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2.2  Constitutive laws for plastically deforming solids 
  
Linear elasticity is probably the most commonly used and versatile constitutive law.  There 
are many applications, however, where it is of interest to predict the behavior of solids 
subjected to large loads, sufficient to cause permanent plastic strains.  Examples include: 

 Modeling metal forming, machining or other manufacturing processes 
 Designing crash resistant vehicles 
 Plastic design of structures 

  
Although plasticity theory was developed to predict the behavior of metals under loads 
exceeding the elastic limit, models rather similar to those developed for metal plasticity are 
also used to model irreversible damage in various other materials, including microcracking 
ceramics and concrete, deformation of clay, as well as some polymers.  
  
Here we present a quick crash course on the phenomenological theory of plasticity.  We will 
discuss 

1.      The general features of the inelastic response of metals (to see what we need to 
model) 

2.      Key concepts in modeling inelastic behavior 
a.       Decomposition of strain into elastic and plastic parts 
b.      Yield criteria 
c.       Strain hardening rules 
d.      The plastic flow rule 
e.       The elastic unloading criterion 

3.      Summary of constitutive equations for a Mises solid 
4.      Rate dependent materials and creep 

  
NB Our initial discussion will focus on nonlinear material behavior, and will assume 
infinitesimal deformations to keep things simple.  We will present the extension to finite 
deformation plasticity separately. 
  
2.2.1 Features of the inelastic response of metals. 
  
It is possible to predict the elastic response of a crystal from first principles, using quantum 
mechanical or more approximate molecular statics computations.  This is not the case for 
inelastic behavior.  Although some progress has been made in the past 20 years or so, it is 
still not possible to predict the plastic stress—strain curve for a crystal.  Instead, stress—
strain laws for plastically deforming solids are generally fit to experimental measurements.  
Some fundamental insight into the mechanisms of plastic flow is helpful in guiding the 
choice of curve fit.   
  
We begin by reviewing the results of a typical tension/compression test on an annealed, 
ductile, polycrystalline metal specimen (e.g. copper or Al).  We assume that the test is 
conducted at moderate temperature (less than ½ the melting point of the solid – e.g. room 
temperature) and at modest strains (less than 10%), at modest strain rates ( 
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 ). 

 
We make the following general observations: 

 For modest stresses (and strains) the solid responds elastically.  This means the 
stress is proportional to the strain, and the deformation is reversible. 

 If the stress exceeds a critical magnitude, the stress—strain curve ceases to be 
linear.  It is often difficult to identify the critical stress accurately, because the stress 
strain curve starts to curve rather gradually. 

 If the critical stress is exceeded, the specimen is permanently changed in length on 
unloading. 

 If the stress is removed from the specimen during a test, the stress—strain curve 
during unloading has a slope equal to that of the elastic part of the stress—strain 
curve.  If the specimen is re-loaded, it will initially follow the same curve, until the 
stress approaches its maximum value during prior loading.  At this point, the stress—
strain curve once again ceases to be linear, and the specimen is permanently deformed 
further. 

  If the test is interrupted and the specimen is held at constant strain for a period of 
time, the stress will relax slowly.  If the straining is resumed, the specimen will 
behave as though the solid were unloaded elastically.  Similarly, if the specimen is 
subjected to a constant stress, it will generally continue to deform plastically, 
although the plastic strain increases very slowly.  This phenomenon is known as 
`creep.’ 

  If the specimen is deformed in compression, the stress—strain curve is a mirror 
image of the tensile stress—strain curve (of course, this is only true for modest 
strains.  For large strains, geometry changes will cause differences between the 
tension and compression tests). 

  If the specimen is first deformed in compression, then loaded in tension, it will 
generally start to deform plastically at a lower tensile stress than an annealed 
specimen.  This phenomenon is known as the `Bauschinger effect.’ 

  Material response to cyclic loading can be extremely complex.  One example is 
shown in the picture above – in this case, the material hardens cyclically.  Other 
materials may soften.  

