Linear Programming

Revised Simplex Method,
Duality of LP problems
and Sensitivity analysis
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Introduction
« -]

Revised simplex method is an improvement over simplex method. It is
computationally more efficient and accurate.

Duality of LP problem is a useful property that makes the problem
easier in some cases

Dual simplex method is computationally similar to simplex method.
However, their approaches are different from each other.

Primal-Dual relationship is also helpful in sensitivity or post optimality
analysis of decision variables.
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Objectives
S

Objectives

e To explain revised simplex method

e To discuss about duality of LP and Primal-Dual relationship
e To illustrate dual simplex method

e To end with sensitivity or post optimality analysis
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Revised Simplex method: Introducti

e Benefit of revised simplex method is clearly
comprehended in case of large LP problems.

e In simplex method the entire simplex tableau is
updated while a small part of it is used.

e The revised simplex method uses exactly the same
steps as those in simplex method.

e The only difference occurs in the details of computing
the entering variables and departing variable.
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Revised Simplex method

Consider the following LP problem (with general notations, after
transforming it to its standard form and incorporating all required slack,
surplus and artificial variables)

(2) CX + CX, + CgXg A+ reoveeees + ¢cx +Z =0

(Xi) CpXp + CpXp + CpgXg 4 coeeeeeee + CpX, =b,
(Xj) CoXy + CppXy + CpgXg + voeeeeees + CnX; =b,
(Xl) lexl + Cm2X2 + Cm3X3 T + Cman :bm

As the revised simplex method is mostly beneficial for large LP
problems, it will be discussed in the context of matrix notation.
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Revised Simplex method: Matrix for |
S

Matrix notation
Minimize z=C"X
subjectto: AX=B

with : X >0
where o
_Xl_ _Cl_ by 0] _C11 Ciz Cin
e X.2 o C, B bz 0= 0 A = C:21 Cp Cop
X C 0 _le Cm2 Cmn
| ™n | ~n _ _bm_ L
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Revised Simplex method: Notations
c ]

Notations for subsequent discussions:

Column vector corresponding to a decision variable X is

Xs is the column vector of basic variables

Cs is the row vector of cost coefficients corresponding to  Xq,
and

S is the basis matrix corresponding to X
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Revised Simplex method:
lterative steps

1. Selection of entering variable

For each of the nonbasic variables, calculate the coefficient
(WP - c), where, P is the corresponding column vector
associated with the nonbasic variable at hand, c is the cost
coefficient associated with that nonbasic variable and W =
CsS

For maximization (minimization) problem, nonbasic
variable, having the lowest negative (highest positive)
coefficient, as calculated above, is the entering variable.
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Revised Simplex method:
lterative steps

2. Selection of departing variable
a) A new column vector U is calculated as U =S™* B

b) Corresponding to the entering variable, another vector V is
calculated as V = S P, where P is the column vector
corresponding to entering variable.

c) It may be noted that length of both U and V is same (= m). For
1 =1,..., m, the ratios, U(i)/V(i), are calculated provided V(i) > 0.
i = r, for which the ratio is least, is noted. The r ! basic
variable of the current basis is the departing variable.

If it is found that V(i) < O for all i, then further calculation is stopped
concluding that bounded solution does not exist for the LP problem at
hand.
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Revised Simplex method:
lterative steps

3. Update to new Basis

Old basis S, is updated to new basis S, as S, ., = [ E S'l] *

where
1 0 n 0 0 |
0 1 .. e 0 0 o
” V(i) .
: ——  for | =T
_Jvir)
E=| @ ¢ o . i and 77; =1 1
——  for i=r
V(r)
0 0 SR 1 0
0 0 0o 1

77m e e 1
\,r thcolumn
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Revised Simplex method:
lterative steps

S is replaced by S, and stepsl through 3 are repeated.

If all the coefficients calculated in step 1, i.e., is positive (negative)
In case of maximization (minimization) problem, then optimum
solution is reached

The optimal solution is

Xs=S'B and z=CXg
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Duality of LP problems
c ]

Each LP problem (called as Primal in this context) is
associated with its counterpart known as Dual LP problem.

