Optimization using Calculus

Convexity and Concavity of Functions of One and Two Variables

Objective

> To determine the convexity and concavity of functions

Convex Function (Function of one variable)

$>$ A real-valued function f defined on an interval (or on any convex subset C of some vector space) is called convex, if for any two points x and y in its domain C and any t in [0,1$]$, we have

$$
f(t a+(1-t) b) \leq t f(a)+(1-t) f(b))
$$

$>$ In other words, a function is convex if and only if its epigraph (the set of points lying on or above the graph) is a convex set. A function is also said to be strictly convex if

$$
f(t a+(1-t) b)<t f(a)+(1-t) f(b)
$$

for any t in $(0,1)$ and a line connecting any two points on the function lies completely above the function.

D Nagesh Kumar, IISc

A convex function

Optimization Methods: M2L2

Testing for convexity of a single variable function

$>$ A function is convex if its slope is non decreasing or $\partial^{2} f / \partial x^{2} \geq 0$. It is strictly convex if its slope is continually increasing or $\partial^{2} f / \partial x^{2}>0$ throughout the function.

Properties of convex functions

- A convex function f, defined on some convex open interval C, is continuous on C and differentiable at all or at many points. If C is closed, then f may fail to be continuous at the end points of C.
- A continuous function on an interval C is convex if and only if

$$
f\left(\frac{a+b}{2}\right) \leq \frac{f(a)+f(b)}{2 .} \quad \text { for all } \mathrm{a} \text { and } \mathrm{b} \text { in } C .
$$

- A differentiable function of one variable is convex on an interval if and only if its derivative is monotonically non-decreasing on that interval.

Properties of convex functions (contd.)

- A continuously differentiable function of one variable is convex on an interval if and only if the function lies above all of its tangents: for all a and b in the interval.
- A twice differentiable function of one variable is convex on an interval if and only if its second derivative is non-negative in that interval; this gives a practical test for convexity.
- More generally, a continuous, twice differentiable function of several variables is convex on a convex set if and only if its Hessian matrix is positive semi definite on the interior of the convex set.
- If two functions f and g are convex, then so is any weighted combination $a f+b g$ with non-negative coefficients a and b. Likewise, if f and g are convex, then the function $\max \{f, g\}$ is convex.

Concave function (function of one variable)

- A differentiable function f is concave on an interval if its derivative function f^{\prime} is decreasing on that interval: a concave function has a decreasing slope.
- A function $f(x)$ is said to be concave on an interval if, for all a and b in that interval,

$$
\forall t \in[0,1], f(t a+(1-t) b) \geq t f(a)+(1-t) f(b)
$$

- Additionally, $f(x)$ is strictly concave if

$$
\forall t \in[0,1], f(t a+(1-t) b)>t f(a)+(1-t) f(b)
$$

A concave function

Testing for concavity of a single variable function

- A function is convex if its slope is non increasing or $\partial^{2} f / \partial x^{2} \leq 0$. It is strictly concave if its slope is continually decreasing or $\partial^{2} f / \partial x^{2}<0$ throughout the function.

Properties of concave functions

- A continuous function on C is concave if and only if

$$
f\left(\frac{a+b}{2}\right) \geq \frac{f(a)+f(b)}{2} \quad \text { for any } a \text { and } b \text { in } C .
$$

- Equivalently, $f(x)$ is concave on $[a, b]$ if and only if the function $-f(x)$ is convex on every subinterval of $[a, b]$.
- If $f(x)$ is twice-differentiable, then $f(x)$ is concave if and only if $f^{\prime \prime}(x)$ is non-positive. If its second derivative is negative then it is strictly concave, but the opposite is not true, as shown by $f(x)=-x^{4}$.

Example

Consider the example in lecture notes 1 for a function of two variables.
Locate the stationary points of $f(x)=12 x^{5}-45 x^{4}+40 x^{3}+5$
and find out if the function is convex, concave or neither at the points of optima based on the testing rules discussed above.
Solution

$$
\begin{gathered}
f^{\prime}(x)=60 x^{4}-180 x^{3}+120 x^{2}=0 \\
=>x^{4}-3 x^{3}+2 x^{2}=0 \\
\text { or } \quad x=0,1,2
\end{gathered}
$$

Consider the point $x=x^{*}=0$
$f^{\prime \prime}\left(x^{*}\right)=240\left(x^{*}\right)^{3}-540\left(x^{*}\right)^{2}+240 x^{*}=0$ at $x^{*}=0$
$f^{\prime \prime \prime}\left(x^{*}\right)=720\left(x^{*}\right)^{2}-1080 x^{*}+240=240$ at $x^{*}=0$

Example ...contd.

Since the third derivative is non-zero $x=x^{*}=0$ is neither a point of maximum or minimum but it is a point of inflection. Hence the function is neither convex nor concave at this point.

