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Optimization using Calculus 

Stationary Points: 
Functions of Single 
and Two Variables



D Nagesh Kumar, IISc Optimization Methods: M2L12

Objectives

To define stationary points 

Look into the necessary and sufficient conditions for the 

relative maximum of a function of a single variable and 

for a function of two variables. 

To define the global optimum in comparison to the 

relative or local optimum
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Stationary points

For a continuous and differentiable function f(x) a 
stationary point x* is a point at which the function 
vanishes, i.e. f ’(x) = 0 at x = x*. x* belongs to its domain 
of definition. 

A stationary point may be a minimum, maximum or an 
inflection point 
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Stationary points

Figure showing the three types of stationary points (a) inflection point 
(b) minimum (c) maximum
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Relative and Global Optimum

• A function is said to have a relative or local minimum at x = x* if 
for all sufficiently small positive and negative 

values of h, i.e. in the near vicinity of the point x. 
• Similarly, a point x* is called a relative or local maximum if 

for all values of h sufficiently close to zero. 
• A function is said to have a global or absolute minimum at x = x* if 

for all x in the domain over which f(x) is defined. 
• Similarly, a function is said to have a global or absolute maximum at 

x = x* if for all x in the domain over which f (x) is 
defined.

*( ) ( )f x f x h≤ +

*( ) ( )f x f x h≥ +

*( ) ( )f x f x≤

*( ) ( )f x f x≥
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Relative and Global Optimum …contd.
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Relative minimum is 
also global optimum

A1, A2, A3 = Relative maxima
A2 = Global maximum

B1, B2 = Relative minima
B1 = Global minimum

Fig. 2
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Functions of a single variable

Consider the function f(x) defined for  

To find the value of x* such that x* maximizes f(x) we need 
to solve a single-variable optimization problem. 

We have the following theorems to understand the necessary and 
sufficient conditions for the relative maximum of a function of a 
single variable. 

a x b≤ ≤
[ , ]a b∈
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Functions of a single variable …contd. 

Necessary condition : For a single variable function f(x) defined for x
which has a relative maximum at x = x* ,  x* if the 

derivative f ‘(x) = df(x)/dx exists as a finite number at x = x* then
f ‘(x*) = 0. 
We need to keep in mind that the above theorem holds good for 
relative minimum as well. 
The theorem only considers a domain where the function is 
continuous and derivative. 
It does not indicate the outcome if a maxima or minima exists at a 
point where the derivative fails to exist. This scenario is shown in the 
figure below, where the slopes m1 and m2 at the point of a maxima are 
unequal, hence cannot be found as depicted by the theorem. 

[ , ]a b∈ [ , ]a b∈
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Functions of a single variable …contd.

Some Notes:
The theorem does not consider if 
the maxima or minima occurs at 
the end point of the interval of 
definition. 
The theorem does not say that the 
function will have a maximum or 
minimum at every point where    
f ’(x) = 0, since this condition
f ’(x) = 0 is for stationary points 
which include inflection points 
which do not mean a maxima or 
a minima. 
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Sufficient condition

For the same function stated above let f ’(x*) = f ”(x*) = . . . 
= f (n-1)(x*) = 0, but f (n)(x*)    0, then it can be said that        
f (x*) is 

– (a) a minimum value of f (x) if  f (n)(x*) > 0 and n is even

– (b) a maximum value of f (x)  if f (n)(x*) < 0 and n is even

– (c) neither a maximum or a minimum if n is odd 

≠
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Example 1

Find the optimum value of the function  
and also state if the function attains a maximum or a
minimum. 
Solution 

for maxima or minima. 

or x* = -3/2 

which is positive hence the point x* = -3/2 is a point of 
minima and the function attains a minimum value of -29/4 at this point.

2( ) 3 5f x x x= + −

'( ) 2 3 0f x x= + =

''( *) 2f x =



D Nagesh Kumar, IISc Optimization Methods: M2L112

Example 2

Find the optimum value of the function                         and 
also state if the function attains a maximum or a minimum
Solution:

4( ) ( 2)f x x= −

3'( ) 4( 2) 0f x x= − = or x = x* = 2 for maxima or minima.

2''( *) 12( * 2) 0f x x= − = at x* = 2

'''( *) 24( * 2) 0f x x= − = at x* = 2

( ) 24* =′′′′ xf at x* = 2

Hence fn(x) is positive and n is even hence the point x = x* = 2 is a point of 
minimum and the function attains a minimum value of 0 at this point.
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Example 3

Analyze the function                           and 
classify the stationary points as maxima, minima and points 
of inflection. 
Solution:

Consider the point x = x* = 0
at x * = 0 
at x * = 0 

5 4 3( ) 12 45 40 5f x x x x= − + +

4 3 2

4 3 2

'( ) 60 180 120 0
          3 2 0
or             0,1,2 

f x x x x
x x x
x

= − + =

=> − + =
=

'' * * 3 * 2 *( ) 240( ) 540( ) 240 0f x x x x= − + =
''' * * 2 *( ) 720( ) 1080 240 240f x x x= − + =
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Example 3 …contd.