Instead of primal, solving the dual LP problem is sometimes
easier in following cases

a) The dual has fewer constraints than primal

Time required for solving LP problems is directly affected by the
number of constraints, i.e., number of iterations necessary to
converge to an optimum solution, which in Simplex method
usually ranges from 1.5 to 3 times the number of structural
constraints in the problem

b) The dual involves maximization of an objective function

It may be possible to avoid artificial variables that otherwise would
be used in a primal minimization problem.
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Finding Dual of a LP problem
c ]

Primal Dual
Maximization Minimization
Minimization Maximization

ith variable

it constraint

ji constraint

ji variable

X;>0

Inequality sign of i"" Constraint:
> If dual is maximization
< if dual is minimization

D Nagesh Kumar, I11Sc

...contd. to next slide

Optimization Methods: M3L5




Finding Dual of a LP problem...cont. |
c ]

Primal Dual
i variable unrestricted it constraint with = sign
ji constraint with = sign ji variable unrestricted
RHS of j* constraint Cost coefficient associated with jt"

variable in the objective function

Cost coefficient associated with
i variable in the objective
function

RHS of it constraint constraints

Refer class notes for pictorial representation of all the operations
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Dual from a Primal

Mark the corresponding
f> decision variables in the dual %

Cost coefficients for
the Objective Function

......... + C”x“
Dual Problem

Subject to oo+ RGN + ¢, x,E4h, g u

Opposite for the Dual,
i.e., Minimize

Cofey F[Cnff SRR T 880, Ya Thus the Objective Function, e
: : Minimize by, +b,y, +---+h v Minimize Z = h]_}"| + hl-}'l LR + ‘bm.}'m
Ay e b, o NN e, 4D, ¥, ﬂ Subject to CuW + Cy Yy oo + c,¥, <¢
23 ,Cunrestricted. X, - . CoN + Cpy, Freeeerees + C,,Y, =
Thus. the 1™ constraint, - s - -
Right hand |:> e Dy e
o S’ ] A ' . cpy +('2J' +”-+£‘m}.m5(‘
C();it‘fl'iutilltt.\ C U.si]?u lstg side B the 1 b 1)2 1
WL gy o condfyaint ST . I ety - ; +
constrain onstr: is < ﬁ Cru + Conl2 + + ComnVm = Cn
— _ vy, unrestricted, y, =20, -, v, 20
Coefficients Corptsponding Right h |:> Thus, the 2° constraint,
of the 2" |::> sigh ¢f the 2" side of the 2 Coly HCpYyt 46, =6
constraint congtraint is = constraiit
Determine the Determine the Determine the
sign ol ¥ signof v, | "TTTTT signof v,

N .

Dual Problem
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Finding Dual of a LP problem.. contd

Note:
Before finding its dual, all the constraints should be
transformed to ‘less-than-equal-to’ or ‘equal-to’ type for

maximization problem and to ‘greater-than-equal-to’ or
‘equal-to’ type for minimization problem.

It can be done by multiplying with -1 both sides of the
constraints, so that inequality sign gets reversed.
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Finding Dual of a LP problem:

An example

Primal Dual
Maximize Z = 4x, +3x, Minimize Z'=6000y, —2000y, + 4000y,
Subject to Subject to
x1+§x2£6000 Yyi=Y,+Y; =4
X, — X, =2000 %yl+y2£3
X, <4000 Y, >0
X, unrestricted y, >0
X, 20 y, >0

Note: Second constraint in the primal is transformed to —X, + X, <—-2000
before constructing the dual.
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Primal-Dual relationships

e If one problem (either primal or dual) has an optimal
feasible solution, other problem also has an optimal
feasible solution. The optimal objective function
value is same for both primal and dual.

e If one problem has no solution (infeasible), the other
problem is either infeasible or unbounded.

e If one problem is unbounded the other problem is
Infeasible.
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Dual Simplex Method
c ]

Simplex Method verses Dual Simplex Method

1. Simplex method starts with a nonoptimal but
feasible solution where as dual simplex method
starts with an optimal but infeasible solution.

