

Dynamic Programming

Recursive Equations

D Nagesh Kumar, IISc

Optimization Methods: M5L2

Introduction and Objectives

Introduction

- Recursive equations are used to solve a problem in sequence
- > These equations are fundamental to the dynamic programming

Objectives

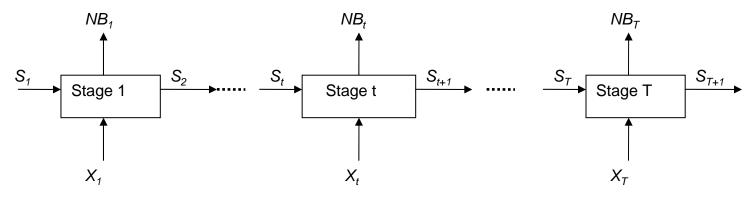
- To formulate recursive equations for a multistage decision process
 - In a backward manner and
 - In a forward manner

Recursive Equations

- Recursive equations are used to structure a multistage decision problem as a sequential process
- Each recursive equation represents a stage at which a decision is required
- A series of equations are successively solved, each equation depending on the output values of the previous equations
- A multistage problem is solved by breaking into a number of single stage problems through recursion
- Approached can be done in a backward manner or in a forward manner

Backward Recursion

- A problem is solved by writing equations first for the final stage and then proceeding backwards to the first stage
- > Consider a serial multistage problem



> Let the objective function for this problem is $f = \sum_{t=1}^{T} NB_t = \sum_{t=1}^{T} h_t(X_t, S_t)$ $= h_1(X_1, S_1) + h_2(X_2, S_2) + \dots + h_t(X_t, S_t) + \dots + h_{T-1}(X_{T-1}, S_{T-1}) + h_T(X_T, S_T) \qquad \dots (1$ D Nagesh Kumar, IISc Optimization Methods: M5L2

4

Backward Recursion ...contd.

- > The relation between the stage variables and decision variables are $S_{t+1} = g(X_t, S_t), \quad t = 1, 2, ..., T.$
- > Consider the final stage as the first sub-problem. The input variable to this stage is S_T .
- > Principle of optimality: X_T should be selected such that $h_T(X_T, S_T)$ is optimum for the input S_T
- > The objective function f_T^* for this stage is

$$f_T^*(S_T) = opt[h_T(X_T, S_T)]$$

Next, group the last two stages together as the second sub-problem. The objective function is

$$f_{T-1}^{*}(S_{T-1}) = opt_{X_{T-1},X_{T}} [h_{T-1}(X_{T-1},S_{T-1}) + h_{T}(X_{T},S_{T})]$$

Backward Recursion ...contd.

- ► By using the stage transformation equation, $f_{T-1}^*(S_{T-1})$ can be rewritten as $f_{T-1}^*(S_{T-1}) = opt[h_{T-1}(X_{T-1}, S_{T-1}) + f_T^*(g_{T-1}(X_{T-1}, S_{T-1}))]$
- Thus, a multivariate problem is divided into two single variable problems as shown
- > In general, the $i+1^{th}$ sub-problem can be expressed as

$$f_{T-i}^{*}(S_{T-i}) = opt_{X_{T-i},...,X_{T-1},X_{T}} [h_{T-i}(X_{T-i},S_{T-i}) + ... + h_{T-1}(X_{T-1},S_{T-1}) + h_{T}(X_{T},S_{T})]$$

Converting this to a single variable problem

 X_{T-1}

$$f_{T-i}^*(S_{T-i}) = opt_{X_{T-i}} \Big[h_{T-i} \big(X_{T-i}, S_{T-i} \big) + f_{T-(i-1)}^* \big(g_{T-i} \big(X_{T-i}, S_{T-i} \big) \big) \Big]$$

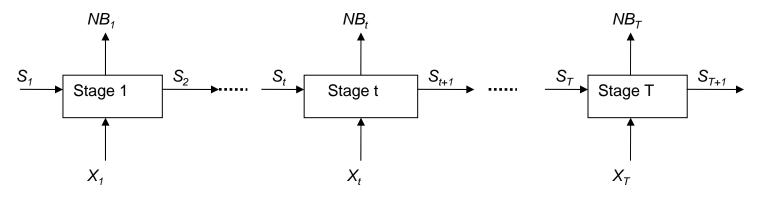
Optimization Methods: M5L2

Backward Recursioncontd.

- > $f_{T-(i-1)}^*$ denotes the optimal value of the objective function for the last *i* stages
- > Principle of optimality for backward recursion can be stated as,
 - No matter in what state of stage one may be, in order for a policy to be optimal, one must proceed from that state and stage in an optimal manner sing the stage transformation equation

Forward Recursion

- The problem is solved by starting from the stage 1 and proceeding towards the last stage
- > Consider a serial multistage problem



Forward Recursioncontd.

> The relation between the stage variables and decision variables are

$$S_t = g'(X_{t+1}, S_{t+1})$$
 $t = 1, 2, ..., T$

where S_t is the input available to the stages 1 to t

- > Consider the stage 1 as the first sub-problem. The input variable to this stage is S_1
- > Principle of optimality: X_1 should be selected such that $h_1(X_1, S_1)$ is optimum for the input S_1
- > The objective function f_1^* for this stage is

$$f_1^*(S_1) = opt_{X_1}[h_1(X_1, S_1)]$$

Backward Recursioncontd.

Group the first and second stages together as the second subproblem. The objective function is

$$f_2^*(S_2) = opt_{X_2, X_1}[h_2(X_2, S_2) + h_1(X_1, S_1)]$$

> By using the stage transformation equation, $f_2^*(S_2)$ can be rewritten as $f_2^*(S_2) = opt[h(X - S_2) + f_2^*(a'(X - S_2))]$

$$f_2^*(S_2) = opt_{X_2} [h_2(X_2, S_2) + f_1^*(g_2'(X_2, S_2))]$$

> In general, the i^{th} sub-problem can be expressed as

$$f_i^*(S_i) = opt_{X_1, X_2, \dots, X_i} [h_i(X_i, S_i) + \dots + h_2(X_2, S_2) + h_1(X_1, S_1)]$$

Backward Recursion ...contd.

Converting this to a single variable problem

$$f_i^*(S_i) = opt_{X_i} \Big[h_i(X_i, S_i) + f_{(i-1)}^* \big(g'_i(X_i, S_i) \big) \Big]$$

- > f_i^* denotes the optimal value of the objective function for the last *i* stages
- > Principle of optimality for forward recursion can be stated as,
 - No matter in what state of stage one may be, in order for a policy to be optimal, one had to get to that state and stage in an optimal manner

Thank You

D Nagesh Kumar, IISc

Optimization Methods: M5L2