  The detailed shape of the plastic stress—strain curve depends on the rate of 
loading, and also on temperature.  In general, higher strain rates require higher 
stresses, and higher temperatures reduce the stress.   
  

We also need to characterize the multi-axial response of an inelastic solid.  This is a much 
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more difficult experiment to do.  Some of the nicest experiments were done by G.I. Taylor 
and collaborators in the early part of the last century.  Their approach was to measure the 
response of thin-walled tubes under combined torsion and axial loading.   
  
The main conclusions of these tests were 

 The shape of the uniaxial stress-strain curve is insensitive to hydrostatic pressure.  The 
ductility (strain to failure) is increased by hydrostatic pressure, particularly under torsional 
loading. 

 Plastic strains are volume preserving, i.e.  
 During plastic loading, the principal components of the plastic strain tensor are parallel to 

the components of stress acting on the solid.  This sounds obvious until you think about it…  
Suppose you were to take a cylindrical shaft and pull it until it starts to deform plastically.  
Then, holding the axial stress fixed, apply a torque to the shaft.  Experiments show that the 
shaft will initially stretch, rather than rotate.  The plastic strain increment is proportional to 
the stress acting on the shaft, not the stress increment.  This is totally unlike elastic 
deformation. 

 Under multi-axial loading, most annealed polycrystalline solids obey the Levy-Mises flow 
rule, which relates the principal components of strain increment during plastic loading to the 
principal stresses as follows 

 

  
  
We proceed to develop a constitutive law that will  capture these features of material 
behavior.  For simplicity, we will at this stage restrict attention to infinitesimal 
deformations. 
  
Consequently, we adopt the infinitesimal strain tensor 

 

as our deformation measure.  We have no need to distinguish between the various stress 
measures and will use  to denote stress. 
  
  
Key ideas in modeling metal plasticity 
  
Three key concepts form the basis of almost all classical theories of plasticity.  They are 

1.      The decomposition of strain into elastic and plastic parts 
2.      Yield criteria: which predict whether the solid responds elastically or plastically 
3.      Strain hardening rules, which control the shape of the stress-strain curve in the 

plastic regime; 
4.      The plastic flow rule, which determines the relationship between stress and 

plastic strain under multi-axial loading; 
5.      The elastic unloading criterion, which models the irreversible behavior 

  
We proceed to discuss these concepts in turn. 
  
  
2.2.2. Decomposition of strain into elastic and plastic parts 
  
Experiments show that under uniaxial loading, the strain at a given stress has two parts: a 
small recoverable elastic strain, and a large, irreversible plastic strain.  
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Experiments suggest that the reversible part is related to the stress through the usual linear 
elastic equations.   Plasticity theory is concerned with characterizing the irreversible part. 
  
For multiaxial loading, we generalize this by decomposing a general strain increment 
 into elastic and plastic parts, as 

 
The elastic part of the strain is related to stress using the linear elastic equations 

 
  
  
2.2.3. Yield criteria 
  
Before attempting to develop a full description that relates plastic strain to stress, it is 
sensible to establish criteria that will predict the onset of inelastic deformation. 
  
The general nature of a yield criterion for a polycrystalline solid can be argued out. 
We make two assumptions 

(a)    Yield is independent of hydrostatic pressure; 
(b)   The solid is isotropic 
  

Assumption (a) implies that the yield criterion can only depend on the deviatoric stress 
components 

 

  
Assumption (b) implies that the onset of yield can only depend on the magnitudes of the 
principal stresses , and can’t depend on the principal stress directions.   Another way 
to state the same thing is to note that yield can only depend on the invariants of the deviatoric 
stress tensor  

 

Note that we are using J to denote the invariants to distinguish them from the conventional I 
– partly to emphasize that these are invariants of the deviatoric stress, and partly to 
emphasize that the definitions here are slightly different to the conventional form (just to 
make things look neater). The conditions necessary to cause yield could be expressed as or , 

σ

ε

E

εp
εe

Pagina 4 di 16Mechanics of Solids: Plastic Constitutive Laws

18/03/2004http://www.engin.brown.edu/courses/en222/Notes/plasticity/plasticity.htm



make things look neater). The conditions necessary to cause yield could be expressed as 
 or , where 

`material state variables’ somehow characterize the strength of the solid – they could include 
a strain history dependent yield stress and temperature, for example. 
  
