
Chapter 2

The Physics of Plasticity

Section 2.1 Phenomenology of Plastic Deformation

The adjective “plastic” comes from the classical Greek verb πλάσσειν,
meaning “to shape”; it thus describes materials, such as ductile metals,
clay, or putty, which have the property that bodies made from them can
have their shape easily changed by the application of appropriately directed
forces, and retain their new shape upon removal of such forces. The shaping
forces must, of course, be of sufficient intensity — otherwise a mere breath
could deform the object — but often such intensity is quite easy to attain,
and for the object to have a useful value it may need to be hardened, for
example through exposure to air or the application of heat, as is done with
ceramics and thermosetting polymers. Other materials — above all metals
— are quite hard at ordinary temperatures and may need to be softened by
heating in order to be worked.

It is generally observed that the considerable deformations which occur
in the plastic shaping process are often accompanied by very slight, if any,
volume changes. Consequently plastic deformation is primarily a distortion,
and of the stresses produced in the interior of the object by the shaping
forces applied to the surface, it is their deviators that do most of the work.
A direct test of the plasticity of the material could thus be provided by
producing a state of simple shearing deformation in a specimen through the
application of forces that result in a state of shear stress. In a soft, semi-fluid
material such as clay, or soil in general, this may be accomplished by means
of a direct shear test such as the shear-box test, which is discussed in Section
2.3. In hard solids such as metals, the only experiment in which uniform
simple shear is produced is the twisting of a thin-walled tube, and this is not
always a simple experiment to perform. A much simpler test is the tension
test .
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2.1.1 Experimental Stress-Strain Relations

Tension Tests

Of all mechanical tests for structural materials, the tension test is the
most common. This is true primarily because it is a relatively rapid test and
requires simple apparatus. It is not as simple to interpret the data it gives,
however, as might appear at first sight . J. J. Gilman [1969]

The tensile test [is] very easily and quickly performed but it is not possible
to do much with its results, because one does not know what they really mean.
They are the outcome of a number of very complicated physical processes. .
. . The extension of a piece of metal [is] in a sense more complicated than
the working of a pocket watch and to hope to derive information about its
mechanism from two or three data derived from measurement during the
tensile test [is] perhaps as optimistic as would be an attempt to learn about
the working of a pocket watch by determining its compressive strength. E.
Orowan [1944]

Despite these caveats, the tension test remains the preferred method of
determining the material properties of metals and other solids on which it is
easily performed: glass, hard plastics, textile fibers, biological tissues, and
many others.

Stress-Strain Diagrams

The immediate result of a tension test is a relation between the axial force
and either the change in length (elongation) of a gage portion of the specimen
or a representative value of longitudinal strain as measured by one or more
strain gages. This relation is usually changed to one between the stress σ
(force F divided by cross-sectional area) and the strain ε (elongation divided
by gage length or strain-gage output), and is plotted as the stress-strain
diagram. Parameters that remain constant in the course of a test include the
temperature and the rate of loading or of elongation. If significant changes
in length and area are attained, then it is important to specify whether
the area used in calculating the stress is the original area A0 (nominal or
“engineering” stress, here to be denoted simply σe) or the current area A
(true or Cauchy stress, σt) — in other words, whether the Lagrangian or the
Eulerian definition is used — and whether the strain plotted is the change
in length ∆l divided by the original length l0 (conventional or “engineering”
strain, εe) or the natural logarithm of the ratio of the current length l (=
l0 + ∆l) to l0 (logarithmic or natural strain, εl).

Examples of stress-strain diagrams, both as σe versus εe and as σt versus
εl, are shown in Figure 2.1.1. It is clear that the Cauchy stress, since it
does not depend on the initial configuration, reflects the actual state in the
specimen better than the nominal stress, and while both definitions of strain
involve the initial length, the rates (time derivatives) of conventional and
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logarithmic strain are respectively l̇/l0 and l̇/l, so that it is the latter that is
independent of initial configuration. In particular, in materials in which it is
possible to perform a compression test analogous to a tension test, it is often
found that the stress-strain diagrams in tension and compression coincide to
a remarkable degree when they are plots of Cauchy stress against logarithmic
strain [see Figure 2.1.1(b)].

The rate of work done by the force is F l̇ = σeA0l0ε̇e = σtAlε̇l, so that
σeε̇e and σtε̇l are the rates of work per unit original and current volume,
respectively. While the calculation of Cauchy stress requires, strictly speak-
ing, measurement of cross-sectional area in the course of the test, in practice
this is not necessary if the material is a typical one in which the volume does
not change significantly, since the current area may be computed from the
volume constancy relation Al = A0l0.

As is shown in Chapter 8, the logarithmic strain rate ε̇l has a natural
and easily determined extension to general states of deformation, but the
logarithmic strain itself does not, except in situations (such as the tension
test) in which the principal strain axes are known and remain fixed. The
use of the logarithmic strain in large-deformation problems with rotating
principal strain axes may lead to erroneous results.

Compression Tests

As seen in Figure 2.1.1(b), the results of a simple compression test on
a specimen of ductile metal are virtually identical with those of a tensile
test if Cauchy stress is plotted against logarithmic strain. The problem is
that a “simple compression test” is difficult to achieve, because of the friction
that is necessarily present between the ends of the specimen and the pressure
plates. Compression of the material causes an increase in area, and therefore
a tendency to slide outward over the plates, against the shear stress on the
interfaces due to the frictional resistance. Thus the state of stress cannot be
one of simple compression. Lubrication of the interface helps the problem,
as does the use of specimens that are reasonably slender — though not so
slender as to cause buckling — so that, at least in the middle portion, a
state of simple compressive stress is approached.

Unlike ductile metals, brittle solids behave quite differently in tension
and compression, the highest attainable stress in compression being many
times that in tension. Classically brittle solids, such as cast iron or glass,
fracture almost immediately after the proportional limit is attained, as in
Figure 2.1.1(c). Others, however, such as concrete and many rocks, produce
stress-strain diagrams that are qualitatively similar to those of many ductile
materials, as in Figure 2.1.1(d). Of course, the strain scale is quite differ-
ent: in brittle materials the largest strains attained rarely exceed 1%. The
stress peak represents the onset of fracture, while the decrease in slope of
the stress-strain curve represents a loss in stiffness due to progressive crack-
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Figure 2.1.1. Stress-strain diagrams: (a) ductile metals, simple tension; (b)
ductile metal (low-carbon steel), simple tension and compres-
sion; (b’) yield-point phenomenon; (c) cast iron and glass, sim-
ple compression and tension; (d) typical concrete or rock, simple
compression and tension; (e) rock (limestone), triaxial compres-
sion; (f) soils, triaxial compression.
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ing. The post-peak portion of the curve is highly sensitive to test conditions
and specimen dimensions, and therefore it cannot be regarded as a material
property. Moreover, it is not compression per se that brings about fracture,
but the accompanying shear stresses and secondary tensile stresses. Never-
theless, the superficial resemblance between the curves makes it possible to
apply some concepts of plasticity to these materials, as discussed further in
Section 2.3.

Unless the test is performed very quickly, soils are usually too soft to al-
low the use of a compression specimen without the application of a confining
pressure to its sides through air or water pressure. This confined compres-
sion test or triaxial shear test is frequently applied to rock and concrete as
well, for reasons discussed in Section 2.3. The specimen in this test is in
an axisymmetric, three-dimensional stress state, the principal stresses being
the longitudinal stress σ1 and the confining pressure σ2 = σ3, both taken
conventionally as positive in compression, in contrast to the usual con-
vention of solid mechanics. The results are usually plotted as σ1−σ3 (which,
when positive — as it usually is — equals 2τmax) against the compressive
longitudinal strain ε1; typical curves are shown in Figure 2.1.1(e) and (f).

