Optimization using Calculus

Stationary Points:
Functions of Single and Two Variables

Objectives

> To define stationary points
> Look into the necessary and sufficient conditions for the relative maximum of a function of a single variable and for a function of two variables.
> To define the global optimum in comparison to the relative or local optimum

Stationary points

> For a continuous and differentiable function $f(x)$ a stationary point x^{*} is a point at which the function vanishes, i.e. $f^{\prime}(x)=0$ at $x=x^{*} . x^{*}$ belongs to its domain of definition.
> A stationary point may be a minimum, maximum or an inflection point

Stationary points

inflection point

мที่ตนин

maximum

Figure showing the three types of stationary points (a) inflection point (b) minimum (c) maximum

Relative and Global Optimum

- A function is said to have a relative or local minimum at $x=x^{*}$ if $f\left(x^{*}\right) \leq f(x+h)$ for all sufficiently small positive and negative values of h, i.e. in the near vicinity of the point x.
- Similarly, a point x^{*} is called a relative or local maximum if $f\left(x^{*}\right) \geq f(x+h)$ for all values of h sufficiently close to zero.
- A function is said to have a global or absolute minimum at $x=x^{*}$ if $f\left(x^{*}\right) \leq f(x)$ for all x in the domain over which $f(x)$ is defined.
- Similarly, a function is said to have a global or absolute maximum at $x=x^{*}$ if $f\left(x^{*}\right) \geq f(x)$ for all x in the domain over which $f(x)$ is defined.

Relative and Global Optimum ...contd.

$$
\begin{aligned}
\mathrm{A}_{1}, \mathrm{~A}_{2}, A_{3} & =\text { Relative maxima } \\
\mathrm{A}_{2} & =\text { Global maximum } \\
\mathrm{B}_{1}, \mathrm{~B}_{2} & =\text { Relative minima } \\
\mathrm{B}_{1} & =\text { Global minimum }
\end{aligned}
$$

Fig. 2

Functions of a single variable

> Consider the function $f(x)$ defined for $a \leq x \leq b$
> To find the value of $x^{*} \in[a, b]$ such that x^{*} maximizes $f(x)$ we need to solve a single-variable optimization problem.
> We have the following theorems to understand the necessary and sufficient conditions for the relative maximum of a function of a single variable.

Functions of a single variable ...contd.

> Necessary condition : For a single variable function $f(x)$ defined for x $\in[a, b]$ which has a relative maximum at $x=x^{*}, x^{*} \in[a, b]$ if the derivative $f^{\prime}(x)=d f(x) / d x$ exists as a finite number at $x=x^{*}$ then $f^{\prime}\left(x^{*}\right)=0$.
> We need to keep in mind that the above theorem holds good for relative minimum as well.
> The theorem only considers a domain where the function is continuous and derivative.
> It does not indicate the outcome if a maxima or minima exists at a point where the derivative fails to exist. This scenario is shown in the figure below, where the slopes m_{1} and m_{2} at the point of a maxima are unequal, hence cannot be found as depicted by the theorem.

Functions of a single variable ...contd.

Some Notes:

- The theorem does not consider if the maxima or minima occurs at the end point of the interval of definition.
The theorem does not say that the function will have a maximum or minimum at every point where $f^{\prime}(x)=0$, since this condition
$f^{\prime}(x)=0$ is for stationary points which include inflection points which do not mean a maxima or a minima.

Sufficient condition

- For the same function stated above let $f^{\prime}\left(x^{*}\right)=f^{\prime \prime}\left(x^{*}\right)=\ldots$
$=f^{(\mathrm{n}-1)}\left(x^{*}\right)=0$, but $f^{(\mathrm{n})}\left(x^{*}\right) \neq 0$, then it can be said that $f\left(x^{*}\right)$ is
- (a) a minimum value of $f(x)$ if $f^{(\mathrm{n})}\left(x^{*}\right)>0$ and n is even
- (b) a maximum value of $f(x)$ if $f^{(\mathrm{n})}\left(x^{*}\right)<0$ and n is even
- (c) neither a maximum or a minimum if n is odd

Example 1

Find the optimum value of the function $f(x)=x^{2}+3 x-5$ and also state if the function attains a maximum or a minimum.

Solution
$f^{\prime}(x)=2 x+3=0$ for maxima or minima.
or $x^{*}=-3 / 2$
$f^{\prime \prime}\left(x^{*}\right)=2$ which is positive hence the point $x^{*}=-3 / 2$ is a point of minima and the function attains a minimum value of $-29 / 4$ at this point.

Example 2

Find the optimum value of the function $f(x)=(x-2)^{4}$ and also state if the function attains a maximum or a minimum Solution:
$f^{\prime}(x)=4(x-2)^{3}=0 \quad$ or $x=x^{*}=2$ for maxima or minima.
$f^{\prime \prime}\left(x^{*}\right)=12\left(x^{*}-2\right)^{2}=0 \quad$ at $x^{*}=2$
$f^{\prime \prime \prime}\left(x^{*}\right)=24\left(x^{*}-2\right)=0 \quad$ at $x^{*}=2$
$f^{\prime \prime \prime \prime}\left(x^{*}\right)=24$
at $x^{*}=2$
Hence $f^{1}(x)$ is positive and n is even hence the point $x=x^{*}=2$ is a point of minimum and the function attains a minimum value of 0 at this point.