  
Another way to visualize yield criteria is to represent a stress state in principal stress state.  
Since the material response can only depend on , we can represent all loading 
conditions as a point in 3D space with  as the axes. 

  

 
  
  
  
A little thought shows that in this space, the yield criterion must look like a (not necessarily 
circular) cylinder with its axis parallel to the line   This is because a hydrostatic 
stress state always falls on this line.  A general stress state therefore consists of a hydrostatic 
component parallel to the line, and a deviatoric component, which must be perpendicular to 
the line (by definition, deviatoric stress has no hydrostatic component).  The solid yields 
when the deviatoric stress reaches a critical magnitude – this condition defines the cylinder 
shown. 
  
This is a nice observation because it allows us now to reduce the yield criterion to a 2D 
representation.  If we look down the axis of the cylinder, we would see a view like the one 
shown below 
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Of course the actual yield surface need not be circular.  As far as yield is concerned, this 
picture says it all. 
  
We can now argue out several more features of the yield surface.  For an isotropic solid, we 
can freely interchange  without affecting yield.  This means that the yield surface 
must have 6 axes of symmetry as shown in the picture. 
  
There is also good reason to believe that for most materials the yield surface as represented in 
principal stress space must be convex.  This is not obvious and requires some insight into the 
mechanisms of plastic flow – we will return to this question later.     
  
If the yield surface is convex, however, it must lie somewhere between the hexagonal and 
circular surfaces shown in the picture.  These two limiting surfaces have names: the hexagon 
may be expressed as 
  
Tresca yield criterion  is the hexagonal surface 

 

where Y and k are material constants (specifying the size of the yield locus) and represent the 
yield stress of the solid in uniaxial tension and simple shear, respectively. For the Tresca 
surface they are related by Y=2k 
  
Von-Mises yield criterion is the circular surface, which can be expressed in various ways 
  

 

where Y and k have the same meaning as before, and  is the Von-Mises 

effective stress.  For this yield surface the two constants are related by  
  
Note that the two possible extremes of the yield surface differ very little.  It is difficult to 
distinguish between them experimentally.   
  
  
  
  
2.2.4. Strain hardening laws 
  
Experiments show that if you plastically deform a solid, then unload it, and then try to re-load 
it so as to induce further plastic flow, its resistance to plastic flow will have increased.  This 
is known as strain hardening. 
  
Obviously, we can model strain hardening by relating the size and shape of the yield surface 
to plastic strain in some appropriate way.  There are many ways to do this, of course.  Here 
we describe the simplest approaches. 
  
Isotropic hardening 
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Rather obviously, the easiest way to model strain hardening is to make the yield surface 
increase in size, but remain the same shape, as a result of plastic straining. 
  
This means we come up with some appropriate relationship between Y or k and the plastic 
strain.  To get a suitable scalar measure of plastic strain we can use either the accumulated 
plastic work 

 or the accumulated plastic strain magnitude   (the factor of 2/3 

is introduced so that  under a uniaxial strain  ). 
  
Then we put  or an equivalent expression involving W and/or k.  The function H can 
be determined by fitting a curve to a uniaxial tension test.  People often use power laws or 
piecewise linear approximations in practice. 
  
  

 
A few of the more common forms of hardening functions are illustrated below 
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Linear strain hardening solid 

 
Power-law hardening solid 

  
  
Kinematic hardening 
  
An isotropic hardening law is generally not useful in situations where components are 
subjected to cyclic loading.  It does not account for the Bauschinger effect, and so predicts 
that after a few cycles the solid will just harden up until it responds elastically. 
  
