Linear Programming Applications

Software for Linear
Programming

Objectives

- Use of software to solve LP problems
- MMO Software with example
> Graphical Method
> Simplex Method
- Simplex method using optimization toolbox of MATLAB

MMO Software Mathematical Models for Optimization

An MS-DOS based software
Used to solve different optimization problems

- Graphical method and Simplex method will be discussed.

Installation

- Download the file "MMO.ZIP" and unzip it in a folder in the PC
- Open this folder and double click on the application file named as "START". It will open the MMO software

Working with MMO

Opening Screen

Portions (C) Copyright Microsoft Corporation, 1992
All rights reserved.

Working with MMO

Starting Screen

SOLUTION METHOD: GRAPHIC/ SIMPLEX

Graphical Method

Data Entry

Data Entry: Few Notes

- Free Form Entry: Write the equation at the prompted input.
- Tabular Entry: Spreadsheet style. Only the coefficients are to be entered, not the variables.
- All variables must appear in the objective function (even those with a 0 coefficient)
- Constraints can be entered in any order; variables with 0 coefficients do not have to be entered
- Constraints may not have negative right-hand-sides (multiply by -1 to convert them before entering)
- When entering inequalities using < or >, it is not necessary to add the equal sign (=)
- Non-negativity constraints are assumed and need not be entered

Example

Let us consider the following problem

$$
\begin{array}{lc}
\text { Maximize } & Z=2 x_{1}+3 x_{2} \\
\text { Subject to } & x_{1} \leq 5 \\
& x_{1}-2 x_{2} \geq-5, \\
& x_{1}+x_{2} \leq 6 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Note: The second constraint is to be multiplied by -1 while entering, i.e. $-x_{1}+2 x_{2} \leq 5$

Steps in MMO Software

- Select 'Free Form Entry' and Select ‘TYPE OF PROBLEM' as 'MAX'
- Enter the problem as shown

- Write 'go' at the last line of the constraints
- Press enter
- Checking the proper entry of the problem
- If any mistake is found, select 'NO' and correct the mistake
- If everything is ok, select 'YES' and press the enter key

Solution

$$
\begin{aligned}
& Z=15.67 \\
& x_{1}=2.33 \\
& x_{2}=3.67
\end{aligned}
$$

F1: Redraw
F2: Rescale
F3: Move Objective Function Line
F4: Shade Feasible Region
F5: Show Feasible Points
F6: Show Optimal Solution Point
F10: Show Graphical LP Menu (GPL)

Graphical LP Menu

Extreme points and feasible extreme points

EXTREME POINTS:

	X1	X2
1	5.00	0.00
2	5.00	1.00
3	5.00	5.00
4	-5.00	0.00
5	0.00	2.50
6	2.33	3.67
7	6.00	0.00
8	0.00	6.00
9	0.00	0.00

FEASIBLE EXTRETE POIMTS:

\qquad
\qquad
5.00
5.00
0.00
2.33
0.00

OBJ FUICI UALUE

10.00
13.00
7.50
15.66
0.00

Simplex Method using MMO

- Simplex method can be used for any number of variables
- Select SIMPLEX and press enter.
- As before, screen for "data entry method" will appear
- The data entry is exactly same as discussed before.

Example

Let us consider the same problem.
(However, a problem with more than two decision variables can also be taken)

$$
\begin{array}{lc}
\text { Maximize } & Z=2 x_{1}+3 x_{2} \\
\text { Subject to } & x_{1} \leq 5 \\
& x_{1}-2 x_{2} \geq-5, \\
& x_{1}+x_{2} \leq 6 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Slack, surplus and artificial variables

- There are three additional slack variables

cii D:IsoftwareMMOISTART.EXE			- $\square \times$
SLACK, SURPLUS AND ARTIFICIAL UARIABLES ADDED TO MODEL <TABLERU):			
Uariable	TYPE	CONSTRAINT	
$\begin{aligned} & \mathrm{s} 1 \\ & \mathrm{~s} 2 \\ & \mathrm{~s} 3 \end{aligned}$	SLACK SLACK SLACK	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	
Press any key to continue...			

Different options for Simplex tableau

- No Tableau: Shows direct solutions
- All Tableau: Shows all simplex tableau one by one
- Final Tableau: Shows only the final simplex tableau directly

Final Simplex tableau and solution

cit D:lsoftwareMmoistart.EXE								- \square - \times
TABLERU NUTBEER 3								
$\begin{gathered} C\left(j_{j}\right\rangle \\ \text { BASIC } \end{gathered}$	UAR	$\stackrel{2}{\mathrm{x} 1}$	${ }_{3}^{3}$	${ }_{\text {¢ }}^{\text {¢ }}$	$\stackrel{\text { ¢ }}{\text { s2 }}$	$\stackrel{\square}{83}$	RHS	
$\begin{aligned} & 6 \\ & \hline \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 81 \\ & 81 \\ & 82 \\ & 81 \end{aligned}$		1 1 1 0	1 0 8 8	$\begin{array}{r} .333 \\ -.333 \\ -.333 \end{array}$	$\begin{array}{r} -.667 \\ .333 \\ .667 \end{array}$	$\begin{aligned} & 2.667 \\ & 3.667 \\ & 2.333 \end{aligned}$	
Press	$\begin{gathered} C_{i}^{Z} \\ n y \text { key } \end{gathered}$		3 8 8	$\stackrel{\square}{0}$	-.333	${ }_{-2.333}^{2.333}$	15.667	

