Dynamic Programming

Computational Procedure in Dynamic Programming

Objectives

- To explain the computational procedure of solving the multistage decision process using recursive equations for backward approach

Computational Procedure

* Consider a serial multistage problem and the recursive equations developed for backward recursion
* The objective function is

$$
f=\sum_{t=1}^{T} N B_{t}=\sum_{t=1}^{T} h_{t}\left(X_{t}, S_{t}\right)
$$

Computational Procedure ...contd.

* The input variable is S_{T} and the decision variable is X_{T}
* Optimal value of the objective function f_{T}^{*} depend on the input S_{T}
* But at this stage, the value of S_{T} is not known
+ Value of S_{T} depends upon the values taken by the upstream components
* Therefore, S_{T} is solved for all possible range of values
* The results are entered in a graph or table which contains the calculated optimal values of X_{T}^{*}, S_{T+1} and also f_{T}^{*}.

Computational Procedure ...contd.

The results are entered in a graph or table which contains the calculated optimal values of X_{T}^{}, S_{T+1} and also f_{T}^{*}
Typical table showing the results from the sub-optimization of stage 1

TABLE-1

S1 no	S_{T}	X_{T}^{*}	f_{T}^{*}	$\mathrm{~S}_{\mathrm{T}+1}$
1	-	-	-	-
-	-	-	-	-
-	-	-	-	-

Computational Procedure ...contd.

* Consider the second sub-problem by grouping the last two components

* The objective function is

$$
f_{T-1}^{*}\left(S_{T-1}\right)=\underset{X_{T-1}, X_{T}}{\text { opt }}\left[h_{T-1}\left(X_{T-1}, S_{T-1}\right)+h_{T}\left(X_{T}, S_{T}\right)\right]
$$

Computational Procedure ...contd.

* From the earlier lecture,

$$
f_{T-1}^{*}\left(S_{T-1}\right)=\underset{X_{T-1}}{o p t}\left[h_{T-1}\left(X_{T-1}, S_{T-1}\right)+f_{T}^{*}\left(S_{T}\right)\right\rfloor
$$

* The information of first sub-problem is obtained from the previous table
+ A range of values are considered for S_{T-1}
* The optimal values of X_{T-1}^{*} and f_{T-1}^{*} are found for these range of values

Computational Procedure ...contd.

* In general, consider the sub-optimization of $i+1^{\text {th }}$ sub-problem (T - $i^{\text {th }}$ stage)

* The objective function can be written as

$$
\begin{align*}
f_{T-i}^{*}\left(S_{T-i}\right) & =\operatorname{opt}_{X_{T-i}, \ldots, X_{T-1}, X_{T}}\left[h_{T-i}\left(X_{T-i}, S_{T-i}\right)+\ldots+h_{T-1}\left(X_{T-1}, S_{T-1}\right)+h_{T}\left(X_{T}, S_{T}\right)\right] \\
& =\underset{X_{T-i}}{o p t}\left[h_{T-i}\left(X_{T-i}, S_{T-i}\right)+f_{T-(i-1)}^{*}\right] \tag{7}
\end{align*}
$$

D Nagesh Kumar, IISc

Computational Procedure ...contd.

* At this stage, the sub-optimization has been carried out for all last i components
* The information regarding the optimal values of $i^{\text {th }}$ sub-problem will be available in the form of a table
* Substituting this information in the objective function and considering a range of values, the optimal values of f_{T-i}^{*} and
X_{T-i}^{*} can be calculated

Computational Procedure ...contd.

* The table showing the sub-optimization of $i+1^{\text {th }}$ sub-problem is shown

TABLE - 2

S1 no	S_{T-i}	X_{T-i}^{*}	$S_{T-(i-l)}$	$f_{T-(i-1)}^{*}\left(S_{T-(i-1)}\right)$	f_{T-i}^{*}
1	-	-	-	-	
-	-	-	-	-	
-	-	-	-	-	

* This procedure is repeated until stage 1 is reached
* For initial value problems, only one value S_{1} need to be analyzed for stage 1

Computational Procedure ...contd.

* After completing the sub-optimization of all the stages, retrace the steps through the tables generated to find the optimal values of X
* The $T^{\text {th }}$ sub-problem gives the values of $X_{1}{ }^{*}$ and $f_{1}{ }^{*}$ for a given value of S_{1} (since the value of S_{1} is known for an initial value problem)
* Calculate the value of $S_{2}{ }^{*}$ using the transformation equation $S_{2}=g\left(X_{1}, S_{1}\right)$, which is the input to the $2^{\text {nd }}$ stage ($T-1^{\text {th }}$ sub-problem)
* From the tabulated results for the $2^{\text {nd }}$ stage, the values of $X_{2}{ }^{*}$ and $f_{2}{ }^{*}$ are found out
* Again use the transformation equation to find out $S_{3}{ }^{*}$ and the process is repeated until the $1^{\text {st }}$ sub-problem or $T^{\text {h }}$ stage is reached
* The final optimum solution vector is given by $X_{1}^{*}, X_{2}^{*}, \ldots, X_{T}^{*}$

Thank You

