Optimization using Calculus

Kuhn-Tucker
 Conditions

Introduction

* Optimization with multiple decision variables and equality constraint : Lagrange Multipliers.
* Optimization with multiple decision variables and inequality constraint : Kuhn-Tucker (KT) conditions
* KT condition: Both necessary and sufficient if the objective function is concave and each constraint is linear or each constraint function is concave, i.e. the problems belongs to a class called the convex programming problems.

Kuhn Tucker Conditions: Optimization Model

Consider the following optimization problem Minimize $f(X)$
subject to

$$
g_{j}(X) \leq 0 \quad \text { for } j=1,2, \ldots, p
$$

where the decision variable vector

$$
X=\left[x_{1}, x_{2}, \ldots, x_{n}\right]
$$

Kuhn Tucker Conditions

Kuhn-Tucker conditions for $\mathbf{X}^{*}=\left[\begin{array}{llll}x_{1} & x_{2}{ }^{*} \ldots x_{n}{ }^{*}\end{array}\right]$ to be a local minimum are

$$
\begin{array}{rlrl}
\frac{\partial f}{\partial x_{i}}+\sum_{j=1}^{m} \lambda_{j} \frac{\partial g}{\partial x_{i}} & =0 & & i=1,2, \ldots, n \\
\lambda_{j} g_{j} & =0 & & j=1,2, \ldots, m \\
g_{j} & \leq 0 & & j=1,2, \ldots, m \\
\lambda_{j} & \geq 0 & j=1,2, \ldots, m
\end{array}
$$

Kuhn Tucker Conditions ...contd.

* In case of minimization problems, if the constraints are of the form $g_{j}(\mathbf{X}) \geq 0$, then λ_{j} have to be non-positive
* On the other hand, if the problem is one of maximization with the constraints in the form $g_{\mathrm{j}}(\mathbf{X}) \geq 0$, then λ_{j} have to be nonnegative.

Example (1)

Minimize $f=x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}$ subject to

$$
\begin{aligned}
& g_{1}=x_{1}-x_{2}-2 x_{3} \leq 12 \\
& g_{2}=x_{1}+2 x_{2}-3 x_{3} \leq 8
\end{aligned}
$$

Example (1) ...contd.

Kuhn - Tucker Conditions

$$
\begin{align*}
\frac{\partial f}{\partial x_{i}}+\lambda_{1} \frac{\partial g_{1}}{\partial x_{i}}+\lambda_{2} \frac{\partial g_{2}}{\partial x_{i}}=0
\end{aligned} \quad \square \begin{aligned}
& 2 x_{1}+\lambda_{1}+\lambda_{2}=0 \tag{2}\\
& 4 x_{2}-\lambda_{1}+2 \lambda_{2}=0 \tag{5}\\
& 6 x_{3}-2 \lambda_{1}-3 \lambda_{2}=0
\end{align*} ~\left(\begin{array}{l}
\lambda_{1}\left(x_{1}-x_{2}-2 x_{3}-12\right)=0 \\
\lambda_{2}\left(x_{1}+2 x_{2}-3 x_{3}-8\right)=0 \\
\lambda_{j} g_{j}=0 \\
g_{j} \leq 0 \\
x_{1}-x_{2}-2 x_{3}-12 \leq 0 \\
x_{1}+2 x_{2}-3 x_{3}-8 \leq 0
\end{array} \quad \begin{array}{l}
\lambda_{1} \geq 0 \\
\lambda_{2} \geq 0
\end{array}\right.
$$

Example (1) ...contd.

From (5) either $\lambda_{1}=0$ or $x_{1}-x_{2}-2 x_{3}-12=, 0$
Case 1
> From (2), (3) and (4) we have $x_{1}=x_{2}=\lambda_{2} / 2$ and $x_{3}=\lambda_{2} / 2$
$>$ Using these in (6) we get $\lambda_{2}^{2}+8 \lambda_{2}=0, \therefore \lambda_{2}=0$ or -8
$>$ From (10), $\lambda_{2} \geq 0$, therefore, $\lambda_{2}=0$,
$>$ Therefore, $\mathbf{X}^{*}=[0,0,0]$
This solution set satisfies all of (6) to (9)

Example (1) ...contd.

Case 2: $x_{1}-x_{2}-2 x_{3}-12=0$
$>$ Using (2), (3) and (4), we have $\frac{-\lambda_{1}-\lambda_{2}}{2}-\frac{\lambda_{1}-2 \lambda_{2}}{4}-\frac{2 \lambda_{1}+3 \lambda_{2}}{3}-12=0$ or $17 \lambda_{1}+12 \lambda_{2}=-144$
$>$ But conditions (9) and (10) give us $\lambda_{1} \geq 0$ and $\lambda_{2} \geq 0$ simultaneously, which cannot be possible with $17 \lambda_{1}+12 \lambda_{2}=-144$ Hence the solution set for this optimization problem is $X^{*}=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$

Example (2)

Minimize $f=x_{1}^{2}+x_{2}^{2}+60 x_{1}$
subject to

$$
\begin{aligned}
& g_{1}=x_{1}-80 \geq 0 \\
& g_{2}=x_{1}+x_{2}-120 \geq 0
\end{aligned}
$$

Example (2) ...contd.

Kuhn - Tucker Conditions

$$
\left.\right] \begin{align*}
& \lambda_{1}\left(x_{1}-80\right)=0 \tag{11}\\
& \lambda_{2}\left(x_{1}+x_{2}-120\right)=0 \tag{13}\\
& \lambda_{j} g_{j}=0
\end{aligned} \quad \begin{aligned}
& x_{1}-80 \geq 0 \tag{14}\\
& x_{1}+x_{2}+120 \geq 0 \tag{15}\\
& g_{j} \leq 0
\end{aligned} \quad \sqcap \begin{aligned}
& \lambda_{1} \leq 0 \tag{16}\\
& \lambda_{2} \leq 0
\end{align*}
$$

Example (2) ...contd.

From (13) either $\lambda_{1}=0$ or $\left(x_{1}-80\right)=0$,

Case 1

$>$ From (11) and (12) we have $x_{1}=-\lambda_{2} / 2-30$ and $x_{2}=-\lambda_{2} / 2$
$>$ Using these in (14) we get $\lambda_{2}\left(\lambda_{2}-150\right)=0$
$\therefore \lambda_{2}=0$ or -150
$>$ Considering $\lambda_{2}=0, \mathbf{X}^{*}=[30,0]$. But this solution set violates (15) and (16)
$>$ For $\lambda_{2}=-150, \mathbf{X}^{*}=[45,75]$. But this solution set violates (15)

Example (2) ...contd.

Case 2: $\left(x_{1}-80\right)=0$
$>$ Using $x_{1}=80$ in (11) and (12), we have

$$
\begin{align*}
& \lambda_{2}=-2 x_{2} \\
& \lambda_{1}=2 x_{2}-220 \tag{19}
\end{align*}
$$

$>$ Substitute (19) in (14), we have $-2 x_{2}\left(x_{2}-40\right)=0$
$>$ For this to be true, either $x_{2}=0$ or $x_{2}-40=0$

Example (2) ...contd.

$>$ For $x_{2}=0, \lambda_{1}=-220$
$>$ This solution set violates (15) and (16)
$>$ For $x_{2}-40=0, \lambda_{1}=-140$ and $\lambda_{2}=-80$
$>$ This solution set is satisfying all equations from (15) to (19) and hence the desired
$>$ Thus, the solution set for this optimization problem is $\mathbf{X}^{*}=[8040$].

Thank you