Elastic and Proportional Limits, Yield Strength

Some of the characteristic features of tensile stress-strain diagrams for
ductile solids when rate sensitivity may be neglected will now be described.
Such diagrams are characterized by a range of stress, extending from zero
to a limiting stress (say σo) in which the stress is proportional to strain (the
corresponding strains are normally so small that it does not matter which
definitions of stress and strain are used); σo is called the proportional limit .
Also, it is found that the same proportionality obtains when the stress is
decreased, so that the material in this range is linearly elastic, described by
the uniaxial Hooke’s law given by Equation (1.4.12), that is, σ = Eε. The
range of stress-strain proportionality is thus also essentially the elastic range,
and the proportional limit is also the elastic limit as defined in Section 1.5.

When the specimen is stressed slightly past the elastic limit and the
stress is then reduced to zero, the strain attained at the end of the process
is, as a rule, different from zero. The material has thus acquired a permanent
strain.

Rate effects, which are more or less present in all solids, can distort the
results. The “standard solid” model of viscoelasticity discussed in 1.5.1, for
example, predicts that in a test carried out at a constant rate of stressing
or of straining, the stress-strain diagram will be curved, but no permanent
strain will be present after stress removal; the complete loading-unloading
diagram presents a hysteresis loop. The curvature depends on the test rate;
it is negligible if the time taken for the test is either very long or very short
compared with the characteristic time τ of the model.
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Even in the absence of significant rate effects, it is not always easy to
determine an accurate value for the elastic or proportional limit. Some
materials, such as soft copper, present stress-strain curves that contain no
discernible straight portions. In others, such as aluminum, the transition
from the straight to the curved portion of the diagram is so gradual that the
determination of the limit depends on the sensitivity of the strain-measuring
apparatus. For design purposes, it has become conventional to define as the
“yield strength” of such materials the value of the stress that produces a
specified value of the “offset” or conventional permanent strain, obtained
by drawing through a given point on the stress-strain curve a straight line
whose slope is the elastic modulus E (in a material such as soft copper, this
would be the slope of the stress-strain curve at the origin). Typically used
values of the offset are 0.1%, 0.2% and 0.5%. When this definition is used,
it is necessary to specify the offset, and thus we would speak of “0.2% offset
yield strength.”

2.1.2 Plastic Deformation

Plastic Strain, Work-Hardening

The strain defined by the offset may be identified with the inelastic strain
as defined in 1.5.1. In the context in which rate sensitivity is neglected, this
strain is usually called the plastic strain, and therefore, if it is denoted εp,
it is given by

εp = ε− σ

E
. (2.1.1)

The plastic strain at a given value of the stress is often somewhat different
from the permanent strain observed when the specimen is unloaded from this
stress, because the stress-strain relation in unloading is not always ideally
elastic, whether as a result of rate effects or other phenomena (one of which,
the Bauschinger effect, is discussed below).

Additional plastic deformation results as the stress is increased. The
stress-strain curve resulting from the initial loading into the plastic range is
called the virgin curve or flow curve. If the specimen is unloaded after some
plastic deformation has taken place and then reloaded, the reloading portion
of the stress-strain diagram is, like the unloading portion, approximately a
straight line of slope E, more or less up to the highest previously attained
stress (that is, the stress at which unloading began). The reloading then
follows the virgin curve. Similar results occur with additional unloadings and
reloadings. The highest stress attained before unloading is therefore a new
yield stress, and the material may be regarded as having been strengthened or
hardened by the plastic deformation (or cold-working). The increase of stress
with plastic deformation is consequently called work-hardening or strain-
hardening .
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The virgin curve of work-hardening solids, especially ones without a
sharply defined yield stress, is frequently approximated by the Ramberg–
Osgood formula

ε =
σ

E
+ α

σR

E

(
σ

σR

)m

, (2.1.2)

where α and m are dimensionless constants,1 and σR is a reference stress. If
m is very large, then εp remains small until σ approaches σR, and increases
rapidly when σ exceeds σR, so that σR may be regarded as an approximate
yield stress. In the limit as m becomes infinite, the plastic strain is zero
when σ < σR, and is indeterminate when σ = σR, while σ > σR would
produce an infinite plastic strain and is therefore impossible. This limiting
case accordingly describes a perfectly plastic solid with yield stress σR.

If the deformation is sufficiently large for the elastic strain to be ne-
glected, then Equation (2.1.2) can be solved for σ in terms of ε:

σ = Cεn, (2.1.3)

where C = σR(E/ασR)n, and n = 1/m is often called the work-hardening
exponent . Equation (2.1.3), proposed by Ludwik [1909], is frequently used in
applications where an explicit expression for stress as a function of strain is
needed. Note that the stress-strain curve representing (2.1.3) has an infinite
initial slope. In order to accommodate an elastic range with an initial yield
stress σE , Equation (2.1.3) is sometimes modified to read

σ =


Eε, ε ≤ σE

E
,

σE

(
Eε

σE

)n

, ε ≥ σE

E
.

(2.1.4)

Ultimate Tensile Strength

It must be emphasized that when the strain is greater than a few percent,
the distinction between the different types of stress and strain must be taken
into account. The decomposition (2.1.1) applies, strictly speaking, to the
logarithmic strain. The nature of the stress-strain curve at larger strains is,
as discussed above, also highly dependent on whether the stress plotted is
nominal or true stress [see Figure 2.1.1(b)]. True stress is, in general, an
increasing function of strain until fracture occurs. Since the cross-sectional
area of the specimen decreases with elongation, the nominal stress increases
more slowly, and at a certain point in the test it begins to decrease. Since,
very nearly, σe = σtexp(−εl), it follows that

dσe = (dσt − σtdεl)exp(−εl),
1If m is a number other than an odd integer, then size − 2(σ/σR)m may be replaced

by size−2|σ/σR|m−1(σ/σR) if the curve is the same for negative as for positive stress and
strain.
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and therefore the nominal stress (and hence the load) is maximum when

dσt

dεl
= σt.

If Equation (2.1.3) is assumed to describe the flow curve in terms of Cauchy
stress and logarithmic strain, then the maximum nominal stress can easily
be seen to occur when εl = n.

The maximum value of nominal stress attained in a tensile test is called
the ultimate tensile strength or simply the tensile strength. When the spec-
imen is extended beyond the strain corresponding to this stress, its weakest
portion begins to elongate — and therefore also to thin — faster than the
remainder, and so a neck will form. Further elongation and thinning of the
neck — or necking — proceeds at decreasing load, until fracture.

Discontinuous Yielding

The stress-strain curves of certain impurity-containing metals, such as
mild steel and nitrogen-containing brass, present a phenomenon known as
discontinuous yielding . When the initial elastic limit is reached, suddenly
a significant amount of stretching (on the order of 1 or 2%, and thus con-
siderably larger than the elastic strain achieved up to that point) occurs at
essentially constant stress, of a value equal to or somewhat lower than the
initial elastic limit. If the value is the same, then it is called the yield point
of the material. If it is lower, then it is called the lower yield point , while
the higher value is called the upper yield point . The portion of the stress-
strain diagram represented by the constant stress value is called the yield
plateau, and the drop in stress, if any, that precedes it is called the yield
drop. Following the plateau, work-hardening sets in, as described above.
Figure 2.1.1(b’) shows a typical stress-strain diagram for a material with a
yield point.

As shown in the figure, the stress on the plateau is not really constant
but shows small, irregular fluctuations. They are due to the fact that plastic
deformation in this stage is not a homogeneous process but concentrated
in discrete narrow zones known as Lüders bands, which propagate along
the specimen as it is stretched, giving rise to surface marks called stretcher
strains.

