

#### **Linear Programming Applications**

#### Structural & Water Resources Problems

D Nagesh Kumar, IISo

#### Introduction

- LP has been applied to formulate and solve several types of problems in engineering field
- LP finds many applications in the field of water resources and structural design which include
  - Planning of urban water distribution
  - Reservoir operation
  - Crop water allocation
  - > Minimizing the cost and amount of materials in structural design

# Objectives

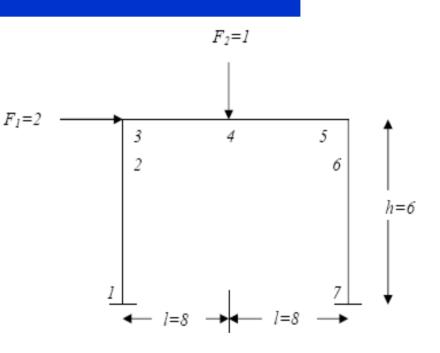
- To discuss the applications of LP in the plastic design of frame structures
- To discuss the applications of LP in deciding the optimal pattern of irrigation

#### Example – Structural Design

- A beam column arrangement of a rigid frame is shown
- Moment in beam is represented by
  M<sub>b</sub>
- > Moment in column is denoted by  $M_c$ .
- > l = 8 units and h = 6 units
- > Forces  $F_1 = 2$  units and  $F_2 = 1$  unit.

Assuming that plastic moment capacity of beam and columns are linear functions of their weights; the objective function is to minimize weights of the materials.





#### Solution:

- In the limit design, it is assumed that at the points of peak moments, plastic hinges will be developed
- Points of development of peak moments are numbered in the above figure from 1 through 7
- Development of sufficient hinges makes the structure unstable known as a collapse mechanism
- For the design to be safe the energy absorbing capacity of the frame (U) should be greater than the energy imparted by externally applied load (E) for the various collapse mechanisms of the structure

D Nagesh Kumar, IISc

The objective function can be written as
 Minimize *f* = weight of beam + weight of column

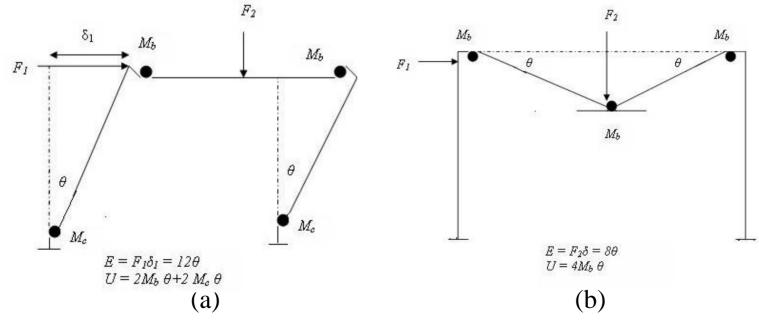
$$f = w \left( 2lM_b + 2hM_c \right) \tag{1}$$

where w is weight per unit length over unit moment in material

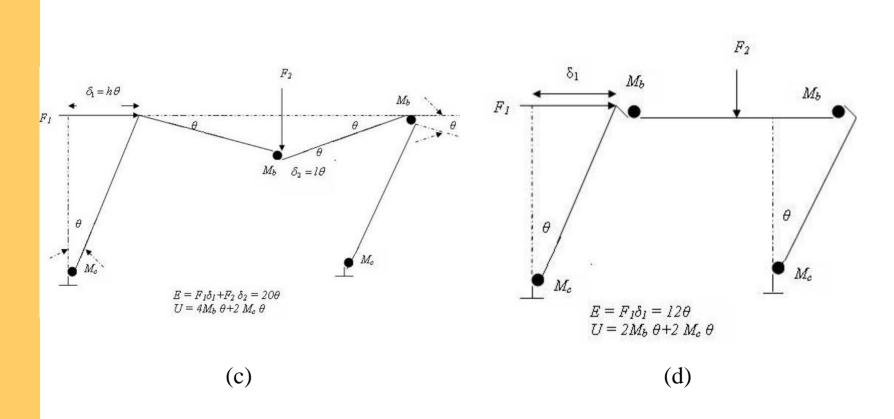
Since *w* is constant, optimizing (1) is same as optimizing

$$f = (2lM_b + 2hM_c)$$
$$= 16M_b + 12M_c$$

Four possible collapse mechanisms are shown in the figure below with the corresponding U and E values



D Nagesh Kumar, IISc



8

D Nagesh Kumar, IISc

> The optimization problem can be stated as  $Minimize \ f = 16M_b + 12M_c$ 

subject to

$$M_{c} \geq 3$$
$$M_{b} \geq 2$$
$$2M_{b} + M_{c} \geq 10$$
$$M_{b} + M_{c} \geq 6$$
$$M_{b} \geq 0; \quad M_{c} \geq 0$$

> Introducing slack variables  $X_1$ ,  $X_2$ ,  $X_3$ ,  $X_4$  all , the system of equations can be written in canonical form as

$$\begin{split} & 16M_{B} + 12M_{C} - f = 0 \\ & -M_{c} + X_{I} = -3 \\ & -M_{b} + X_{2} = -2 \\ & -2M_{b} - M_{c} + X_{3} = -10 \\ & -M_{b} - M_{c} + X_{4} = -6 \\ & 6M_{B} + 12M_{C} - f = 0 \end{split}$$

D Nagesh Kumar, IISc

1

- > This model can be solved using Dual Simplex algorithm
- > The final tableau is shown below

