Optimization using Calculus

Optimization of Functions of
Multiple Variables subject to
Equality Constraints

Objectives

Constrained optimization

A function of multiple variables, $f(x)$, is to be optimized subject to one or more equality constraints of many variables. These equality constraints, $g_{j}(x)$, may or may not be linear. The problem statement is as follows:

Maximize (or minimize) $f(\mathbf{X})$, subject to $g_{j}(\mathbf{X})=0, \boldsymbol{j}=1,2, \ldots, m$ where

$$
\mathbf{X}=\left\{\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right\}
$$

Constrained optimization (contd.)

> With the condition that $m \leq n$; or else if $m>n$ then the problem becomes an over defined one and there will be no solution. Of the many available methods, the method of constrained variation and the method of using Lagrange multipliers are discussed.

Solution by method of Constrained Variation

- For the optimization problem defined above, let us consider a specific case with $n=2$ and $m=1$ before we proceed to find the necessary and sufficient conditions for a general problem using Lagrange multipliers. The problem statement is as follows:

Minimize $f\left(x_{1}, x_{2}\right)$, subject to $g\left(x_{1}, x_{2}\right)=0$

- For $f\left(x_{1}, x_{2}\right)$ to have a minimum at a point $\mathrm{X}^{*}=\left[x_{1}{ }^{*}, x_{2}{ }^{*}\right]$, a necessary condition is that the total derivative of $f\left(x_{1}, x_{2}\right)$ must be zero at $\left[x_{1}{ }^{*}, x_{2}{ }^{*}\right]$.

$$
\begin{equation*}
d f=\frac{\partial f}{\partial x_{1}} d x_{1}+\frac{\partial f}{\partial x_{2}} d x_{2}=0 \tag{1}
\end{equation*}
$$

Method of Constrained Variation (contd.)

- Since $g\left(x_{1}{ }^{*}, x_{2}{ }^{*}\right)=0$ at the minimum point, variations $d x_{1}$ and $d x_{2}$ about the point $\left[x_{1}{ }^{*}, x_{2}{ }^{*}\right]$ must be admissible variations, i.e. the point lies on the constraint:

$$
\begin{equation*}
g\left(x_{1}^{*}+d x_{1}, x_{2}^{*}+d x_{2}\right)=0 \tag{2}
\end{equation*}
$$

assuming $d x_{1}$ and $d x_{2}$ are small the Taylor series expansion of this gives us

$$
\begin{align*}
& g\left(x_{1}{ }^{*}+d x_{1}, x_{2}{ }^{*}+d x_{2}\right) \\
& \tag{3}\\
& =g\left(x_{1}^{*}, x_{2}^{*}\right)+\frac{\partial g}{\partial x_{1}}\left(\mathrm{x}_{1}^{*}, \mathrm{x}_{2}{ }^{*}\right) d x_{1}+\frac{\partial g}{\partial x_{2}}\left(\mathrm{x}_{1}{ }^{*}, \mathrm{x}_{2}{ }^{*}\right) d x_{2}=0
\end{align*}
$$

Method of Constrained Variation (contd.)

or

$$
\begin{equation*}
d g=\frac{\partial g}{\partial x_{1}} d x_{1}+\frac{\partial g}{\partial x_{2}} d x_{2}=0 \text { at }\left[x_{1}{ }^{*}, x_{2}^{*}\right] \tag{4}
\end{equation*}
$$

which is the condition that must be satisfied for all admissible variations.
Assuming , (4) can be rewritten as
$\partial g / \partial x_{2} \neq 0$

$$
\begin{equation*}
d x_{2}=-\frac{\partial g / \partial x_{1}}{\partial g / \partial x_{2}}\left(x_{1}^{*}, x_{2}{ }^{*}\right) d x_{1} \tag{5}
\end{equation*}
$$

Method of Constrained Variation (contd.)