To fix this, an alternative hardening law allows the yield surface to translate, without 
changing its shape.  The idea is illustrated graphically below.  As you deform the material in 
tension, you drag the yield surface in the direction of increasing stress, thus modeling strain 
hardening.  This softens the material in compression, however.  So, this constitutive law can 
model cyclic plastic deformation. 
  
  
  
  
  

 
  
To account for the fact that the center of the yield locus is at a position  in stress space, we 
would re-write the Von Mises yield criterion as 

 

To model hardening, we need to relate  to the plastic strain history somehow.  There are 
many sneaky ways to do this, which can model subtle features of the plastic response of 
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solids under cyclic and nonproportional loading. 
  
The simplest approach is to set .  This evidently predicts that the stress-plastic 
strain curve is a straight line with slope c.  This is known as linear kinematic hardening 
  
A more sophisticated approach sets 

 
where c and  are material constants.  It’s not so easy to visualize what this does – it turns 
out that that this relation can model cyclic creep – the tendency of a material to accumulate 
strain in the direction of mean stress under cyclic loading.  It is known as the Armstrong-
Frederick hardening law. 
  
There are many others.  Some use multiple nested yield surfaces.  New ones are still being 
developed.  You can develop your own! 
  
  
  
  
2.2.5. The plastic flow rule 
  
  
To complete our constitutive model, we need to devise a way to calculate the plastic strains 
induced by loading beyond yield. 
  
To make this precise, consider first applying a stress  that is just sufficient to reach yield.  
Now, increase the stress to .   What is the resulting plastic strain increment ? 

 
Plastic strain magnitude – the consistency condition 
  
Note first that the magnitude of the plastic strain is completely determined by the hardening 
behavior of the solid.  This is because during continued plastic flow, the stress must be on the 
yield surface at all times.  Since the radius (or position, for kinematic hardening) of the yield 
surface is related to the magnitude of the plastic strain increment through an appropriate 
hardening law, this means the plastic strain magnitude must be related to the stress increment. 
  

To be precise, let  denote the magnitude of the plastic strain increment (the 
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factor 2/3 is introduced so that  under a uniaxial strain). In addition,  let 
 denote the yield criterion .  Then, the condition that the solid is at yield during plastic 
straining gives 

 

This is known as the consistency condition.  Then 

 

where  is the slope of the stress-plastic strain curve under uniaxial loading.  

  
As an example, let us apply this procedure to an isotropically hardening Mises solid.  In this 
case, 

 

giving 

 

, where h is the slope of the uniaxial stress – plastic strain curve.  Hence, for 

this case 

 

  
Plastic strain direction - the flow rule 
  
We need therefore to specify only the ratios of the plastic strain components.  The most 
general relationship must have the form 
  

 
where  may be a function of stress and strain history, and must satisfy 

 (the latter condition ensures that  ) 

  
Further restrictions on  follow from three experimental observations: 

1.      Plastic strains are volume preserving (to a close approximation) so  
2.      Plastic strain increments for crystalline solids are independent of hydrostatic 

loading 
3.      Many annealed polycrystalline solids are isotropic, at least for small strains. 

  
A constitutive law with these features may be constructed by setting 

 

where the function  
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is known as the plastic flow potential for the solid. 
  
Observe that although the plastic strain magnitude depends on , the ratios of the plastic 
strain components depend on current stress, not the increment in stress. 
  
The structure of g is evidently very similar to the yield function f.  In particular, in stress 
space it must be a cylinder, with the same symmetries as f.    
  
Without further experimental data we cannot specify g further.  However, we find that our 
constitutive law has a mathematically pleasing structure if we make the plastic flow potential 
the same shape as the yield surface.  Moreover, this approximation closely approximates 
experimental observations, and also has some justification from dislocation based theories of 
plasticity (see the next section).  A flow law derived from the yield surface is known as an 
associated plastic flow law.   Theories of plasticity that use a separate flow potential are 
known as non-associative plasticity models. 
  
