

Linear Programming Applications

Software for Linear Programming

1

D Nagesh Kumar, IISo

Objectives

- Use of software to solve LP problems
- MMO Software with example
 - > Graphical Method
 - Simplex Method
- Simplex method using optimization toolbox of MATLAB

MMO Software Mathematical Models for Optimization

An MS-DOS based software

Used to solve different optimization problems

• Graphical method and Simplex method will be discussed.

Installation

- Download the file "MMO.ZIP" and unzip it in a folder in the PC
- Open this folder and double click on the application file named as "START". It will open the MMO software

D Nagesh Kumar, IISc

Working with MMO

Opening Screen

D:\Software\MMO\START.EXE

MICROCOMPUTER MODELS FOR MANAGEMENT DECISION MAKING

Terry L. Dennis & Laurie B. Dennis

Copyright 1993 West Publishing Company & T.L. and L.B. Dennis

Version 3.1

Portions (C) Copyright Microsoft Corporation, 1992 All rights reserved.

D Nagesh Kumar, IISc

Optimization Methods: M4L1

- 🗆 🗙

Working with MMO

Starting Screen

	MICRO MODELS	- MAIN MENU	
	Linear Programming Integer Programming Goal Programming Transportation Model Assignment Model Network Flow Models PERT Networks Simulation	Forecasting Inventory Models Decision Theory Queuing Models Markov Analysis Change Initial SetUp Disk File Utility Quit and Exit to DOS	
selected ->	Linear Pro	ogramming	
	Use the arrow keys t then press the [Ente or simply press the	:o make your choice, erl key (◀┛) highlighted letter.	

SOLUTION METHOD: GRAPHIC/ SIMPLEX

D Nagesh Kumar, IISc

Graphical Method

Data Entry

D Nagesh Kumar, IISc

Data Entry: Few Notes

- Free Form Entry: Write the equation at the prompted input.
- Tabular Entry: Spreadsheet style. Only the coefficients are to be entered, not the variables.
- All variables must appear in the objective function (even those with a 0 coefficient)
- Constraints can be entered in any order; variables with 0 coefficients do not have to be entered
- Constraints may not have negative right-hand-sides (multiply by -1 to convert them before entering)
- When entering inequalities using < or >, it is not necessary to add the equal sign (=)
- Non-negativity constraints are assumed and need not be entered

Example

Let us consider the following problem

 $\begin{array}{ll} Maximize & Z=2x_1+3x_2\\ Subject \ to & x_1\leq 5,\\ & x_1-2x_2\geq -5,\\ & x_1+x_2\leq 6\\ & x_1,x_2\geq 0 \end{array}$

Note: The second constraint is to be multiplied by -1 while entering, i.e. $-x_1 + 2x_2 \le 5$

Steps in MMO Software

- Select 'Free Form Entry' and Select 'TYPE OF PROBLEM' as 'MAX'
- Enter the problem as shown

```
ENTER OBJECTIVE FUNCTION:
MAX 2×1+3×2
ENTER CONSTRAINTS, ONE PER LINE. ENTER THE WORD GO ON THE LAST LINE.
1 ×1<5
2 -×1+2×2<5
3 ×1+×2<6
4 go_
```

- Write 'go' at the last line of the constraints
- Press enter
- Checking the proper entry of the problem
 - If any mistake is found, select 'NO' and correct the mistake
 - If everything is ok, select 'YES' and press the enter key

D Nagesh Kumar, IISc

Solution

10

- Z=15.67 x_1 =2.33 x_2 =3.67
- F1: Redraw
- F2: Rescale
- F3: Move Objective Function Line
- F4: Shade Feasible Region
- F5: Show Feasible Points
- F6: Show Optimal Solution Point
- F10: Show Graphical LP Menu (GPL)

Graphical LP Menu

D Nagesh Kumar, IISc

Extreme points and feasible extreme points

EXTREME POINTS	3:	FEASIBLE EXTREME POINTS:			
	X2		X1	X2	OBJ FUNCT Value
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.00 \\ 1.00 \\ 5.00 \\ 0.00 \\ 2.50 \\ 3.67 \\ 0.00 \\ 6.00 \\ 0.00 \end{array}$	1 2 3 4 5	5.00 5.00 0.00 2.33 0.00	0.00 1.00 2.50 3.67 0.00	10.00 13.00 7.50 15.66 0.00

D Nagesh Kumar, IISc

Simplex Method using MMO

- Simplex method can be used for any number of variables
- Select SIMPLEX and press enter.
- As before, screen for "data entry method" will appear
- The data entry is exactly same as discussed before.

Example

Let us consider the same problem.