(5) indicates that once variation along $x_{1}\left(d x_{1}\right)$ is chosen arbitrarily, the variation along $x_{2}\left(d x_{2}\right)$ is decided automatically to satisfy the condition for the admissible variation. Substituting equation (5) in (1) we have:

$$
\begin{equation*}
d f=\left.\left(\frac{\partial f}{\partial x_{1}}-\frac{\partial g / \partial x_{1}}{\partial g / \partial x_{2}} \frac{\partial f}{\partial x_{2}}\right)\right|_{\left(x_{1}^{*}, x_{2}^{*}\right)} d x_{1}=0 \tag{6}
\end{equation*}
$$

The equation on the left hand side is called the constrained variation of f. Equation (5) has to be satisfied for all $d x_{1}$, hence we have

$$
\begin{equation*}
\left.\left(\frac{\partial f}{\partial x_{1}} \frac{\partial g}{\partial x_{2}}-\frac{\partial f}{\partial x_{2}} \frac{\partial g}{\partial x_{1}}\right)\right|_{\left(\mathrm{x}_{1}^{*}, \mathrm{x}_{2}^{*}\right)}=0 \tag{7}
\end{equation*}
$$

This gives us the necessary condition to have $\left[x_{1}{ }^{*}, x_{2}{ }^{*}\right]$ as an extreme point (maximum or minimum)

Solution by method of Lagrange multipliers

Continuing with the same specific case of the optimization problem with $n=2$ and $m=1$ we define a quantity λ, called the Lagrange multiplier as

$$
\begin{equation*}
\lambda=-\left.\frac{\partial f / \partial x_{2}}{\partial g / \partial x_{2}}\right|_{\left(x_{1}^{\prime}, x_{2}^{*}\right)} \tag{8}
\end{equation*}
$$

Using this in (5) $\left.\quad\left(\frac{\partial f}{\partial x_{1}}+\lambda \frac{\partial g}{\partial x_{1}}\right)\right|_{\left(x_{1}^{\prime}, x_{2}\right)}=0$

And (8) written as $\left.\left(\frac{\partial f}{\partial x_{2}}+\lambda \frac{\partial g}{\partial x_{2}}\right)\right|_{\left(x_{1}^{*}, x_{2}^{*}\right)}=0$

Solution by method of Lagrange multipliers...contd.

Also, the constraint equation has to be satisfied at the extreme point

$$
\begin{equation*}
\left.g\left(x_{1}, x_{2}\right)\right|_{\left(x_{1}^{\prime}, x_{2}^{*}\right)}=0 \tag{11}
\end{equation*}
$$

Hence equations (9) to (11) represent the necessary conditions for the point $\left[x_{1}{ }^{*}, x_{2}{ }^{*}\right]$ to be an extreme point.

Note that λ could be expressed in terms of $\partial g / \partial x_{1}$ as well and $\partial g / \partial x_{1}$ has to be non-zero.

Thus, these necessary conditions require that at least one of the partial derivatives of $g\left(x_{1}, x_{2}\right)$ be non-zero at an extreme point.

Solution by method of Lagrange multipliers...contd.

The conditions given by equations (9) to (11) can also be generated by constructing a functions \mathbf{L}, known as the Lagrangian function, as

$$
\begin{equation*}
L\left(x_{1}, x_{2}, \lambda\right)=f\left(x_{1}, x_{2}\right)+\lambda g\left(x_{1}, x_{2}\right) \tag{12}
\end{equation*}
$$

Alternatively, treating \mathbf{L} as a function of $\mathrm{x}_{1}, \mathrm{x}_{2}$ and λ, the necessary conditions for its extremum are given by

$$
\begin{align*}
& \frac{\partial L}{\partial x_{1}}\left(x_{1}, x_{2}, \lambda\right)=\frac{\partial f}{\partial x_{1}}\left(x_{1}, x_{2}\right)+\lambda \frac{\partial g}{\partial x_{1}}\left(x_{1}, x_{2}\right)=0 \\
& \frac{\partial L}{\partial x_{2}}\left(x_{1}, x_{2}, \lambda\right)=\frac{\partial f}{\partial x_{2}}\left(x_{1}, x_{2}\right)+\lambda \frac{\partial g}{\partial x_{2}}\left(x_{1}, x_{2}\right)=0 \tag{13}\\
& \frac{\partial L}{\partial \lambda}\left(x_{1}, x_{2}, \lambda\right)=g\left(x_{1}, x_{2}\right)=0
\end{align*}
$$