Iteration 2:

The optimal value of decision variables are  $M_B = 7/2; M_C = 3$ 

And the total weight of the material required *f = 92w units* 

| re | Basic<br>Variables |         | br |       |       |      |       |     |
|----|--------------------|---------|----|-------|-------|------|-------|-----|
|    |                    | $M_{B}$ | Mc | $X_1$ | $X_2$ | X3   | $X_4$ |     |
|    | f                  | 0       | 0  | -4    | 0     | -8   | 0     | 92  |
| nt | Mc                 | 0       | 1  | -1    | 0     | 0    | 0     | 3   |
|    | $X_2$              | 0       | 0  | 1/2   | 1     | -1/2 | 0     | 3/2 |
|    | MB                 | 1       | 0  | 1/2   | 0     | -1/2 | 0     | 7/2 |
|    | $X_4$              | 0       | 0  | -1/2  | 0     | -1/2 | 1     | 1   |
|    | Ratio              |         |    |       |       |      |       |     |

#### **Example - Irrigation Allocation**

- Consider two crops 1 and 2. One unit of crop 1 produces four units of profit and one unit of crop 2 brings five units of profit. The demand of production of crop 1 is A units and that of crop 2 is B units. Let x be the amount of water required for A units of crop 1 and y be the same for B units of crop 2.
- > The amount of production and the amount of water required can be expressed as a linear relation as shown below

$$A = 0.5(x - 2) + 2$$
$$B = 0.6(y - 3) + 3$$

D Nagesh Kumar, IISc

- Consider two crops 1 and 2. One unit of crop 1 produces four units of profit and one unit of crop 2 brings five units of profit. The demand of production of crop 1 is A units and that of crop 2 is B units. Let x be the amount of water required for A units of crop 1 and y be the same for B units of crop 2.
- > The amount of production and the amount of water required can be expressed as a linear relation as shown below

$$A = 0.5(x - 2) + 2$$
$$B = 0.6(y - 3) + 3$$

D Nagesh Kumar, IISc

#### Solution:

Objective: Maximize the profit from crop 1 and 2

*Maximize* f = 4A + 5B;

> Expressing as a function of the amount of water, Maximize f = 4[0.5(x - 2) + 2] + 5[0.6(y - 3) + 3]f = 2x + 3y + 10

subject to

- > x + y ≤ 10; Maximum availability of water
- >  $x \ge 2$ ; Minimum amount of water required for crop 1
- > y ≥ 3; Minimum amount of water required for crop 2
- > The above problem is same as maximizing

$$f' = 2x + 3y$$

subject to same constraints.

Changing the problem into standard form by introducing slack variables
 S<sub>1</sub>, S<sub>2</sub>, S<sub>3</sub>

*Maximize* 
$$f' = 2x + 3y$$

subject to

$$x + y + S_1 = 10$$
$$-x + S_2 = -2$$
$$-y + S_3 = -3$$

This model is solved using simplex method

Iteration 3:

The final tableauis as shown

| Basic     |   |   | RHS   | Ratio |       |      |       |
|-----------|---|---|-------|-------|-------|------|-------|
| Variables | x | у | $S_I$ | $S_2$ | $S_3$ | KI15 | Ratio |
| f'        | 0 | 0 | 3     | 1     | 0     | 28   | -     |
| $S_3$     | 0 | 0 | 1     | 1     | 1     | 5    | -     |
| x         | 1 | 0 | 0     | -1    | 0     | 2    | -     |
| У         | 0 | 1 | 1     | 1     | 0     | 8    | -     |

- The solution is x = 2; y = 8; f' = 28
  *Therefore*, f = 28+10 = 38
- Water allocated to crop A is 2 units and to crop B is 8 units and total profit yielded is <u>38 units</u>.

#### Example – Water Quality Management

- Waste load allocation for water quality management in a river system can be defined as
  - Determination of optimal treatment level of waste, which is discharged to a river
  - By maintaining the water quality standards set by Pollution Control Agency (PCA), through out the river
- Conventional waste load allocation involves minimization of treatment cost subject to the constraint that the water quality standards are not violated

#### Example - Waster Quality Management ... contd.

- Consider a simple problem of *M* dischargers, who discharge waste into the river, and *I* checkpoints, where the water quality is measured by PCA
- > Let  $x_j$  is the treatment level and  $a_j$  is the unit treatment cost for  $j^{\text{th}}$ discharger (j=1,2,...,M)
- >  $c_i$  is the dissolved oxygen (DO) concentration at checkpoint *i* (i=1,2,...,I), which is to be controlled
- > Decision variables for the waste load allocation model are  $x_j$ (*j*=1,2,...,*M*).

#### Example - Waster Quality Management ... contd.

Objective function can be expressed as

Maximize 
$$f = \sum_{j=1}^{M} a_j x_j$$

- > Relationship between the water quality indicator,  $c_i$  (DO) at a checkpoint and the treatment level upstream to that checkpoint is linear (based on Streeter-Phelps Equation)
- > Let g(x) denotes the linear relationship between  $c_i$  and  $x_i$ .
- > Then,  $c_i = g(x_j)$   $\forall i, j$

#### Example - Waster Quality Management ... contd.

- > Let  $c_p$  be the permissible DO level set by PCA, which is to be maintained through out the river
- > Therefore,  $c_i \ge c_p$   $\forall i$
- This model can be solved using simplex algorithm which will give the optimal fractional removal levels required to maintain the water quality of the river



# Thank You

D Nagesh Kumar, IISc