(However, a problem with more than two decision variables can also be taken)

 $\begin{array}{ll} \textit{Maximize} & Z = 2x_1 + 3x_2 \\ \textit{Subject to} & x_1 \leq 5, \\ & x_1 - 2x_2 \geq -5, \\ & x_1 + x_2 \leq 6 \\ & x_1, x_2 \geq 0 \end{array}$

D Nagesh Kumar, IISc

Slack, surplus and artificial variables

• There are three additional slack variables

RIABLE	TYPE	CONSTRAINT	
\$1 \$2 \$3	SLACK Slack Slack Slack	1 2 3	
	SLACK ey to contin		

D Nagesh Kumar, IISc

Different options for Simplex tableau

- No Tableau: Shows direct solutions
- All Tableau: Shows all simplex tableau one by one
- Final Tableau: Shows only the final simplex tableau directly

Final Simplex tableau and solution

VAR X1	3 X2	0 S1	0 S2	0 83	RHS
S1 Ø X2 Ø X1 1	0 1 0	1 0 0	.333 .333 333	667 .333 .667	2.667 3.667 2.333
Z 2 C-Z 0 any key to co	3 Ø ntinue	0 0	.333 333	2.333 -2.333	15.667

Final Solution Z=15.67 x_1 =2.33 x_2 =3.67

D Nagesh Kumar, IISc

MATLAB Toolbox for Linear Programming

- Very popular and efficient
- Includes different types of optimization techniques
- To use the simplex method
 - set the option as

options = optimset ('LargeScale', 'off', 'Simplex', 'on')

- then a function called 'linprog' is to be used

D Nagesh Kumar, IISc

MATLAB Toolbox for Linear Programming

linprog

Solve a linear programming problem

$$\min_{x} f^{T}x \quad \text{such that} \quad A \cdot x \leq b$$
$$Aeq \cdot x = beq$$
$$lh \leq x \leq uh$$

where f, x, b, beq, lb, and ub are vectors and A and Aeq are matrices.

Syntax

```
x = linprog(f,A,b,Aeq,beq)
x = linprog(f,A,b,Aeq,beq,lb,ub)
x = linprog(f,A,b,Aeq,beq,lb,ub,x0)
x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options)
[x,fval] = linprog(...)
[x,fval,exitflag] = linprog(...)
[x,fval,exitflag,output] = linprog(...)
[x,fval,exitflag,output,lambda] = linprog(...)
```


MATLAB Toolbox for Linear Programming

Description

linprog solves linear programming problems.

```
x = \text{linprog}(f, A, b) solves min f'*x such that A*x \le b.
```

x = linprog(f, A, b, Aeq, beq) solves the problem above while additionally satisfying the equality constraints $Aeq^*x = beq$. Set A=[] and b=[] if no inequalities exist.

```
x = \text{linprog}(f, A, b, \text{Aeq}, \text{beq}, 1b, ub) defines a set of lower and upper bounds on the design variables, x, so that the solution is always in the range 1b \le x \le ub. Set \text{Aeq}=[] and \text{beq}=[] if no equalities exist.
```

x = linprog(f, A, b, Aeq, beq, 1b, ub, x0) sets the starting point to x0. This option is only available with the medium-scale algorithm (the Largescale option is set to 'off' using optimset). The default large-scale algorithm and the simplex algorithm ignore any starting point.

```
x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options) minimizes with the
optimization options specified in the structure options. Use optimset to set these
options.
```

```
[x, fval] = linprog(...) returns the value of the objective function fun at the solution x: fval = f'*x.
```

```
[x,lambda,exitflag] = linprog(...) returns a value exitflag that describes
the exit condition.
```

```
[x,lambda,exitflag,output] = linprog(...) returns a structure output that
contains information about the optimization.
```

20

Example

Let us consider the same problem as before

 $\begin{array}{ll} Maximize & Z=2x_1+3x_2\\ Subject \ to & x_1\leq 5,\\ & x_1-2x_2\geq -5,\\ & x_1+x_2\leq 6\\ & x_1,x_2\geq 0 \end{array}$

Note: The maximization problem should be converted to minimization problem in MATLAB

Example... contd.

Thus,

$$f = \begin{bmatrix} -2 & -3 \end{bmatrix}$$
$$A = \begin{bmatrix} 1 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}$$
$$b = \begin{bmatrix} 5 & 5 & 6 \end{bmatrix}$$
$$lb = \begin{bmatrix} 0 & 0 \end{bmatrix}$$

% Cost coefficients

% Coefficients of constraints

% Right hand side of constraints

% Lowerbounds of decision variables

Example... contd.

MATLAB code

clear all %Converted to minimization problem f=[-2 -3]; A=[10;-12;11]; b=[5 5 6]; lb=[0 0]; options = optimset ('LargeScale', 'off', 'Simplex', 'on'); [x, fval]=linprog (f, A, b, [], [], lb); Z = -fval %Multiplied by -1 X Solution Z = 15.667with $x_1 = 2.333$ and $x_2 = 3.667$ D Nagesh Kumar, IISc **Optimization Methods: M4L1**

23

Thank You

D Nagesh Kumar, IISc