2. Simplex method maintains the feasibility during
successive iterations where as dual simplex
method maintains the optimality.

D Nagesh Kumar, I11Sc Optimization Methods: M3L5



Dual Simplex Method: Iterative steps
c ]

Steps involved in the dual simplex method are:

1.

All the constraints (except those with equality (=) sign) are
modified to ‘less-than-equal-to’ sign. Constraints with
greater-than-equal-to’ sign are multiplied by -1 through out
so that inequality sign gets reversed. Finally, all these
constraints are transformed to equality sign by introducing
required slack variables.

Modified problem, as in step one, is expressed in the form
of a simplex tableau. If all the cost coefficients are positive
(l.e., optimality condition is satisfied) and one or more
basic variables have negative values (i.e., non-feasible
solution), then dual simplex method is applicable.
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Dual Simplex Method: Iterative

steps...contd.

3.

Selection of exiting variable: The basic variable with the
highest negative value is the exiting variable. If there are two
candidates for exiting variable, any one is selected. The row
of the selected exiting variable is marked as pivotal row.

Selection of entering variable: Cost coefficients,
corresponding to all the negative elements of the pivotal row,
are identified. Their ratios are calculated after changing the
sign of the elements of pivotal row, i.e.,

ratio — Cost Coefficients
—1x Elements of pivotal row

The column corresponding to minimum ratio is identified as
the pivotal column and associated decision variable is the
entering variable.
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Dual Simplex Method: Iterative

steps...contd.
S

5.

Pivotal operation: Pivotal operation is exactly
same as In the case of simplex method,
considering the pivotal element as the element at
the intersection of pivotal row and pivotal column.

Check for optimality: If all the basic variables
have nonnegative values then the optimum solution
IS reached. Otherwise, Steps 3 to 5 are repeated
until the optimum is reached.
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Dual Simplex Method:
An Example

Consider the following problem:

Minimize Z =2X, +X,
subject to X, =2
3X, +4x, <24
4x, +3X, 212
—X, +2X%, 21
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Dual Simplex Method:
An Example...contd.

After introducing the surplus variables the problem is reformulated
with equality constraints as follows:
Minimize Z =2X, +X,
subject to —X, +X, = —2
3X, +4X, +Xx,=24
—4x, —-3X, +X; =-12
X, —2X, +X;=-1
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Dual Simplex Method:
An Example...contd.

Expressing the problem in the tableau form:

Variables

[teration  Basis Z b,
X, A X Y, X X,
' s ! 2 'y 0 0 0 o0 0
Xy (0 -1 0 I 0 0 0 -2
X, 0 3 1 0 | 0 0 24
Xs 0 -4 q 0 0 I 0 -12

3
X, 0 RE: }\ 0 0 ! -1
Ratios 2 | 0.3 \ I.-"R/ \ -- -

k Pivotal Row \'& \ Pivotal Element
Pivotal Column
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Dual Simplex Method:
An Example...contd.

Successive iterations:

: ) Rasi / Variables ;
leration dsls m X, -'L.; X, .-ll..._-“ "".f. I
Z L 23 \ 0 0 0 -13 0 4
<X 0 @ 0 | 0 0 0 2
2 X, 0o | 73 | 0 0 1 4/3 0 8
X, 0 4/3 | 0 0 -13 0 1
X, 0 \ 11/3 / 0 0 0 -2/3 1 7
Ratios 2 | \2/3 - - - - -
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Dual Simplex Method:
An Example...contd.

Successive iterations:

Varables

[teration  Basis V4 _ , ) : ) b,
Y 2 X3 Xy X5 g
/. l () 0 -2/3 () / -I.-"E\ () 16/3
Y () I 0 -1 () f 0 ‘ 0 2
3 X, () () 0 =7/3 | 4/3 0 38/3
X, () 0 l 4/3 () -1/3 0 4/3
A,

Ratios = -- ‘ - \ - -- (0.3 -
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Dual Simplex Method:
An Example...contd.