D Nagesh Kumar, IISc

Necessary conditions for a general problem

For a general problem with n variables and m equality constraints the problem is defined as shown earlier

Maximize (or minimize) $f(\mathbf{X})$, subject to $g_{j}(\mathbf{X})=0, j=1,2, \ldots, m$
where $\quad \mathbf{X}=\left\{\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right\}$
In this case the Lagrange function, \mathbf{L}, will have one Lagrange multiplier λ_{j} for each constraint as

$$
\begin{equation*}
L\left(x_{1}, x_{2}, \ldots, x_{n}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)=f(\mathbf{X})+\lambda_{1} g_{1}(\mathbf{X})+\lambda_{2} g_{2}(\mathbf{X})+\ldots+\lambda_{m} g_{m}(\mathbf{X}) \tag{14}
\end{equation*}
$$

Necessary conditions for a general problem...contd.

\boldsymbol{L} is now a function of $n+m$ unknowns, $x_{1}, x_{2}, \ldots, x_{n}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$, and the necessary conditions for the problem defined above are given by

$$
\begin{align*}
& \frac{\partial L}{\partial x_{i}}=\frac{\partial f}{\partial x_{i}}(\mathbf{X})+\sum_{j=1}^{m} \lambda_{j} \frac{\partial g_{j}}{\partial x_{i}}(\mathbf{X})=0, \quad i=1,2, \ldots, n \quad j=1,2, \ldots, m \tag{15}\\
& \frac{\partial L}{\partial \lambda_{j}}=g_{j}(\mathbf{X})=0, \quad j=1,2, \ldots, m
\end{align*}
$$

which represent $n+m$ equations in terms of the $n+m$ unknowns, x_{i} and λ_{j}. The solution to this set of equations gives us

$$
\mathbf{X}=\left\{\begin{array}{c}
x_{1}^{*} \tag{16}\\
x_{2}^{*} \\
\vdots \\
x_{n}^{*}
\end{array}\right\} \quad \text { and } \quad \lambda^{*}=\left\{\begin{array}{c}
\lambda_{1}^{*} \\
\lambda_{2}^{*} \\
\vdots \\
\lambda_{m}^{*}
\end{array}\right\}
$$

D Nagesh Kumar, IISc
Optimization Methods: M2L4

Sufficient conditions for a general problem

A sufficient condition for $f(\mathbf{X})$ to have a relative minimum at \mathbf{X}^{*} is that each root of the polynomial in Θ, defined by the following determinant equation be positive.

$$
\left|\begin{array}{cccccccc}
L_{11}-\epsilon & L_{12} & \cdots & L_{1 n} & g_{11} & g_{21} & \cdots & g_{m 1} \tag{17}\\
L_{21} & L_{22}-\epsilon & & L_{2 n} & g_{12} & g_{22} & & g_{m 2} \\
\vdots & & \ddots & \vdots & \vdots & & \ddots & \vdots \\
L_{n 1} & L_{n 2} & \cdots & L_{n n}-\epsilon & g_{1 n} & g_{2 n} & \cdots & g_{m n} \\
& & & & & & & \\
g_{11} & g_{12} & \cdots & g_{1 n} & 0 & \cdots & \cdots & 0 \\
g_{21} & g_{22} & & g_{2 n} & \vdots & \ddots & & \vdots \\
\vdots & & \ddots & \vdots & \vdots & & & \vdots \\
g_{m 1} & g_{m 2} & \cdots & g_{m n} & 0 & \cdots & \cdots & 0
\end{array}\right|=0
$$

Sufficient conditions for a general problem...contd.

where

$$
\begin{align*}
& L_{i j}=\frac{\partial^{2} L}{\partial x_{i} \partial x_{j}}\left(\mathbf{X}^{*}, \lambda^{*}\right), \quad \text { for } i=1,2, \ldots, n \text { and } j=1,2, \ldots, m \\
& g_{p q}=\frac{\partial g_{p}}{\partial x_{q}}\left(\mathbf{X}^{*}\right), \quad \text { where } p=1,2, \ldots, m \text { and } q=1,2, \ldots, n \tag{18}
\end{align*}
$$

Similarly, a sufficient condition for $f(\mathbf{X})$ to have a relative maximum at \mathbf{X}^{*} is that each root of the polynomial in Θ, defined by equation (17) be negative.
If equation (17), on solving yields roots, some of which are positive and others negative, then the point \mathbf{X}^{*} is neither a maximum nor a minimum.