When a specimen of a material with a yield point is loaded into the work-
hardening range, unloaded, and reloaded soon after unloading, the virgin
curve is regained smoothly as described previously. If, however, some time
— of the order of hours — is allowed to elapse before reloading, the yield
point recurs at a higher stress level (see Figure 2.1.2). This phenomenon is
called strain aging .

Bauschinger Effect, Anisotropy

A specimen of a ductile material that has been subjected to increasing
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Figure 2.1.2. Strain aging

tensile stress and then unloaded (“cold-worked”) is different from a virgin
specimen. We already know that it has a higher tensile yield stress. If,
however, it is now subjected to increasing compressive stress, it is found
that the yield stress in compression is lower than before. This observation
is known as the Bauschinger effect [see Figure 2.1.3(a)].

The Bauschinger effect can be observed whenever the direction of strain-
ing is reversed, as, for example, compression followed by tension, or shearing
(as in a torsion test on a thin-walled tube) followed by shearing in the op-
posite direction. More generally, the term “Bauschinger effect” can be used
to describe the lowering of the yield stress upon reloading that follows un-
loading, even if the reloading is in the same direction as the original loading
(Lubahn and Felgar [1961]) [see Figure 2.1.3(b)]. Note the hysteresis loop
which appears with large strains, even at very slow rates of straining at
which the viscoelastic effects mentioned above may be neglected.

Another result of plastic deformation is the loss of isotropy. Following
cold-working in a given direction, differences appear between the values of
the tensile yield strength in that direction and in a direction normal to it.
These differences may be of the order of 10%, but are usually neglected in
practice.

Annealing, Recovery

The term “cold-working” used in the foregoing discussions refers to plas-
tic deformation carried out at temperatures below the so-called recrystalliza-
tion temperature of the metal, typically equal, in terms of absolute temper-
ature, to some 35 to 50% of the melting point (although, unlike the melting
point, it is not sharply defined); the reason for the name is explained in the
next section. The effects of cold-working, such as work-hardening, the Bau-
schinger effect, and induced anisotropy, can largely be removed by a process
called annealing , consisting of heating the metal to a relatively high tem-
perature (above the recrystallization temperature) and holding it there for
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a certain length of time before slowly cooling it. The length of time neces-
sary for the process decreases with the annealing temperature and with the
amount of cold work.

Plastic deformation that takes place at temperatures in the annealing
range (i.e., above the recrystallization temperature) is known as hot-working ,
and does not produce work-hardening, anisotropy, or the Bauschinger effect.
For metals with low melting points, such as lead and tin, the recrystallization
temperature is about 0◦C and therefore deformation at room temperature
must be regarded as hot-working. Conversely, metals with very high melting
points, such as molybdenum and tungsten (with recrystallization tempera-
tures of 1100 to 1200◦C can be “cold-worked” at temperatures at which the
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metal is red-hot.
The recrystallization temperature provides a qualitative demarcation be-

tween stress-strain diagrams that show work-hardening and those that do
not. Within each of the two ranges, however, the stress needed to achieve
a given plastic deformation at a given strain rate also depends on the tem-
perature. In particular, it decreases with increasing temperature (see Figure
2.1.4).

εl

σt

@@R
T

(((��

Figure 2.1.4. Temperature dependence of flow stress

A characteristic of some metals (including mild steel), with important
implications for design, is a change of behavior from ductile to brittle when
the temperature falls below the so-called transition temperature.

Softening (that is, a spontaneous decrease in yield strength) of work-
hardened metals also occurs at temperatures below recrystallization. This
process, whose rate is considerably slower than that of annealing, is called
recovery . The rate of recovery decreases with decreasing temperature, and
is negligible at room temperature for such metals as aluminum, copper and
steel. These metals may accordingly be regarded for practical purposes as
work-hardening permanently.

2.1.3 Temperature and Rate Dependence

The preceding discussion of the rates of annealing and recovery shows the
close relationship between temperature and rate. A great many physico-
chemical rate processes — specifically, those that are thermally activated —
are governed by the Arrhenius equation, which has the general form

rate ∝ e−∆E/kT , (2.1.5)
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where k is Boltzmann’s constant (1.38× 10−23 J/K), T is the absolute tem-
perature, and ∆E is the activation energy of the process. The rate sensitivity
of the work-hardening stress-strain curve itself increases with increasing tem-
perature. In a good many metals, the dependence on the plastic strain rate
of the stress required to achieve a given plastic strain can be approximated
quite well by ε̇r, where the exponent r (sometimes called simply the rate
sensitivity) depends on the plastic strain and the temperature, increasing
with both. Some typical results for r, obtained from tests at strain rates
between 1 and 40 per second, are shown in Table 2.1.1.

Table 2.1.1

Metal Temperature Value of r for a compression of
(◦C) 10% 30% 50%

Aluminum 18 0.013 0.018 0.020
350 0.055 0.073 0.088
550 0.130 0.141 0.155

Copper 18 0.001 0.002 0.010
450 0.001 0.008 0.031
900 0.134 0.154 0.190

Mild steel 930 0.088 0.094 0.105
1200 0.116 0.141 0.196

Source: Johnson and Mellor [1973].

The Arrhenius equation (2.1.5) permits, in principle, the simultaneous
representation of the rate sensitivity and temperature sensitivity of the
stress-strain relation by means of the parameter ε̇exp(∆E/RT ), or, more
generally, ε̇f(T ), where f(T ) is an experimentally determined function, since
the activation energy ∆E may itself be a function of the temperature.

Creep

The preceding results were obtained from tests carried out at constant
strain rate (since the strains are large, total and plastic strain need not
be distinguished). Following Ludwik [1909], it is frequently assumed that
at a given temperature, a relation exists among stress, plastic (or total)
strain, and plastic (or total) strain rate, independently of the process, and
therefore this relation also describes creep, that is, continuing deformation at
constant stress. Such a relation is reminiscent of the “standard solid” model
of viscoelasticity, in which this relation is linear. It will be recalled that
this model describes both the rate dependence of the stress-strain relation
(discussed above in this section) and the increasing deformation at constant
stress known as creep, which in this case asymptotically attains a finite value
(bounded creep), though in the limiting case of the Maxwell model it becomes
steady creep. In fact, all linear spring-dashpot models of viscoelasticity lead
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to creep that is either bounded or steady.
For metals, the relation, if it exists, is nonlinear — many different forms

have been proposed — and therefore the resulting creep need not belong to
one of the two types predicted by the linear models. Typical creep curves for
a metal, showing the creep strain εc (equal to the total strain less the initial
strain) as a function of time at constant stress and temperature, are shown
in Figure 2.1.5. The standard curve is conventionally regarded as consisting
of three stages, known respectively as primary (or transient), secondary (or
steady), and tertiary (or accelerating) creep, though not all creep curves need
contain all three stages. At low stresses and temperatures, the primary creep
resembles the bounded creep of linear viscoelasticity, with a limiting value
attained asymptotically, and secondary and tertiary creep never appear. At
higher stress or temperature, however, the primary creep shows a logarithmic
or a power dependence on time:

εc ∝ ln t or εc ∝ tα,

where α is between 0 and 1, a frequently observed value being 1
3

(Andrade’s
creep law). The logarithmic form is usually found to prevail below, and
the power form above, the recrystallization temperature.

Creep described by the power law can be derived from a formula relating
stress, creep strain and creep-strain rate that has the form (due to Nadai
[1950])

σ = C(εc)n(ε̇c)r, (2.1.6)

where C, n, and r depend on the temperature; this formula reduces to the
Ludwik equation (2.1.3) at constant strain rate, and implies a rate sensitivity
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that is independent of the strain. At constant stress, the equation can be
integrated, resulting in a power law with α = r/(n + r).