Example 3

Analyze the function $f(x)=12 x^{5}-45 x^{4}+40 x^{3}+5$ and classify the stationary points as maxima, minima and points of inflection.
Solution: $f^{\prime}(x)=60 x^{4}-180 x^{3}+120 x^{2}=0$

$$
\Rightarrow x^{4}-3 x^{3}+2 x^{2}=0
$$

or $x=0,1,2$

Consider the point $x=x^{*}=0$
$f^{\prime \prime}\left(x^{*}\right)=240\left(x^{*}\right)^{3}-540\left(x^{*}\right)^{2}+240 x^{*}=0$ at $x^{*}=0$
$f^{\prime \prime \prime}\left(x^{*}\right)=720\left(x^{*}\right)^{2}-1080 x^{*}+240=240$ at $x^{*}=0$

Example 3 ...contd.

Since the third derivative is non-zero, $x=x^{*}=0$ is neither a point of maximum or minimum but it is a point of inflection

Consider $x=x^{*}=1$

$$
f^{\prime \prime}\left(x^{*}\right)=240\left(x^{*}\right)^{3}-540\left(x^{*}\right)^{2}+240 x^{*}=-60 \quad \text { at } x^{*}=1
$$

Since the second derivative is negative the point $x=x^{*}=1$ is a point of local maxima with a maximum value of $f(x)=12-45+40+5=12$

Consider $x=x^{*}=2$
$f^{\prime \prime}\left(x^{*}\right)=240\left(x^{*}\right)^{3}-540\left(x^{*}\right)^{2}+240 x^{*}=240 \quad$ at $x^{*}=2$
Since the second derivative is positive, the point $x=x^{*}=2$ is a point of local minima with a minimum value of $f(x)=-11$

D Nagesh Kumar, IISc

Example 4

The horse power generated by a Pelton wheel is proportional to $u(v-u)$ where u is the velocity of the wheel, which is variable and v is the velocity of the jet which is fixed. Show that the efficiency of the Pelton wheel will be maximum at $u=v / 2$.
Solution: $f=K . u(v-u)$

$$
\begin{aligned}
& \frac{\partial f}{\partial u}=0 \Rightarrow \mathrm{~K} v-2 \mathrm{~K} u=0 \\
& \text { or } \quad u=\frac{v}{2}
\end{aligned}
$$

where K is a proportionality constant (assumed positive).
$\left.\frac{\partial^{2} f}{\partial u^{2}}\right|_{u=\frac{v}{2}}=-2 \mathrm{~K}$ which is negative. Hence, f is maximum at $u=\frac{v}{2}$

Functions of two variables

> The concept discussed for one variable functions may be easily extended to functions of multiple variables.
> Functions of two variables are best illustrated by contour maps, analogous to geographical maps.
> A contour is a line representing a constant value of $f(x)$ as shown in the following figure. From this we can identify maxima, minima and points of inflection.

A contour plot

Necessary conditions

> As can be seen in the above contour map, perturbations from points of local minima in any direction result in an increase in the response function $f(x)$, i.e.
$>$ the slope of the function is zero at this point of local minima.
> Similarly, at maxima and points of inflection as the slope is zero, the first derivative of the function with respect to the variables are zero.

Necessary conditions ...contd.

> Which gives us $\frac{\partial f}{\partial x_{1}}=0 ; \frac{\partial f}{\partial x_{2}}=0$ at the stationary points. i.e. the gradient vector of $f(\mathbf{X}), \Delta_{x} f$ at $\boldsymbol{X}=\boldsymbol{X}^{*}=\left[x_{1}, x_{2}\right]$ defined as follows, must equal zero:

$$
\Delta_{x} f=\left[\begin{array}{l}
\frac{\partial f}{\partial x_{1}}\left(\mathrm{X}^{*}\right) \\
\frac{\partial f}{\partial x_{2}}\left(\mathrm{X}^{*}\right)
\end{array}\right]=0
$$

This is the necessary condition.

Sufficient conditions

> Consider the following second order derivatives:

$$
\frac{\partial^{2} f}{\partial x_{1}^{2}} ; \frac{\partial^{2} f}{\partial x_{2}^{2}} ; \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}
$$

> The Hessian matrix defined by \mathbf{H} is made using the above second order derivatives.

$$
\mathbf{H}=\left(\begin{array}{cc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} \\
\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} f}{\partial x_{2}^{2}}
\end{array}\right)_{\left[x_{1}, x_{2}\right]}
$$

Sufficient conditions ...contd.

> The value of determinant of the \mathbf{H} is calculated and
$>$ if \mathbf{H} is positive definite then the point $\boldsymbol{X}=\left[x_{1}, x_{2}\right]$ is a point of local minima.
$>$ if \mathbf{H} is negative definite then the point $\boldsymbol{X}=\left[x_{1}, x_{2}\right]$ is a point of local maxima.
$>$ if \mathbf{H} is neither then the point $\boldsymbol{X}=\left[x_{1}, x_{2}\right]$ is neither a point of maxima nor minima.