Example

Minimize $f(\mathbf{X})=-3 x_{1}^{2}-6 x_{1} x_{2}-5 x_{2}^{2}+7 x_{1}+5 x_{2}$, Subject to $x_{1}+x_{2}=5$

Solution

$$
\begin{aligned}
& g_{1}(\mathrm{X})=x_{1}+x_{2}-5=0 \\
& \begin{array}{l}
\mathrm{L}\left(x_{1}, x_{2}, \ldots, x_{n}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)=f(\mathrm{X})+\lambda_{1} g_{1}(\mathrm{X})+\lambda_{2} g_{2}(\mathrm{X})+\ldots+\lambda_{m} g_{m}(\mathrm{~N}) \\
\quad \text { with } n=2 \text { and } m=1
\end{array} \\
& \begin{array}{ll}
\mathrm{L}=-3 x_{1}^{2}-6 x_{1} x_{2}-5 x_{2}^{2}+7 x_{1}+5 x_{2}+\lambda_{1}\left(x_{1}+x_{2}-5\right) & \\
\frac{\partial \mathrm{L}}{\partial x_{1}}=-6 x_{1}-6 x_{2}+7+\lambda_{4}=0 & \text { or } \lambda_{1}=23 \\
=>x_{1}+x_{2}=\frac{1}{6}\left(7+\lambda_{1}\right)
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\frac{\partial \mathbf{L}}{\partial x_{2}}=-6 x_{1}-10 x_{2}+5+\lambda_{1}=0 \\
=3 x_{1}+5 x_{2}=\frac{1}{2}\left(5+\lambda_{1}\right) \\
=>3\left(x_{1}+x_{2}\right)+2 x_{2}=\frac{1}{2}\left(5+\lambda_{1}\right) \\
x_{2}=\frac{-1}{2} \\
x_{1}=\frac{11}{2} \\
\mathbf{X}^{*}=\left[\frac{-1}{2}, \frac{11}{2}\right] ; \lambda^{*}=[23] \quad\left(\begin{array}{rrr}
L_{11}-\in & L_{12} & g_{11} \\
L_{21} & L_{22}-\in & g_{21} \\
g_{11} & g_{12} & 0
\end{array}\right)=0
\end{gathered}
$$

$$
\begin{aligned}
& L_{11}=\left.\frac{\partial^{2} \mathrm{~L}}{\partial x_{1}^{2}}\right|_{\left\{\mathbf{X}^{*}, 3^{*}\right\}}=-6 \\
& L_{12}=L_{21}=\left.\frac{\partial^{2} \mathbf{L}}{\partial x_{1} \partial r_{2}}\right|_{\left\{\mathrm{X}^{*}, \mathrm{x}^{*}\right\}}=-6 \\
& L_{22}=\left.\frac{\partial^{2} \mathrm{~L}}{\partial x_{2}^{2}}\right|_{(\mathrm{x} *, 2 *)}=-10 \\
& g_{11}=\left.\frac{\partial g_{1}}{\partial x_{1}}\right|_{\left(\mathrm{X} *, \mathrm{x}^{*}\right)}=1 \\
& g_{12}=g_{21}=\left.\frac{\partial g_{1}}{\partial x_{2}}\right|_{\left(\mathrm{X}^{*}, \mathrm{z}, *\right.}=1 \\
& \text { The determinant becomes } \\
& \left(\begin{array}{ccc}
-6-\epsilon & -6 & 1 \\
-6 & -10-\epsilon & 1 \\
1 & 1 & 0
\end{array}\right)=0 \\
& (-6-\epsilon)[-1]-(-6)[-1]+1[-6+10+\epsilon]=0 \\
& =>E=-2
\end{aligned}
$$

Since \in is negative X^{*}, λ^{*} correspond to a maximum.

Thank you