Tertiary (accelerating) creep is generally regarded as resulting from struc-
tural changes leading to a loss of strength and, eventually, fracture. Whether
secondary (steady) creep really takes place over a significant time interval,
or is merely an approximate description of creep behavior near an inflection
point of the creep curve, is not certain (see Lubahn and Felgar [1961], pp.
136–141). In either case, however, one may speak of a minimum creep rate
characteristic of the metal at a given stress and temperature, if these are
sufficiently high. At a given stress, the temperature dependence of this min-
imum creep rate is usually found to be given fairly closely by the Arrhenius
equation. Its dependence on stress at a given temperature can be approxi-
mated by an exponential function at higher stresses, and by a power function
of the form ε̇c

min ∝ σq, where q is an exponent greater than 1 (the frequently
used Bailey–Norton law), at lower stresses. (Note that Equation (2.1.6)
describes the Bailey–Norton law if n = 0 and r = 1/q.) A commonly used
approximation for the creep strain as a function of time, at a given stress
and temperature, is

εc(t) = εc
0 + ε̇c

mint,

where ε̇c
min is the minimum creep rate, and εc

0 is a fictitious initial value
defined by the εc-intercept of the straight line tangent to the actual creep
curve at the point of inflection or in the steady-creep portion.

In many materials at ordinary temperatures, rate-dependent inelastic
deformation is insignificant when the stress is below a yield stress. A simple
model describing this effect is the Bingham model:

ε̇i =


0, |σ| < σY ,(

1− σY

|σ|

)
σ

η
, |σ| ≥ σY ,

(2.1.7)

where η is a viscosity, and the yield stress σY may depend on strain. The
Bingham model is the simplest model of viscoplasticity. Its generalizations
are discussed in Section 3.1.

Exercises: Section 2.1

1. Show that the relation between the conventional strain εe and the
logarithmic strain εl is εl = ln(1 + εe).

2. It is assumed that the stress-strain relations of isotropic linear elastic-
ity, with Young’s modulus E and Poisson’s ratio ν, are exact in terms
of true stress and logarithmic strain. For uniaxial stress, find the rela-
tion (parametric if necessary) between the conventional stress and the
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conventional strain. Show that the second-order approximation to the
relation is σe = E[εe − ( 1

2
+ 2ν)ε2

e].

3. A uniaxial tension test produces a curve of true stress against loga-
rithmic strain that is fitted by σt = 2× 105εl in the elastic range and
σt = 635ε

1/6
l in the plastic range, with stresses in MPa. Determine (a)

the elastic-limit stress, (b) the logarithmic and conventional strains at
maximum load, and (c) the true and conventional stresses at maximum
load, assuming negligible volume change.

4. If the reference stress σR in the Ramberg–Osgood formula (2.1.2) is
the offset yield strength for a given permanent strain εR, find α in
terms of σR, εR, and E.

5. Find a formula describing a stress-strain relation that (a) is linear for
σ < σE , (b) asymptotically tends to ε ∝ σm, and (c) is smooth at
σ = σE .

6. Suppose that in Equation (2.1.6) only C depends on the temperature.
Show that, for a given stress, the creep curves corresponding to differ-
ent temperatures are parallel if they are plotted as creep strain against
the logarithm of time.

7. Determine the form of the creep law resulting from Equation (2.1.6).

8. Assuming ε = σ/E + εc, and letting n = 0 in Equation (2.1.6), deter-
mine the resulting relaxation law, i. e. σ as a function of t when a
strain ε is suddenly imposed at t = 0 and maintained thereafter.

9. To what does the Bingham model described by Equation (2.1.7) reduce
when σY = 0? When η = 0?

Section 2.2 Crystal Plasticity

2.2.1 Crystals and Slip

Crystal Structure

Plasticity theory was developed primarily in order to describe the behav-
ior of ductile metals. Metals in their usual form are polycrystalline aggre-
gates, that is, they are composed of large numbers of grains, each of which
has the structure of a simple crystal.

A crystal is a three-dimensional array of atoms forming a regular lattice;
it may be regarded as a molecule of indefinite extent. The atoms vibrate
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about fixed points in the lattice but, by and large, do not move away from
them, being held more or less in place by the forces exerted by neighboring
atoms. The forces may be due to ionic, covalent, or metallic bonding. Ionic
bonds result from electron transfer from electropositive to electronegative
atoms, and therefore can occur only in compounds of unlike elements. Ionic
crystal structures range from very simple, such as the sodium chloride struc-
ture in which Na+ and Cl− alternate in a simple cubic array, to the very
complex structures found in ceramics. Covalent bonds are due to the sharing
of electrons, and are found in diamond and, to some extent, in crystalline
polymers.

In a metallic crystal, the outer or valence electrons move fairly freely
through the lattice, while the “cores” (consisting of the nucleus and the filled
shells of electrons) vibrate about the equilibrium positions. The metallic
bond is the result of a rather complex interaction among the cores and the
“free” electrons. It is the free electrons that are responsible for the electrical
and thermal conductivity of metals.
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Figure 2.2.1. Crystal structures: (a) hexagonal close-packed (hcp); (b) face-
centered cubic (fcc); (c) body-centered cubic (bcc).

The most common crystal structures in metals are the hexagonal close-
packed (hcp), face-centered cubic (fcc) and body-centered cubic (bcc), shown
in Figure 2.2.1. Because of the random orientation of individual grains
in a typical metallic body, the overall behavior of the aggregate is largely
isotropic, but such phenomena as the Bauschinger effect and preferred orien-
tation, which occur as a result of different plastic deformation of grains with
different orientations, demonstrate the effect of crystal structure on plastic
behavior. It is possible, however, to produce specimens of crystalline solids
— not only metals — in the form of single crystals of sufficiently large size
to permit mechanical testing.

Crystal Elasticity

The linear elastic behavior of a solid is described by the elastic modulus
matrix C defined in 1.4.2. The most general anisotropic solid has 21 inde-
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pendent elements of C. For the isotropic solid, on the other hand, the only
nonzero elements of C are (a) C11 = C22 = C33, (b) C44 = C55 = C66, and
(c) C12 = C13 = C23 (the symmetry CIJ = CJI is not explicitly shown). But
only two of the three values are independent, since C11 = λ + 2µ, C44 = µ,
and C12 = λ, so that

C44 =
1
2
(C11 − C12).

In a crystal with cubic symmetry (such as simple cubic, fcc or bcc), with
the Cartesian axes oriented along the cube edges, the nonzero elements of
C are the same ones as for the isotropic solid, but the three values C11,
C12 and C44 are independent. It may, of course, happen fortuitously that
the isotropy condition expressed by the preceding equation is satisfied for a
given cubic crystal; this is the case for tungsten.

A crystal with hexagonal symmetry is isotropic in the basal plane. Thus,
if the basal planes are parallel to the x1x2-plane, C66 = 1

2
(C11 − C12). The

following elements of C are independent: (a) C11 = C22, (b) C33, (c) C12,
(d) C13 = C23, and (e) C44 = C55.

The anisotropy of crystals is often studied by performing tension tests
on specimens with different orientations, resulting in orientation-dependent
values of the Young’s modulus E. If the maximum and minimum values are
denoted Emax and Emin, respectively, while Eave denotes the polycrystalline
average, the anisotropy index may be defined as (Emax−Emin)/Eave. Values
range widely: 1.13 for copper, 0.73 for α-iron, 0.2 for aluminum, and, as
indicated above, zero for tungsten.

