Linear Programming

Graphical method
0
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Objectives
c—

e To visualize the optimization procedure
explicitly

e To understand the different terminologies
associated with the solution of LPP

e To discuss an example with two decision
variables
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Example

Maximize Z =6X+5Y

subject to 2X—3y <5
X+3y <11
4x+y <15
X, y =20
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Graphical method: Step - 1
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Plot all the
constraints one
by one on a
graph paper
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Graphical method: Step - 2
]

|dentify the common
region of all the
constraints.

Feasible
region

ALLLLLLAA

This is known as
‘feasible region’
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Graphical method: Step - 3
S
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Plot the objective
function assuming any
constant, k, I.e.

6X+5y =k
This iIs known as ‘Z line’,
which can be shifted

perpendicularly by

changing the value of
K.
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Graphical method: Step -4
.

Notice that value of the
objective function will be
maximum when it
passes through the
Intersection of x+3y =11
and 4x +y =15 (straight
lines associated with 2nd

s | and 3 constraints).

This is known as ‘Optimal
Point’

ptismal
Hoine
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Graphical method: Step -5
]

Thus the optimal point of
the present problem is

ptismal

3 2 X =3.091

) y =2.636

1 And the optimal solution
T ' IS
2 -1 5

6X" +5y" =31.726
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Different cases of optimal solution

A linear programming problem may have

1.

2
3
4.
S

A unique, finite solution (example already discussed)

. An unbounded solution,

Multiple (or infinite) number of optimal solution,

Infeasible solution, and

. A unique feasible point.
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Unbounded solution:
Graphical representation
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Situation: If the feasible
region is not bounded

Solution: It is possible that
the value of the
objective function goes
on increasing without
leaving the feasible
region, i.e., unbounded
solution
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Multiple solutions:

Graphical representation
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Situation: Z line is parallel
to any side of the
feasible region

Solution: All the points
lying on that side
constitute optimal
solutions
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Infeasible solution:

Graphical representation
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Situation: Set of
constraints does not
form a feasible region at
all due to inconsistency

In the constraints

Solution: Optimal solution
IS not feasible
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Unique feasible point:
Graphical representation

. Situation: Feasible region
consist of a single point.
) Number of constraints
E e should be at least equal
2 oy to the number of decision
: < variables
}t “i‘._at.h;?.h
2 <=\ 4 5| Solution: There is no need
¢ for optimization as there
? is only one feasible point

D Nagesh Kumar, I11Sc Optimization Methods: M3L2



Thank You
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