Successive iterations:

Variables

[teration  DBasis V4 - _ , _ . . b,
X, ¥ X; X, Xs X

V4 | () { 2.5 () 0 (.5 5.5

¥, () | () -1 () () () 2

4 X, 0 () () 5 | 0 2 12

X 0 0 | (0.5 () ] (.5 [.5

X5 () () () -5.5 () | -1.5 (.5

Ratios =

As all the b, are positive, optimum solution is reached.
Thus, the optimal solution is Z = 5.5 with x, =2 and x,= 1.5
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Solution of Dual from Primal Simplex

Primal
Maximize

subject to

Dual
Minimize
subject to

Z =4X — X, +2X,
2% + X, +2X; <6

X, —4X, +2%, <0

oX, —2X, —2X; <4
X, X5, X3 20

Z'=6y,+0y, +4y,
2y, +Y,+5y, =4
y,—4y,-2y,>-1
2y, +2y,-2y,>2
Yir Y50 Y5 20
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[teration  Basis

Variables

b, =

Xy Xa Xy Xy Xy Xg s yl

36

Optimum value of 7

yw 1
All [h\,' L'U.L_:”ILILI]]..‘: o are Value of x,
nonnegative.  Thus  optimum ] - g
solution is achieved. Value of x, -----

Value of x,
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Sensitivity or post optimality analysis
c ]

- Changes that can affect only Optimality
Change in coefficients of the objective function, C,, C,,..
Re-solve the problem to obtain the solution

- Changes that can affect only Feasibility
Change in right hand side values, by, b,,..
- Apply dual simplex method or study the dual variable values

- Changes that can affect both Optimality and Feasibility
Simultaneous change in C, C,,.. and b, b,,..
Use both primal simplex and dual simplex or re-solve
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Sensitivity or post optimality analysis
c ]

A dual variable, associated with a constraint, indicates
a change in Z value (optimum) for a small change in
RHS of that constraint.

AZ =y;Ab,

where vy is the dual variable associated with the i constraint,
Ab; is the small change in the RHS of it constraint,

AZ is the change in objective function owing to Ab;.
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4
Sensitivity or post optimality anal =¢=g&
An Example
L

Let, for a LP problem, ith constraint be
2%, + X, <50
and the optimum value of the objective function be 250.

RHS of the i constraint changes to 55, i.e., i constraint changes
0 2% +X, <55

Let, dual variable associated with the i constraint is y;, optimum
value of which is 2.5 (say). Thus, Ab;=55-50=5andy; = 2.5

S0, AZ=y; Ab; = 2.5x5 = 12.5 and revised optimum value of the
objective function is 250 + 12.5 = 262.5.

D Nagesh Kumar, I11Sc Optimization Methods: M3L5



Thank You

D Nagesh Kumar, I11Sc Optimization Methods: M3L5



	Linear Programming
	Introduction
	Objectives
	Revised Simplex method: Introduction
	Revised Simplex method
	Revised Simplex method: Matrix form
	Revised Simplex method: Notations
	Revised Simplex method: �Iterative steps
	Revised Simplex method: �Iterative steps
	Revised Simplex method: �Iterative steps
	Revised Simplex method: �Iterative steps
	Duality of LP problems
	Finding Dual of a LP problem
	Finding Dual of a LP problem…contd.
	Dual from a Primal
	Finding Dual of a LP problem…contd.
	Finding Dual of a LP problem: �An example
	Primal-Dual relationships
	Dual Simplex Method
	Dual Simplex Method: Iterative steps
	Dual Simplex Method: Iterative steps…contd.
	Dual Simplex Method: Iterative steps…contd.
	Dual Simplex Method: �An Example
	Dual Simplex Method: �An Example…contd.
	Dual Simplex Method: �An Example…contd.
	Dual Simplex Method: �An Example…contd.
	Dual Simplex Method: �An Example…contd.
	Dual Simplex Method: �An Example…contd.
	Solution of Dual from Primal Simplex
	Sensitivity or post optimality analysis
	Sensitivity or post optimality analysis
	Sensitivity or post optimality analysis: An Example