Crystal Plasticity

Experiments show that plastic deformation is the result of relative mo-
tion, or slip, on specific crystallographic planes, in response to shear stress
along these planes. It is found that the slip planes are most often those
that are parallel to the planes of closest packing; a simple explanation for
this is that the separation between such planes is the greatest, and therefore
slip between them is the easiest, since the resistance to slip as a result of
interatomic forces decreases rapidly with interatomic distance. Within each
slip plane there are in turn preferred slip directions, which once more are
those of the atomic rows with the greatest density, for the same reason. A
slip plane and a slip direction together are said to form a slip system.

In hcp crystals, which include zinc and magnesium, the planes of closest
packing are those containing the hexagons, and the slip directions in those
planes are parallel to the diagonals. Hexagonal close-packed crystals there-
fore have three primary slip systems, although at higher temperatures other,
secondary, slip systems may become operative.

Face-centered cubic crystals, by contrast, have twelve primary slip sys-
tems: the close-packed planes are the four octahedral planes, and each con-
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tains three face diagonals as the closest-packed lines. As a result, fcc metals,
such as aluminum, copper, and gold, exhibit considerably more ductility
than do hcp metals.

In body-centered cubic crystals there are six planes of closest packing
and two slip directions in each, for a total of twelve primary slip systems.
However, the difference in packing density between the closest-packed planes
and certain other planes is not great, so that additional slip systems become
available even at ordinary temperatures. Consequently, metals having a bcc
structure, such as α-iron (the form of iron found at ordinary temperatures),
tungsten, and molybdenum, have a ductility similar to that of fcc metals.

The preceding correlation between ductility and lattice type is valid in
very broad terms. Real metal crystals almost never form perfect lattices con-
taining one type of atom only; they contain imperfections such as geometric
lattice defects and impurity atoms, besides the grain boundaries contained
in polycrystals. In fact, these imperfections are the primary determinants
of crystal plasticity. Ductility must therefore be regarded as a structure-
sensitive property, as are other inelastic properties. It is only the ther-
moelastic properties discussed in 1.4.1 — the elastic moduli, thermal stress
(or strain) coefficients, and specific heat — that are primarily influenced by
the ideal lattice structure, and are therefore called structure-insensitive.

Slip Bands

In principle, slip in a single crystal can occur on every potential slip plane
when the necessary shear stress is acting. Observations, however, show slip
to be confined to discrete planes.1 When a slip plane intersects the outer
surface, an observable slip line is formed, and slip lines form clusters called
slip bands. In a given slip band, typically, a new slip line forms at a distance
of the order of 100 interatomic spacings from the preceding one when the
amount of slip on the latter has reached something of the order of 1,000
interatomic spacings. It follows from these observations that slip does not
take place by a uniform relative displacement of adjacent atomic planes.

Critical Resolved Shear Stress

It was said above that slip along a slip plane occurs in response to shear
stress on that plane. In particular, in a tensile specimen of monocrystalline
metal in which the tensile stress σ acts along an axis forming an angle φ with
the normal to the slip plane and an angle λ with the slip direction, then the
relation between σ and the resolved shear stress on the slip plane and in the
slip direction, τ , is

σ = (cos φ cos λ)−1τ. (2.2.1)

It was found by Schmid [1924], and has been confirmed by many experiments,
1Or, more generally, surfaces (slip surfaces), since slip may transfer from one slip plane

to another which intersects it in the interior of the crystal, especially in bcc metals.
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that slip in a single crystal is initiated when the resolved shear stress on
some slip system reaches a critical value τc, which is a constant for a given
material at a given temperature and is known as the critical resolved shear
stress. This result is called Schmid’s law. The critical resolved shear stress
is, as a rule, very much higher for bcc metals (iron, tungsten) than for fcc
metals (aluminum, copper) or hcp metals (zinc, magnesium).

Theoretical Shear Strength

A value of the shear stress necessary to produce slip may be calculated
by assuming that slip takes place by the uniform displacement of adjacent
atomic planes. Consider the two-dimensional picture in Figure 2.2.2: two

h h h
h h h

h h h
h h h

h h h
h h h- -� �x

d
2d� -

?
6h

⇀

↽

τ

τ

- -

Figure 2.2.2. Slip between two neighboring rows of atoms

neighboring rows of atoms, the distance between the centers of adjacent
atoms in each row being d, and the distance between the center lines of
the two rows being h. Suppose the two rows to be in a stable equilibrium
configuration under zero stress. If one row is displaced by a distance d
relative to the other, a new configuration is achieved that is indistinguishable
from the first. A displacement of d/2, on the other hand, would lead to an
unstable equilibrium configuration at zero stress. As a first approximation,
then, the shear stress necessary to produce a relative displacement x may
be assumed to be given by

τ = τmax sin
2πx

d
, (2.2.2)

and slip would proceed when τ = τmax. When the displacement x is small,
the stress-displacement relation is approximately linear: τ = 2πτmaxx/d.
But a small displacement x between rows a distance h apart corresponds to
a lattice shear of γ = x/h, and Hooke’s law in shear reads τ = Gγ [Equation
(1.4.15)]. Consequently,

τmax =
Gd

2πh
.

Since h ≡ d, the value G/6 is a first, structure-insensitive approximation to
the so-called theoretical shear strength of a crystal.

More refined calculations that take actual crystal structures into account
reduce the value of the theoretical shear strength to about G/30. In reality,
however, the shear strength of single crystals is less than this by one to
three orders of magnitude, that is, it is of order 10−3G to 10−5G. Only in
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so-called whiskers, virtually perfect crystals about 1 µm in diameter, is a
shear strength of the theoretical order of magnitude observed.

2.2.2 Dislocations and Crystal Plasticity

The discrepancy between theoretical and observed shear strength, as well
as the observation of slip bands, have led to the inevitable conclusion that
slip in ordinary crystals must take place by some mechanism other than
the movement of whole planes of atoms past one another, and that it is
somehow associated with lattice defects. A mechanism based on a specific
defect called a dislocation was proposed independently by G. I. Taylor [1934]
and E. Orowan [1934].

Defects in Crystals

All real crystals contain defects, that is, deviations from the ideal crystal
structure. A defect concentrated about a single lattice point and involving
only a few atoms is called a point defect ; if it extends along a row of many
atoms, it is called a line defect ; and if it covers a whole plane of atoms, a
planar defect .

Point defects are shown in Figure 2.2.3. They may be purely structural,
such as (a) a vacancy or (b) an interstitial atom, or they may involve foreign
atoms (impurities): (c) a substitutional impurity, (d) an interstitial impu-
rity. As shown in the figure, point defects distort the crystal lattice locally,
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Figure 2.2.3. Point defects: (a) vacancy; (b) interstitial atom; (c) substitu-
tional impurity; (d) interstitial impurity.

the distortion being significant over a few atomic distances but negligible
farther away. Planar defects, illustrated in Figure 2.2.4, include (a) grain
boundaries in polycrystals, and within single crystals, (b) twin boundaries
and (c) stacking faults.

Dislocations

The most important line defects in crystals are dislocations. The con-
cept of a dislocation has its origin in continuum mechanics, where it was
introduced by V. Volterra. Consider a hollow thick-walled circular cylin-
der in which a radial cut, extending through the wall, is made [see Figure
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Figure 2.2.4. Planar defects: (a) grain boundary; (b) twin boundary; (c) stack-
ing fault.