Example 5

Locate the stationary points of $f(\mathrm{X})$ and classify them as relative maxima, relative minima or neither based on the rules discussed in the lecture.

$$
f(\mathbf{X})=2 x_{1}^{3} / 3-2 x_{1} x_{2}-5 x_{1}+2 x_{2}^{2}+4 x_{2}+5
$$

Solution

$$
\Delta_{x} f=\left[\begin{array}{l}
\frac{\partial f}{\partial x_{1}}\left(\mathrm{X}^{*}\right) \\
\frac{\partial f}{\partial x_{2}}\left(\mathrm{X}^{*}\right)
\end{array}\right]=\left[\begin{array}{c}
2 x_{1}^{2}-2 x_{2}-5 \\
-2 x_{1}+4 x_{2}+4
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Example 5 ...contd.

From $\frac{\partial f}{\partial x_{1}}(\mathrm{X})=0$,

$$
\begin{aligned}
& 2\left(2 x_{2}+2\right)^{2}-2 x_{2}-5=0 \\
& 8 x_{2}^{2}+14 x_{2}+3=0 \\
& \left(2 x_{2}+3\right)\left(4 x_{2}+1\right)=0 \\
& x_{2}=-3 / 2 \quad \text { or } \quad x_{2}=-1 / 4
\end{aligned}
$$

So the two stationary points are

$$
X_{1}=[-1,-3 / 2] \text { and } X_{2}=[3 / 2,-1 / 4]
$$

Example 5 ...contd.

The Hessian of $f(\mathbf{X})$ is $\frac{\partial^{2} f}{\partial x_{1}^{2}}=4 x_{1} ; \frac{\partial^{2} f}{\partial x_{2}{ }^{2}}=4 ; \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}=\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}=-2$

$$
\begin{aligned}
\mathbf{H} & =\left[\begin{array}{cc}
4 x_{1} & -2 \\
-2 & 4
\end{array}\right] \\
|\lambda \mathbf{I}-\mathbf{H}| & =\left|\begin{array}{cc}
\lambda-4 x_{1} & 2 \\
2 & \lambda-4
\end{array}\right|
\end{aligned}
$$

At $X_{1}=[-1,-3 / 2],|\lambda \mathbf{I}-\mathbf{H}|=\left|\begin{array}{cc}\lambda+4 & 2 \\ 2 & \lambda-4\end{array}\right|=(\lambda+4)(\lambda-4)-4=0$

$$
\begin{gathered}
\lambda^{2}-16-4=0 \\
\lambda_{1}=+\sqrt{12} \quad \lambda_{2}=-\sqrt{12}
\end{gathered}
$$

Since one eigen value is positive and one negative, X_{1} is neither a relative maximum nor a relative minimum
D Nagesh Kumar, IISc
Optimization Methods: M2L1

Example 5 ...contd.

At $\mathrm{X}_{2}=[3 / 2,-1 / 4]$

$$
\begin{aligned}
& |\lambda \mathbf{I}-\mathbf{H}|=\left|\begin{array}{cc}
\lambda-6 & 2 \\
2 & \lambda-4
\end{array}\right|=(\lambda-6)(\lambda-4)-4=0 \\
& \lambda_{1}=5+\sqrt{5} \quad \lambda_{2}=5-\sqrt{5}
\end{aligned}
$$

Since both the eigen values are positive, X_{-2} is a local minimum. Minimum value of $f(x)$ is -0.375

Example 6

Maximize $f(\mathbf{X})=20+2 x_{1}-x_{1}^{2}+6 x_{2}-3 x_{2}^{2} / 2$

$$
\begin{aligned}
& \Delta_{x} f=\left[\begin{array}{l}
\frac{\partial f}{\partial x_{1}}\left(\mathrm{X}^{*}\right) \\
\frac{\partial f}{\partial x_{2}}\left(\mathrm{X}^{*}\right)
\end{array}\right]=\left[\begin{array}{l}
2-2 x_{1} \\
6-3 x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \square \boldsymbol{X}^{*}=[1,2] \\
& \frac{\partial^{2} f}{\partial x_{1}^{2}}=-2 ; \frac{\partial^{2} f}{\partial x_{2}^{2}}=-3 ; \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}=0 ; \quad \mathbf{H}=\left[\begin{array}{cc}
-2 & 0 \\
0 & -3
\end{array}\right]
\end{aligned}
$$

Example 6 ...contd.

$$
\begin{aligned}
& |\lambda \mathbf{I}-\mathbf{H}|=\left|\begin{array}{cc}
\lambda+2 & 0 \\
0 & \lambda+3
\end{array}\right|=(\lambda+2)(\lambda+3)=0 \\
& \lambda_{1}=-2 \text { and } \lambda_{2}=-3
\end{aligned}
$$

Since both the eigen values are negative, $f(\mathbf{X})$ is concave and the required ratio $x_{1}: x_{2}=1: 2$ with a global maximum strength of $f(\mathbf{X})=27 \mathrm{MPa}$

Thank you