Final Solution

$$
\begin{aligned}
& \mathrm{Z}=15.67 \\
& x_{1}=2.33 \\
& x_{2}=3.67
\end{aligned}
$$

MATLAB Toolbox for Linear Programming

- Very popular and efficient
- Includes different types of optimization techniques
- To use the simplex method
- set the option as
options = optimset ('LargeScale', 'off', 'Simplex', 'on')
- then a function called 'linprog' is to be used

MATLAB Toolbox for Linear Programming

linprog

Solve a linear programming problem

$\min _{x} f^{T} x \quad$ such that \quad	$A \cdot x \leq b$
	Aeq $\cdot x=b e q$
	$l b \leq x \leq u b$

where f, x, b, beq, lb, and $u b$ are vectors and A and $A e q$ are matrices.

Syntax

```
x = linprog(f,A,b,Aeq,beq)
x = linprog(f,A,b,Aeq,beq, lb,ub)
x = linprog(f,A,b,Aeq,beq, lb,ub,x0)
x = linprog(f,A,b,Aeq,beq, lb,ub, x0,options)
[x,fval] = linprog(...)
[x,fval,exitflag] = linprog(...)
[x,fval,exitflag,output] = linprog(...)
[x,fval,exitflag,output,lambda] = linprog(...)
```


MATLAB Toolbox for Linear Programming

Description

linprog solves linear programming problems.
$x=\operatorname{linprog}(f, A, b)$ solves min $f^{\prime *} x$ such that $A^{*} x<=b$.
$\mathrm{x}=\operatorname{linprog}(\mathrm{f}, \mathrm{A}, \mathrm{b}, \mathrm{Aeq}, \mathrm{beq}) \quad$ solves the problem above while additionally satisfying the equality constraints $A e q{ }^{\star} x=b e q$. Set $A=[]$ and $b=[]$ if no inequalities exist.
$x=\operatorname{linprog}(f, A, b$, Aeq, beq, $1 \mathrm{~b}, \mathrm{ub})$ defines a set of lower and upper bounds on the design variables, x , so that the solution is always in the range $1 \mathrm{~b}<=\mathrm{x}<=\mathrm{ub}$. Set Aeq= [] and beq= [] if no equalities exist.
$x=\operatorname{linprog}(f, A, b, A e q, b e q, l b, u b, x 0)$ sets the starting point to $x 0$. This option is only available with the medium-scale algorithm (the LargeScale option is set to 'off' using optimset). The default large-scale algorithm and the simplex algorithm ignore any starting point.
$x=\operatorname{linprog}(f, A, b$, Aeq, $b e q, l b, u b, x 0$, options) minimizes with the optimization options specified in the structure options. Use optimset to set these options.
[x,fval] $=\operatorname{linprog}(\ldots)$ returns the value of the objective functionfun at the solution x : fval $=f^{\prime *}$.
[x,lambda, exitflag] = linprog(...) returns a value exitflag that describes the exit condition.
[x,lambda, exitflag,output] = linprog(...) returns a structure output that contains information about the optimization.

Example

Let us consider the same problem as before

$$
\begin{array}{lc}
\text { Maximize } & Z=2 x_{1}+3 x_{2} \\
\text { Subject to } & x_{1} \leq 5, \\
& x_{1}-2 x_{2} \geq-5, \\
& x_{1}+x_{2} \leq 6 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Note: The maximization problem should be converted to minimization problem in MATLAB

Example... contd.

Thus,

$$
\left.\begin{array}{rlr}
f & =\left[\begin{array}{cc}
-2 & -3
\end{array}\right] & \text { \% Cost coefficients } \\
A & =\left[\begin{array}{cc}
1 & 0 \\
-1 & 2 \\
1 & 1
\end{array}\right] & \\
b & \text { \% Coefficients of constraints } \\
l b & 5 & 6
\end{array}\right] \quad\left[\begin{array}{cc}
0 & 0
\end{array}\right] \quad \text { \% Right hand side of constraints }
$$

Example... contd.

MATLAB code

clear all
$\mathrm{f}=[-2-3] ; \quad$ \%Converted to minimization problem
$A=[10 ;-12 ; 11] ;$
b=[5 5 6];
lb=[0 0];
options = optimset ('LargeScale', 'off', 'Simplex', 'on');
[x , fval]=linprog (f , A , b , [] , [] , lb);
$Z=-$ fval \quad \%Multiplied by -1
$\stackrel{\mathbf{x}}{\text { Solution }}$
$Z=15.667 \quad$ with $x_{1}=2.333$ and $x_{2}=3.667$

Thank You