Specifically, for an associated plasticity model with yield surface 

 
we set 

 
where the constant C is chosen so that 

 

to ensure that  as before. This then gives 

 

The associated flow law has a simple graphical interpretation.  Observe that since 
 on the yield surface then  must be perpendicular to the surface (the 

gradient of a function is perpendicular to its level contours).  Thus, the plastic strain vector 
represented in 2D stress space is normal to the yield locus, as shown below 
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Associated flow law for Mises solid 
  
As an example, consider a material with an isotropically hardening Von-Mises yield function 
  

 

where  

  
In this case we already calculated that 

 

  
whence 

 

This is known as the Levy-Mises flow rule. 
  
This flow law is sometimes expressed in terms of principal stresses and strains.   For 
principal stresses  we have that 

 

which implies that 

 

and similarly for other components.   
  
Application to other hardening laws 
  
To derive relationships between plastic strain increment and stress increment for a more 
general hardening law (e.g. the kinematic hardening law) we write the yield function as 
  

 
where  are a set of state variables (e.g. , or other parameters that characterize the material 
state).  The hardening law must specify a relationship between    and plastic strain 
increment  for each state variable – this must be established by experiment.  Then, the 
consistency condition requires that 

 

while the flow rule requires 
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so combining these to 

 

we can solve for the unknown factor  in the flow law (there is no need to solve for C and 
 separately). 

  
  
2.2.6. Elastic unloading condition 
  
There is one final issue to consider.  Experiments show that plastic flow is irreversible, and 
always dissipates energy.  If the increment in stress  is tangent to the yield surface, or 
brings the stress below yield, then it induces no plastic strain.  
  

 
For an isotropically hardening solid, this condition may be expressed as 

 
A similar condition may be derived for kinematic hardening (can you see what it is?) 
  
  
Complete stress-strain relations for a rate independent isotropic Mises solid 
  
We conclude by summarizing the complete elastic-plastic stress strain relations for an 
isotropic Mises solid.   
  
The solid is characterized by its elastic constants  and by the stress-plastic strain curve 

under uniaxial loading, which is fit by a curve  with slope  (the is also a function 

of  ) 
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In this case we have that 

 
with 

 

 

where  

  
These may be combined to 

  

 

  
It is sometimes necessary to invert these expressions.  This is straightforward.   
  
First, take care of the hydrostatic terms by contracting the strain tensor 
  

 

  
Next, note that at yield 
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Substituting back into the stress-strain equations and accounting for elastic unloading, we 
find that the inverted stress-strain relations become 

 

  
  
Similar expressions can be derived for other yield surfaces and hardening laws. 
  
  
2.2.7. Rate dependent solids and creep 
  
The ideas outlined in the preceding sections can easily be extended to model rate dependent 
and creeping solids.  The goal in modeling creep is to predict the steady accumulation of 
plastic strain at constant stress.   
  
In this case we decompose the strain rate into elastic and plastic parts as 

 
The elastic strain rate is given by the usual linear elastic relations.  The plastic strain rate is 
computed from a viscoplastic potential, exactly as before 

 

where  is a flow potential, and is a function of temperature T and 
appropriate state variables (yield stress, kinematic variables, etc). 
  
It is common to use a potential based on the Von-Mises yield surface.  To do this, define the 
effective stress and strain rate 

 

  
Then set  

 
  
The plastic strain rate then follows as 

 

  
The function g itself is arbitrary, provided g is a nondecreasing function of effective stress.  A 
power-law is particularly popular 
   

Pagina 15 di 16Mechanics of Solids: Plastic Constitutive Laws

18/03/2004http://www.engin.brown.edu/courses/en222/Notes/plasticity/plasticity.htm



 

where  and m are (almost certainly temperature dependent) material constants.  The 
strain rate then follows as 

 

  
  
Note that the rate dependent constitutive law is actually somewhat simpler than the rate 
independent case, because there is no need to worry about loading-unloading conditions. 
  
One can extend this framework to account for strain hardening (in this case a progressive 
decrease in strain rate with increasing plastic strain) by making  increase with strain. 
  
For example, power-law hardening can be included by setting 

 

where  and  and n are material constants. 
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