

Optimization using Calculus

Kuhn-Tucker Conditions

1

D Nagesh Kumar, IIS

Introduction

- Optimization with multiple decision variables and equality constraint : Lagrange Multipliers.
- Optimization with multiple decision variables and inequality constraint : Kuhn-Tucker (KT) conditions
- KT condition: Both necessary and sufficient if the objective function is concave and each constraint is linear or each constraint function is concave, i.e. the problems belongs to a class called the convex programming problems.

Consider the following optimization problem Minimize f(X)

subject to

$g_j(X) \le 0$ for j=1,2,...,p

where the decision variable vector

$$X = [x_1, x_2, ..., x_n]$$

Kuhn Tucker Conditions

Kuhn-Tucker conditions for $\mathbf{X}^* = [x_1^* \ x_2^* \ \dots \ x_n^*]$ to be a local minimum are

$$\frac{\partial f}{\partial x_i} + \sum_{j=1}^m \lambda_j \frac{\partial g}{\partial x_i} = 0 \qquad i = 1, 2, ..., n$$
$$\lambda_j g_j = 0 \qquad j = 1, 2, ..., m$$
$$g_j \le 0 \qquad j = 1, 2, ..., m$$
$$\lambda_i \ge 0 \qquad j = 1, 2, ..., m$$

Kuhn Tucker Conditions ... contd.

- ★ In case of minimization problems, if the constraints are of the form $g_i(\mathbf{X}) \ge 0$, then λ_i have to be non-positive
- ♦ On the other hand, if the problem is one of maximization with the constraints in the form $g_j(\mathbf{X}) \ge 0$, then λ_j have to be nonnegative.

Example (1)

Minimize
$$f = x_1^2 + 2x_2^2 + 3x_3^2$$

subject to

$$g_1 = x_1 - x_2 - 2x_3 \le 12$$
$$g_2 = x_1 + 2x_2 - 3x_3 \le 8$$

Kuhn – Tucker Conditions

∂f , ∂g_1 , ∂g_2 ,	Ň	$2x_1 + \lambda_1 + \lambda_2 = 0$	(2)
$\frac{\partial f}{\partial x_i} + \lambda_1 \frac{\partial g_1}{\partial x_i} + \lambda_2 \frac{\partial g_2}{\partial x_i} = 0$		$4x_2 - \lambda_1 + 2\lambda_2 = 0$	(3)
ι ι ι	,	$6x_3 - 2\lambda_1 - 3\lambda_2 = 0$	(4)

$\lambda_j g_j = 0$	$\lambda_1(x_1 - x_2 - 2x_3 - 12) = 0$	(5)
<i>j</i> 0 <i>j</i>	$\lambda_2(x_1 + 2x_2 - 3x_3 - 8) = 0$	(6)

~ 10		$x_1 - x_2 - 2x_3 - 12 \le 0$	(7)
	$x_1 + 2x_2 - 3x_3 - 8 \le 0$	(8)	

$\lambda_j \ge 0$	$\lambda_1 \ge 0$	(9)
	$\lambda_2 \ge 0$	(10)

D Nagesh Kumar, IISc

From (5) either
$$\lambda_1 = 0$$
 or $x_1 - x_2 - 2x_3 - 12 = 0$,
Case 1

- > From (2), (3) and (4) we have $x_1 = x_2 = \lambda_2 / 2$ and $x_3 = \lambda_2 / 2$
- > Using these in (6) we get $\lambda_2^2 + 8\lambda_2 = 0$, $\therefore \lambda_2 = 0$ or -8
- \succ From (10), $\lambda_2 \geq 0\,$, therefore, $\,\lambda_2$ =0,
- > Therefore, $X^* = [0, 0, 0]$

This solution set satisfies all of (6) to (9)

Case 2:
$$x_1 - x_2 - 2x_3 - 12 = 0$$

> Using (2), (3) and (4), we have $\frac{-\lambda_1 - \lambda_2}{2} - \frac{\lambda_1 - 2\lambda_2}{4} - \frac{2\lambda_1 + 3\lambda_2}{3} - 12 = 0$
or $17\lambda_1 + 12\lambda_2 = -144$

➤ But conditions (9) and (10) give us $\lambda_1 \ge 0$ and $\lambda_2 \ge 0$ simultaneously, which cannot be possible with $17\lambda_1 + 12\lambda_2 = -144$

Hence the solution set for this optimization problem is $X^* = [0 0 0 0]$

D Nagesh Kumar, IISc

Example (2)

Minimize
$$f = x_1^2 + x_2^2 + 60x_1$$

subject to

$$g_1 = x_1 - 80 \ge 0$$
$$g_2 = x_1 + x_2 - 120 \ge 0$$

10

D Nagesh Kumar, IISc

Kuhn – Tucker Conditions

 $g_j \leq 0$

 $\frac{\partial f}{\partial x_i} + \lambda_1 \frac{\partial g_1}{\partial x_i} +$

11

$$\lambda_1 (x_1 - 80) = 0 \tag{13}$$

$$\lambda_j g_j = 0$$
 $\lambda_2 (x_1 + x_2 - 120) = 0$ (14)

$$x_1 - 80 \ge 0 \tag{15}$$

$$x_1 + x_2 + 120 \ge 0 \tag{16}$$

D Nagesh Kumar, IISc

From (13) either
$$\lambda_1 = 0$$
 or $(x_1 - 80) = 0$,

Case 1

- > From (11) and (12) we have $x_1 = -\frac{\lambda_2}{2} 30$ and $x_2 = -\frac{\lambda_2}{2}$
- > Using these in (14) we get $\lambda_2 (\lambda_2 150) = 0$ ∴ $\lambda_2 = 0 \text{ or } -150$
- > Considering $\lambda_2 = 0$, $\mathbf{X}^* = [30, 0]$. But this solution set violates (15) and (16)
- > For $\lambda_2 = -150$, $\mathbf{X}^* = [45, 75]$. But this solution set violates (15)

Case 2:
$$(x_1 - 80) = 0$$

13

≻ Using $x_1 = 80$ in (11) and (12), we have

$$\lambda_2 = -2x_2$$

$$\lambda_1 = 2x_2 - 220 \tag{19}$$

Substitute (19) in (14), we have $-2x_2(x_2 - 40) = 0$

For this to be true, either $x_2 = 0$ or $x_2 - 40 = 0$

For
$$x_2 = 0$$
, $\lambda_1 = -220$

- \succ This solution set violates (15) and (16)
- For $x_2 40 = 0$, $\lambda_1 = -140$ and $\lambda_2 = -80$
- This solution set is satisfying all equations from (15) to (19) and hence the desired
- > Thus, the solution set for this optimization problem is $\mathbf{X}^* = [8040]$.

Thank you

D Nagesh Kumar, IISc