2.2.5(a)]. The two faces of the cut may be displaced relative to each other
by a distance b, either in the (b) radial or (c) axial direction, and then reat-
tached. The result is a Volterra dislocation, with Figures 2.2.5(b) and (c)
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Figure 2.2.5. Volterra dislocation: (a) Volterra cut; (b) edge dislocation; (c)
screw dislocation.

representing respectively an edge and a screw dislocation. When the rough
edges are smoothed, the result is a cylinder looking much as it did before
the operation, but containing a self-equilibrating internal stress field. If the
material is isotropic and linearly elastic, then the stress and displacement
fields can be calculated by means of the theory of elasticity. In particular,
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the strain energy per unit length of cylinder is found to be

W ′ =
Gb2

4π(1− ν)

(
ln

R

a
− 1

)
(2.2.3a)

for an edge dislocation and

W ′ =
Gb2

4π

(
ln

R

a
− 1

)
(2.2.3b)

for a screw dislocation, where G is the shear modulus, ν is the Poisson’s
ratio, and R and a are respectively the outer and inner radii of the cylinder.

An edge dislocation in a crystal can be visualized as a line on one side
of which an extra half-plane of atoms has been introduced, as illustrated in
Figure 2.2.6(a) for a simple cubic lattice. At a sufficient number of atomic
distances away from the dislocation line, the lattice is virtually undisturbed.
Consider, now, a path through this “good” crystal which would be closed
if the lattice were perfect. If such a path, consisting of the same number
of atom-to-atom steps in each direction, encloses a dislocation, then, as
shown in the figure, it is not closed; the vector b needed to close it is called
the Burgers vector of the dislocation, and the path defining it is called the
Burgers circuit .
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Figure 2.2.6. Dislocation in a crystal: (a) edge dislocation; (b) screw disloca-
tion.

Note that, for an edge dislocation, the Burgers vector is necessarily per-
pendicular to the dislocation line. Indeed, this can be used as the defining
property of an edge dislocation. Similarly, a screw dislocation can be de-
fined as one whose Burgers vector is parallel to the dislocation line [see
Figure 2.2.6(b)].

A dislocation in a crystal need not be a straight line. However, the Burg-
ers vector must remain constant. Thus, a dislocation can change from edge
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to screw, or vice versa, if it makes a right-angle turn. It cannot, moreover,
terminate inside the crystal, but only at the surface of a crystal or at a grain
boundary. It can form a closed loop, or branch into other dislocations (at
points called nodes), subject to the conservation of the Burgers vectors:
the sum of the Burgers vectors of the dislocations meeting at a node must
vanish if each dislocation is considered to go into the node (Frank [1951]).

Dislocations and Slip

It is now universally accepted that plastic deformation in crystals results
from the movement of dislocations. As can be seen from Figure 2.2.7, in order
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Figure 2.2.7. Slip by means of an edge dislocation.

for an edge dislocation to move one atomic distance in the plane containing
it and its Burgers vector (the slip plane), each atom need move only a small
fraction of an atomic distance. Consequently, the stress required to move the
dislocation is only a small fraction of the theoretical shear strength discussed
in 2.2.1. An approximate value of this stress is given by the Peierls–Nabarro
stress,

τPN =
2G

1− ν
exp

[
− 2πh

d(1− ν)

]
,

where h and d denote, as before, the distances between adjacent planes of
atoms and between atoms in each plane, respectively. The Peierls–Nabarro
stress is clearly much smaller than the theoretical shear strength. Its value,
moreover, depends on h/d, and the smallest value is achieved when h/d is
largest, that is, for close-packed planes that are as far apart as possible; this
result explains why such planes are the likeliest slip planes. When h =

√
2d,

τPN is of the order 10−5G, consistent with the observed shear strength of
pure single crystals.

If the stress is maintained, the dislocation can move to the next position,
and the next, and so on. As the dislocation moves in its slip plane, the
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portion of the plane that it leaves behind can be regarded as having expe-
rienced slip of the amount of one Burgers-vector magnitude b = |b|. When
the dislocation reaches the crystal boundary, slip will have occurred on the
entire slip plane. Suppose that the length of the slip plane is s, and that an
edge dislocation moves a distance x in the slip plane; then it contributes a
displacement bx/s, so that n dislocations moving an average distance x̄ pro-
duce a displacement u = nbx̄/s. If the average spacing between slip planes
is l, then the plastic shear strain is

γp =
u

l
=

nbx̄

ls
.

However, n/ls is just the average number of dislocation lines per unit per-
pendicular area, or, equivalently, the total length of dislocation lines of the
given family per unit crystal volume — a quantity known as the density
of dislocations, usually denoted ρ. Since only the mobile dislocations con-
tribute to plastic strain, it is their density, denoted ρm, that must appear in
the equation for the plastic strain, that is,

γp = ρmbx̄,

and the plastic shear-strain rate is

γ̇p = ρmbv̄,

where v̄ is the average dislocation velocity.

Forces on and Between Dislocations

A shear stress τ acting on the slip plane and in the direction of the Burg-
ers vector produces a force per unit length of dislocation that is perpendicular
to the dislocation line and equal to τb. To prove this result, we consider an
infinitesimal dislocation segment of length dl; as this segment moves by a
distance ds, slip of an amount b occurs over an area dl ds, and therefore the
work done by the shear stress is (τ dl ds)b = (τb) dl ds, equivalent to that
done by a force (τb)dl, or τb per unit length of dislocation.

Equations (2.2.3) for the strain energy per unit length of a dislocation
in an isotropic elastic continuum may be used to give an order-of-magnitude
estimate for the strain energy per unit length of a dislocation in a crystal,
namely,

W ′ = αGb2, (2.2.4)

where α is a numerical factor between 0.5 and 1.
Two parallel edge dislocations having the same slip plane have, when

they are far apart, a combined energy equal to the sum of their individual
energies, that is, 2αGb2 per unit length, since any interaction between them
is negligible. When they are very close together, then, if they are unlike
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(that is, if their Burgers vectors are equal and opposite), they will annihilate
each other and the resulting energy will be zero; thus they attract each other
in order to minimize the total energy. Like dislocations, on the other hand,
when close together are equivalent to a single dislocation of Burgers vector
2b, so that the energy per unit length is αG(2b)2, and therefore they repel
each other in order to reduce the energy.

Frank–Read Source

The number of dislocations typically present in an unstressed, annealed
crystal is not sufficient to produce plastic strains greater than a few percent.
In order to account for the large plastic strains that are actually produced,
it is necessary for large numbers of dislocations to be created, and on a
relatively small number of slip planes, in order to account for slip bands.
The Frank–Read source is a mechanism whereby a single segment of an edge
dislocation, anchored at two interior points of its slip plane, can produce a
large number of dislocation loops. The anchor points can be point defects,
or points at which the dislocation joins other dislocations in unfavorable
planes.

If α in Equation (2.2.4) is constant along the dislocation, independently of
its orientation, then an increase ∆L in dislocation length requires an energy
increment W ′∆L, that is, work in that amount must be done on it. This
is equivalent to assuming that a line tension T equal to W ′ is acting along
the dislocation. In order to deform an initially straight dislocation segment
into a circular arc subtending an angle 2θ, equilibrium requires a restoring
force F = 2T sin θ perpendicular to the original dislocation segment. If the
length of the segment is L, then the force per unit length is F/L and can be
produced by a shear stress τ = F/bL, or

τ =
2αGb

L
r sin θ.

When θ = π/2, that is, when the dislocation segment forms a semicircle, the
shear stress is maximum and equal to

τmax =
Gb

L

if α = 0.5, as it is frequently taken.
If the maximum necessary shear stress is acting on a dislocation seg-

ment pinned at two points, as in Figure 2.2.8, the semicircular form is soon
attained, whereupon the dislocation becomes unstable and expands indefi-
nitely. The expanding loop doubles back on itself, as in (c) and (d), until two
sections meet and annihilate each other, since they have the same Burgers
vector but opposite line sense, forming a closed outer loop that continues to
expand and a new dislocation segment that will repeat the process.
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Figure 2.2.8. Frank–Read source (after Read [1953]).

