$f_T^*(S_T) = opt_{X_T}[h_T(X_T, S_T)]$$



NB_τ

- The input variable is S_T and the decision variable is X_T
- Optimal value of the objective function f_T^* depend on the input S_T
- **4** But at this stage, the value of S_T is not known
- Value of S_T depends upon the values taken by the upstream components
- Therefore, S_{T} is solved for all possible range of values
- The results are entered in a graph or table which contains the calculated optimal values of X_T^* , S_{T+1} and also f_T^* .

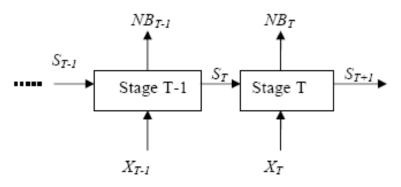
4The results are entered in a graph or table which contains the calculated optimal values of X_T^* , S_{T+1} and also f_T^*

Typical table showing the results from the sub-optimization of stage 1

Sl no	ST	X_T^*	f_T^*	S _{T+1}
1	-	-	-	-
-	-	-	-	-
-	-	-	-	-

<u> TABLE - 1</u>

 Consider the second sub-problem by grouping the last two components



The objective function is

$$f_{T-1}^{*}(S_{T-1}) = opt_{X_{T-1},X_{T}} [h_{T-1}(X_{T-1},S_{T-1}) + h_{T}(X_{T},S_{T})]$$

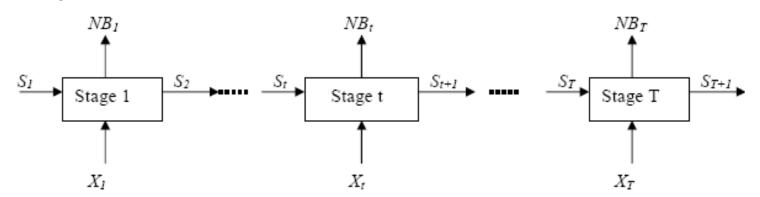
D Nagesh Kumar, IISc

From the earlier lecture,

$$f_{T-1}^*(S_{T-1}) = opt_{X_{T-1}} \Big[h_{T-1} \big(X_{T-1}, S_{T-1} \big) + f_T^*(S_T) \Big]$$

- The information of first sub-problem is obtained from the previous table
- A range of values are considered for S_{T-1}
- The optimal values of X_{T-1}^* and f_{T-1}^* are found for these range of values

In general, consider the sub-optimization of *i*+1th sub-problem (*T*-*i*th stage)



The objective function can be written as

$$f_{T-i}^{*}(S_{T-i}) = opt_{X_{T-i},...,X_{T-1},X_{T}} [h_{T-i}(X_{T-i},S_{T-i}) + ... + h_{T-1}(X_{T-1},S_{T-1}) + h_{T}(X_{T},S_{T})]$$
$$= opt_{X_{T-i}} [h_{T-i}(X_{T-i},S_{T-i}) + f_{T-(i-1)}^{*}] \qquad \dots (7)$$

D Nagesh Kumar, IISc

- At this stage, the sub-optimization has been carried out for all last *i* components
- The information regarding the optimal values of *ith* sub-problem
 will be available in the form of a table
- Substituting this information in the objective function and considering a range of values, the optimal values of f_{T-i}^* and X_{T-i}^* can be calculated

4 The table showing the sub-optimization of $i+1^{th}$ sub-problem is shown

Sl no	S _{T-i}	X^*_{T-i}	S _{T-(i-1)}	$f^*_{T^{-(i-1)}}(S_{T^{-(i-1)}})$	f^*_{T-i}
1	-	-	-	-	
-	-	-	-	-	
-	-	-	-	-	

<u>TABLE - 2</u>

- This procedure is repeated until stage 1 is reached
- For initial value problems, only one value S₁ need to be analyzed for stage 1

- After completing the sub-optimization of all the stages, retrace the steps through the tables generated to find the optimal values of X
- The T^{th} sub-problem gives the values of X_1^* and f_1^* for a given value of S_1 (since the value of S_1 is known for an initial value problem)
- Calculate the value of S_2^* using the transformation equation $S_2 = g(X_1, S_1)$, which is the input to the 2nd stage (*T*-1th sub-problem)
- From the tabulated results for the 2^{nd} stage, the values of X_2^* and f_2^* are found out
- Again use the transformation equation to find out S₃^{*} and the process is repeated until the 1st sub-problem or *Tth* stage is reached
- The final optimum solution vector is given by $X_1^*, X_2^*, ..., X_T^*$

Thank You

D Nagesh Kumar, IISc