Consider $x=x^{*}=1$
$f^{\prime \prime}\left(x^{*}\right)=240\left(x^{*}\right)^{3}-540\left(x^{*}\right)^{2}+240 x^{*}=-60$ at $x^{*}=1$
Since the second derivative is negative, the point $x=x^{*}=1$ is a point of local maxima with a maximum value of $f(x)=12-45+40+5=12$. At this point the function is concave since $\partial^{2} f / \partial x^{2}<0$.

Example ...contd.

Consider $x=x^{*}=2$
$f^{\prime \prime}\left(x^{*}\right)=240\left(x^{*}\right)^{3}-540\left(x^{*}\right)^{2}+240 x^{*}=240$ at $x^{*}=2$
Since the second derivative is positive, the point $x=x^{*}=2$ is a point of local minima with a minimum value of $f(x)=-11$. At this point the function is convex since $\partial^{2} f / \partial x^{2}>0$.

Functions of two variables

- A function of two variables, $f(\mathbf{X})$ where X is a vector $=\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right]$, is strictly convex if

$$
f\left(t \mathrm{X}_{1}+(1-t) \mathrm{X}_{2}\right)<t f\left(\mathrm{X}_{1}\right)+(1-t) f\left(\mathrm{X}_{2}\right)
$$

- where $\mathbf{X}_{\mathbf{1}}$ and \mathbf{X}_{2} are points located by the coordinates given in their respective vectors. Similarly a two variable function is strictly concave if

$$
f\left(t \mathrm{X}_{1}+(1-t) \mathrm{X}_{2}\right)>t f\left(\mathrm{X}_{1}\right)+(1-t) f\left(\mathrm{X}_{2}\right)
$$

Contour plot of a convex function

Contour plot of a concave function

Sufficient conditions

- To determine convexity or concavity of a function of multiple variables, the eigen values of its Hessian matrix is examined and the following rules apply.
- If all eigen values of the Hessian are positive the function is strictly convex.
- If all eigen values of the Hessian are negative the function is strictly concave.
- If some eigen values are positive and some are negative, or if some are zero, the function is neither strictly concave nor strictly convex.

Example

Consider the example in lecture notes 1 for a function of two variables. Locate the stationary points of $f(\mathrm{X})$ and find out if the function is convex, concave or neither at the points of optima based on the rules discussed in this lecture.

$$
\begin{aligned}
& f(\mathbf{X})=2 x_{1}^{3} / 3-2 x_{1} x_{2}-5 x_{1}+2 x_{2}^{2}+4 x_{2}+5 \\
& \Delta_{*} f=\left[\begin{array}{l}
\frac{\partial f}{\partial x_{1}}\left(\mathrm{X}^{*}\right) \\
\frac{\partial f}{\partial x_{2}}\left(\mathrm{X}^{*}\right)
\end{array}\right]=\left[\begin{array}{c}
2 x_{1}^{2}-2 x_{2}-5 \\
-2 x_{1}+4 x_{2}+4
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \mathrm{X}_{1}=[-1,-3 / 2] \quad \mathrm{X}_{2}=[3 / 2,-1 / 4]
\end{aligned}
$$

The Hessian of $f(\mathrm{X})$ is

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial x_{1}{ }^{2}}=4 x_{1} ; \frac{\partial^{2} f}{\partial x_{2}{ }^{2}} & =4 ; \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}=\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}=-2 \\
\mathbf{H} & =\left[\begin{array}{cc}
4 x_{1} & -2 \\
-2 & 4
\end{array}\right] \\
|\lambda \mathbf{I}-\mathbf{H}| & =\left|\begin{array}{cc}
\lambda-4 x_{1} & 2 \\
2 & \lambda-4
\end{array}\right|
\end{aligned}
$$

At X_{1}

$$
\begin{gathered}
|\lambda I-H|=\left|\begin{array}{cc}
\lambda+4 & 2 \\
2 & \lambda-4
\end{array}\right|=(\lambda+4)(\lambda-4)-4=0 \\
\lambda^{2}-16-4=0 \\
\lambda^{2}=12 \\
\lambda_{1}=+\sqrt{12} \quad \lambda_{2}=-\sqrt{12}
\end{gathered}
$$

Since one eigenvalue is positive and one negative, X_{1} is neither a relative maximum nor a relative minimum. Hence at X_{1} the function is neither convex or concave.

Example (contd..)

At $X_{2}=[3 / 2,-1 / 4]$

$$
\begin{gathered}
|\lambda I-H|=\left|\begin{array}{cc}
\lambda-6 & 2 \\
2 & \lambda-4
\end{array}\right|=(\lambda-6)(\lambda-4)-4=0 \\
\lambda^{2}-10 \lambda+20=0 \\
\lambda_{1}=5+\sqrt{5} \quad \lambda_{2}=5-\sqrt{5}
\end{gathered}
$$

Since bath the eigenvalues are positive, X_{2} is a local minimum, and the function is convex at this point as both the eigenvalues are pasitive.

Thank you