Since the third derivative is non-zero, x = x* = 0 is neither a point of 
maximum or minimum but it is a point of inflection 

Consider x  = x* = 1
at x* = 1 

Since the second derivative is negative the point x = x* = 1 is a point of 
local maxima with a maximum value of f(x) = 12 – 45 + 40 + 5 = 12

Consider  x = x* = 2
at x* = 2 

Since the second derivative is positive, the point  x = x* = 2 is a point of 
local minima with a minimum value of f(x) = -11

'' * * 3 * 2 *( ) 240( ) 540( ) 240 60f x x x x= − + = −

'' * * 3 * 2 *( ) 240( ) 540( ) 240 240f x x x x= − + =
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Example 4

The horse power generated by a Pelton wheel is proportional to u(v-u) where 
u is the velocity of the wheel, which is variable and v is the velocity of the jet 
which is fixed. Show that the efficiency of the Pelton wheel will be maximum 
at u = v/2.
Solution: 

where  K is a proportionality constant (assumed positive). 

which is negative. Hence, f is maximum at

K. ( )

0 K 2K 0

or      
2

f u v u
f v u
u

vu

= −
∂

= => − =
∂

=

2

2 2K
vu

f
u

=

∂
= −

∂
2

2
vu =
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Functions of two variables 

The concept discussed for one variable functions 
may be easily extended to functions of multiple 
variables. 
Functions of two variables are best illustrated by 
contour maps, analogous to geographical maps. 

A contour is a line representing a constant value of f(x) 
as shown in the following figure. From this we can 
identify maxima, minima and points of inflection.
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A contour plot
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Necessary conditions

As can be seen in the above contour map, perturbations 
from points of local minima in any direction result in an 
increase in the response function f(x), i.e. 

the slope of the function is zero at this point of local 
minima. 

Similarly, at maxima and points of inflection as the slope 
is zero, the first derivative of the function with respect to 
the variables are zero. 
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Necessary conditions …contd.

Which gives us at the stationary points. i.e. the

gradient vector of f(X),          at X = X* = [x1 , x2] defined as follows, 
must equal zero:

This is the necessary condition.

1 2

0; 0f f
x x
∂ ∂

= =
∂ ∂

1

2

( *)
0

( *)
x

f
x

f
f
x

∂⎡ ⎤Χ⎢ ⎥∂⎢ ⎥Δ = =
∂⎢ ⎥

Χ⎢ ⎥∂⎣ ⎦

x fΔ
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Sufficient conditions

Consider the following second order derivatives:

The Hessian matrix defined by H is made using the above second 
order derivatives. 

2 2 2

2 2
1 2 1 2

; ;f f f
x x x x

∂ ∂ ∂
∂ ∂ ∂ ∂

1 2

2 2

2
1 1 2

2 2

2
1 2 2 [ , ]x x

f f
x x x

f f
x x x

⎛ ⎞∂ ∂
⎜ ⎟∂ ∂ ∂⎜ ⎟=
⎜ ⎟∂ ∂
⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

H
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Sufficient conditions …contd.

The value of determinant of the H is calculated and 

if H is positive definite then the point X = [x1, x2] is a 
point of local minima.

if H is negative definite then the point X = [x1, x2] is a 
point of local maxima.

if H is neither then the point X = [x1, x2] is neither a 
point of maxima nor minima.
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Example 5

Locate the stationary points of f(X) and classify them as relative 
maxima, relative minima or neither based on the rules discussed in the 
lecture. 

Solution

3 2
1 1 2 1 2 2( ) 2 / 3 2 5 2 4 5f x x x x x x= − − + + +X
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Example 5 …contd.

From , 

So the two stationary points are 
X1 = [-1,-3/2]  and  X2 = [3/2,-1/4]

1

(X) 0f
x
∂

=
∂

2
2 28 14 3 0x x+ + =

2 2(2 3)(4 1) 0x x+ + =

2 23 / 2     or    1/ 4x x= − = −
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Example 5 …contd.

The Hessian of f(X) is 

At X1 = [-1,-3/2] ,

2 2 2 2

12 2
1 2 1 2 2 1

4 ; 4; 2f f f fx
x x x x x x
∂ ∂ ∂ ∂

= = = = −
∂ ∂ ∂ ∂ ∂ ∂

14 2
2 4
x −⎡ ⎤

= ⎢ ⎥−⎣ ⎦
H

14 2
2 4

xλ
λ

λ
−

=
−

I - H

4 2
( 4)( 4) 4 0

2 4
λ

λ λ λ
λ

+
= = + − − =

−
I - H

2 16 4 0λ − − =

1 212       12   λ λ= + = −

Since one eigen value is positive 
and one negative, X1 is neither 
a relative maximum nor a 
relative minimum 
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Example 5 …contd.

At X2 = [3/2,-1/4]

Since both the eigen values are positive, X-2 is a local minimum. 
Minimum value of f(x) is  -0.375 

6 2
( 6)( 4) 4 0

2 4
λ

λ λ λ
λ

−
= = − − − =

−
I - H

1 25 5    5 5λ λ= + = −
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Example 6

Maximize f(X) =

;

2 2
1 1 2 220 2 6 3 / 2x x x x+ − + −

1 1

2

2

( *)
2 2 0
6 3 0( *)

x

f
x x

f
xf

x

∂⎡ ⎤Χ⎢ ⎥∂ −⎡ ⎤ ⎡ ⎤⎢ ⎥Δ = = =⎢ ⎥ ⎢ ⎥−∂⎢ ⎥ ⎣ ⎦⎣ ⎦Χ⎢ ⎥∂⎣ ⎦

X* = [1,2] 

2 2 2

2 2
1 2 1 2

2; 3; 0f f f
x x x x
∂ ∂ ∂

= − = − =
∂ ∂ ∂ ∂

2 0
0 3
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
H
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Example 6 …contd.

Since both the eigen values are negative, f(X) is concave and 

the required ratio x1:x2 = 1:2 with a global maximum strength 

of f(X) = 27 MPa

2 0
( 2)( 3) 0

0 3
λ

λ λ λ
λ

+
= = + + =

+
I - H

1 22 3andλ λ= − = −
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Thank you
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