

Linear Programming

Graphical method

1

D Nagesh Kumar, IISo

Optimization Methods: M3L2

Objectives

- To visualize the optimization procedure explicitly
- To understand the different terminologies associated with the solution of LPP
- To discuss an example with two decision variables

Example

Maximize	Z = 6x + 5y	
subject to	$2x - 3y \le 5$	(c-1)
	$x + 3y \le 11$	(c-2)
	$4x + y \le 15$	(c-3)
	$x, y \ge 0$	(c-4 & c-5)

Plot all the constraints one by one on a graph paper

Identify the common region of all the constraints.

This is known as *'feasible region'*

Plot the objective function assuming any constant, *k*, i.e. 6x + 5y = kThis is known as '*Z* line', which can be shifted

perpendicularly by changing the value of *k*.

Notice that value of the objective function will be maximum when it passes through the intersection of x + 3y = 11and 4x + y = 15 (straight lines associated with 2nd and 3rd constraints). This is known as 'Optimal Point'

Thus the *optimal point* of the present problem is

$$x^* = 3.091$$

 $y^* = 2.636$

And the optimal solution is

$$6x^* + 5y^* = 31.726$$

Different cases of optimal solution

A linear programming problem may have

- 1. A unique, finite solution (example already discussed)
- 2. An unbounded solution,
- 3. Multiple (or infinite) number of optimal solution,
- 4. Infeasible solution, and
- 5. A unique feasible point.

Unbounded solution: Graphical representation

Situation: If the feasible region is not bounded

Solution: It is possible that the value of the objective function goes on increasing without leaving the feasible region, i.e., unbounded solution

D Nagesh Kumar, IISc

Multiple solutions: Graphical representation

Situation: *Z line* is parallel to any side of the feasible region

Solution: All the points lying on that side constitute optimal solutions

Infeasible solution: Graphical representation

Situation: Set of constraints does not form a feasible region at all due to inconsistency in the constraints

Solution: Optimal solution is not feasible

Unique feasible point: Graphical representation

Situation: Feasible region consist of a single point. Number of constraints should be at least equal to the number of decision variables

Solution: There is no need for optimization as there is only one feasible point

Thank You

D Nagesh Kumar, IISc

Optimization Methods: M3L2