Other mechanisms for the multiplication of dislocations that are similar
to the Frank–Read source involve screw dislocations and include cross-slip
and the Bardeen–Herring source (see, e.g., Hull and Bacon [1984]).

2.2.3 Dislocation Models of Plastic Phenomena

W. T. Read, Jr., in his classic Dislocations in Crystals (Read [1953]), of-
fered the following caution: “Little is gained by trying to explain any and
all experimental results by dislocation theory; the number of possible expla-
nations is limited only by the ingenuity, energy, and personal preference of
the theorist.”

Indeed, much theoretical work has been expended in the past half-century
in attempts to explain the phenomena of metal plasticity, discussed in Sec-
tion 2.1, by means of dislocation theory. No comprehensive theory has been
achieved, but numerous qualitative or semi-quantitative explanations have
been offered, and some of these are now generally accepted. A few are de-
scribed in what follows.
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Yield Stress

If the loops generated by Frank–Read sources or similar mechanisms
could all pass out of the crystal, then an indefinite amount of slip could be
produced under constant stress. In reality, obstacles to dislocation move-
ment are present. These may be scattered obstacles such as impurity atoms
or precipitates, extended barriers such as grain boundaries, or other dislo-
cations that a moving dislocation has to intersect (“forest dislocations”). In
addition, if a dislocation is stopped at a barrier, then successive dislocations
emanating from the same Frank–Read source pile up behind it, stopped from
further movement by the repulsive forces that like dislocations exert on one
another.

The yield stress is essentially the applied shear stress necessary to pro-
vide the dislocations with enough energy to overcome the short-range forces
exerted by the obstacles as well as the long-range forces due to other dis-
locations. The mechanisms are many and complex, and therefore there is
no single dislocation theory of the yield strength but numerous theories at-
tempting to explain specific phenomena of metal plasticity. This is especially
true for alloys, in which the impurity atoms may present various kinds of
obstacles, depending on the form they take in the host lattice — for example,
whether as solutes or precipitates (for a general review, see, e.g., Nabarro
[1975]).

Yield Point

Under some conditions, solute atoms tend to segregate in the vicinity of
a dislocation at a much greater density than elsewhere in the lattice, forming
so-called Cottrell atmospheres. In order to move the dislocation, an extra
stress is required to overcome the anchoring force exerted on it by the solutes.
Once the dislocation is dislodged from the atmosphere, however, the extra
stress is no longer necessary, and the dislocation can move under a stress that
is lower than that required to initiate the motion. This is the explanation,
due to Cottrell and Bilby [1949], of the yield-point phenomenon discussed
in 2.1.2 [see Figure 2.1.1(b’)]. Strain-aging (Figure 2.1.2) is explained by
the fact that the formation of atmospheres takes place by diffusion and is
therefore a rate process. Thus if a specimen is unloaded and immediately
reloaded, not enough time will have passed for the atmospheres to form anew.
After a sufficient time, whose length decreases with increasing temperature,
the solutes segregate once more and the upper yield point returns.

Work-Hardening

As plastic deformation proceeds, dislocations multiply and eventually get
stuck. The stress field of these dislocations acts as a back stress on mobile
dislocations, whose movement accordingly becomes progressively more dif-
ficult, and an ever greater applied stress is necessary to produce additional
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plastic deformation. This is the phenomenon of work-hardening.
In a first stage, when only the most favorably oriented slip systems are

active, the back stress is primarily due to interaction between dislocations
on parallel slip planes and to the pile-up mechanism. In this stage work-
hardening is usually slight, and the stage is therefore often called easy glide.
Later, as other slip systems become activated, the intersection mechanism
becomes predominant, resulting in much greater work-hardening. In a final
stage, screw dislocations may come into play.

Since the number of possible mechanisms producing forces on dislocations
is great, there is as yet no comprehensive theory of work-hardening that
would permit the formulation of a stress-strain relation from dislocation
theory. For reviews of work-hardening models, see Basinski and Basinski
[1979] or Hirsch [1975].

Yield Strength of Polycrystals

The plastic deformation of polycrystals differs from that of single crys-
tals in that, in the former, individual crystals have different orientations and
therefore, under a given applied stress, the resolved shear stress varies from
grain to grain. The critical value of this stress is therefore attained in the dif-
ferent grains at different values of the applied stress, so that the grains yield
progressively. Furthermore, the grain boundaries present strong barriers to
dislocation motion, and therefore the yield stress is in general a decreasing
function of grain size, other factors being the same; the dependence is often
found to be described by the Hall–Petch relation,

σY = σY∞ +
kY√

d
,

where d is the grain diameter, and σY∞ and kY are temperature-dependent
material constants.

The stress σY∞, corresponding (theoretically) to infinite grain size, may
be interpreted as the yield stress when the effects of grain boundaries can be
neglected. As such it should be determinable, in principle, from the single-
crystal yield stress by a suitable averaging process, on the assumption of
random orientation of the grains. Such a determination was made by Taylor
[1938], who obtained the result that, if the stress-strain curve for a single
crystal in shear on an active slip system is given by τ = f(γp), then for the
polycrystal it is given by

σ = m̄f(m̄εp),

where m̄ is the average value of the factor (cos φ cos λ)−1 in Equation (2.2.1),
a value that Taylor calculated to be about 3.1 for fcc metals.

Bauschinger Effect

A fairly simple explanation of the Bauschinger effect is due to Nabarro
[1950]. The dislocations in a pile-up are in equilibrium under the applied
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stress σ, the internal stress σi due to various obstacles, and the back stress
σb due to the other dislocations in the pile-up; σi may be identified with
the elastic limit. When the applied stress is reduced, the dislocations back
off somewhat, with very little plastic deformation, in order to reduce the
internal stress acting on them. They can do so until they are in positions in
which the internal stress on them is −σi. When this occurs, they can move
freely backward, resulting in reverse plastic flow when the applied stress has
been reduced by 2σi.

Exercises: Section 2.2

1. For a crystal with cubic symmetry, find the Young’s modulus E in
terms of C11, C12, and C44 for tension (a) parallel to a cube edge, (b)
perpendicular to a cube edge and at 45◦ to the other two edges.

2. Show the close-packed planes and slip directions in a face-centered
cubic crystals.

3. Derive Equation (2.2.1).

4. For what range of R/a do Equations (2.2.3) give Equation (2.2.4) with
the values of α given in the text?

Section 2.3 Plasticity of Soils, Rocks, and Con-
crete

In recent years the term “geomaterials” has become current as one encom-
passing soils, rocks, and concrete. What these materials have in common,
and in contrast to metals, is the great sensitivity of their mechanical behavior
to pressure, resulting in very different strengths in tension and compression.
Beyond this common trait, however, the differences between soils on the one
hand and rocks and concrete on the other are striking. Soils can usually
undergo very large shearing deformations, and thus can be regarded as plas-
tic in the usual sense, although soil mechanicians usually label as “plastic”
only cohesive, claylike soils that can be easily molded without crumbling.
Rock and concrete, on the other hand, are brittle, except under high triaxial
compression. Nevertheless, unlike classically brittle solids, which fracture
shortly after the elastic limit is attained, concrete and many rocks can un-
dergo inelastic deformations that may be significantly greater than the elastic
strains, and their stress-strain curves superficially resemble those of plastic
solids.
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2.3.1 Plasticity of Soil

The Nature of Soil

The essential property of soils is that they are particulate, that is, they
are composed of many small solid particles, ranging in size from less than
0.001 mm (in clays) to a few millimeters (in coarse sand and gravel). Perma-
nent shearing deformation of a soil mass occurs when particles slide over one
another. Beyond this defining feature, however, there are fundamental dif-
ferences among various types of soils, differences that are strongly reflected
in their mechanical behavior.

The voids between the particles are filled with air and water; the ratio
of the void (air and water) volume to the solid volume is known as the void
ratio of the soil. While much of the water may be in the usual liquid form
(free water), and will evaporate on drying, some of the water is attached to
the particle surfaces in the form of adsorbed layers, and does not evaporate
unless the solid is heated to a temperature well above the boiling point of
water. A soil is called saturated if all the voids are filled with water. If both
water and air are present, the soil is called partially saturated , and if no free
water is present, the soil is called dry .

Clay was mentioned at the beginning of this chapter as a prototype of
a plastic material. Clays are fine-grained soils whose particles contain a
significant proportion of minerals known as clay minerals. The chemistry of
these minerals permits the formation of an adsorbed water film that is many
times thicker than the grain size. This film permits the grains to move past
one another, with no disintegration of the matrix, when stress is applied. It
is this property that soil mechanicians label as plasticity. Claylike soils are
also generally known as cohesive soils.

In cohesionless soils, such as gravels, sands, and silts, the movement of
grains past one another is resisted by dry friction, resulting in shear stresses
that depend strongly on the compression. Materials of this type are some-
times called frictional materials.

Soil Compressibility

If soil that is prevented from expanding laterally is loaded in compression
between layers, at least one of which is permeable to water, an irreversible
decrease in void ratio occurs, a result of the seepage of water from the voids.
The process, known as consolidation, takes time, and sometimes goes on
indefinitely, though at an ever-diminishing rate, much like creep. As a rule,
though, something very near the ultimate compression is attained in a finite
time which depends on the properties of the soil layer. A typical compression
curve is shown in Figure 2.3.1(a). The figure shows both the virgin curve and
the hysteresis loop resulting from decompression followed by recompression.
A soil that has been decompressed is called overconsolidated . The curves
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Figure 2.3.1. Compression curve for soil: (a) consolidation curve; (b) compres-
sive stress-strain diagram [(b) is (a) replotted].

are replotted in Figure 2.3.1(b) as a compressive stress-strain diagram. It is
seen that except for the upward convexity of the virgin curve, the diagram
resembles that of work-hardening metals.

Shearing Behavior

As in ductile metals, failure in soils occurs primarily in shear. Unlike met-
als, the shear strength of soils is, in most circumstances, strongly influenced
by the compressive normal stress acting on the shear plane and therefore by
the hydrostatic pressure. Since soils have little or no tensile strength, the
tension test cannot be applied to them. Other means are necessary in order
to determine their shear strength.

Direct Shear Test . A traditional test of the shear strength of soft clays
and of dry sands and gravels is the direct shear test or shear-box test . A
sample of soil is placed in a rectangular box whose top half can slide over the
bottom half and whose lid can move vertically, as shown in Figure 2.3.2(a).
A normal load is applied to the lid, and a shear force is applied to the top
half of the box, shearing the soil sample.

Simple Shear Test . In this test, developed by Roscoe [1953], it is the
strain that is maintained as one of simple shear [see Figure 2.3.2(b)].

The two tests just described, along with others like them, provide simple
means of estimating the shear strength. However, the stress distribution in
the sample is far from uniform, so that these tests do not actually measure
stress, and no stress-strain diagrams can result from them.

Triaxial Test . This is generally regarded as the most reliable test of
the shearing behavior of soils. As we shall see, it is used to test rock and
concrete as well. This test was discussed in 2.2.1; a normal compressive stress
σ3 (= σ2) is applied to the sides of a cylindrical sample by means of air or
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Figure 2.3.2. Shear tests: (a) direct shear test; (b) simple shear test (after
Roscoe [1953]).

water pressure, and an axial compressive stress σ1, numerically greater than
σ3, is applied at the ends (Figure 2.3.3). The results are commonly plotted
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Figure 2.3.3. Triaxial test apparatus.

as graphs of σ1 − σ3 against the axial shortening strain ε1, with σ3 as a
parameter. (Alternatively, the mean stress (σ1 +2σ3)/3 or the normal stress
on the maximum-shear plane (σ1 + σ3)/2 may be used as a parameter.)
Note that σ1 − σ3 is a measure both of the maximum shear stress given by
Equation (1.3.11), namely, τmax = 1

2
|σ1 − σ3|, and of the octahedral shear

stress, given in accordance with Equation (1.3.5) as τoct = (
√

2/3)|σ1 − σ3|.
If σ3 = 0 then the test is called an unconfined compression test , used most
commonly on hard materials such as rock and concrete, but occasionally on
clay if it is performed fast enough (“quick test”). Some typical stress-strain
curves for soils are shown in Figure 2.1.1(f) (page 78).

The dependence of the shear strength of soils on the normal stress acting
on the shearing plane varies with the type and condition of the soil. It is sim-
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plest in dry cohesionless soils (gravels, sands, and silts), in which resistance
to shear is essentially due to dry friction between the grains, and therefore
is governed by the Coulomb law of friction:

τ = σ tanφ, (2.3.1)

where τ and σ are respectively the shear and normal stresses on the shearing
plane, and φ is the angle of internal friction, a material property.

In wet cohesionless soils, the applied stress is the sum of the effective
stress in the grains and the neutral stress due to water pressure and possi-
bly capillary tension. If the latter stress is denoted σw (like σ, positive in
compression), then the Coulomb law is expressed by

τ = (σ − σw) tan φ, (2.3.2)

since the water pressure provides a counterthrust on potential sliding sur-
faces, and therefore it is only the effective stress that governs frictional re-
sistance. The concept of effective stress is due to Terzaghi.

Cohesionless soils also undergo significant volume changes when sheared.
They tend to swell if they are dense, since closely packed grains must climb
over one another in the course of shearing, and shrink if they are loose, since
grains fall into the initially large voids and thus reduce the void volume. A
granular soil thus has a critical density which remains essentially constant
as shearing proceeds, and the soil is termed dense or loose, respectively, if
its density is above or below critical.

In a sample of fine sand or silt that is dense and saturated, and which
has no source of additional water, the swelling that accompanies shearing
produces surface tension on the water which acts as a negative neutral stress.
Consequently, in accord with Equation (2.3.2), such a sample has shear
strength under zero applied stress.

In clays, the stresses in the adsorbed water layers play an important
role in determining strength, and in partially saturated clays this role is
predominant. The shear strength of such clays is given approximately by

τ = c + σ tanφ, (2.3.3)

where φ is the angle of internal friction and c is a material constant called
the cohesion, representing the shear strength under zero normal stress.

The shear response of a saturated clay depends on whether it is in a
drained or undrained condition. The former condition is achieved in a slow
application of the stresses, so that the neutral stresses are not changed during
the loading and therefore play little part in determining the shear strength.
Equation (2.3.1) is consequently a good approximation to the relation be-
tween shear stress and normal stress in this condition. In the undrained
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condition, on the other hand, the loading is quick and the applied stress is
carried by the neutral stress. In this condition the shear strength is indepen-
dent of the applied normal stress, and is therefore given by Equation (2.3.3)
with φ = 0; the cohesion c is then called the undrained strength and denoted
cu. Volume changes accompanying shearing are negligible in saturated clays.
The shear-strength response of undrained clays thus resembles that of met-
als. Much of soil engineering practice is based on this model, though it is
not universally accepted; see Bolton [1979], Section 5.1, for a survey of the
criticisms.

2.3.2 “Plasticity” of Rock and Concrete

Unlike soils, materials such as rock, mortar and concrete are generally not
plastic in the sense of being capable of considerable deformation before fail-
ure. Instead, in most tests they fracture through crack propagation when
fairly small strains (on the order of 1% or less) are attained, and must there-
fore be regarded as brittle. However, concrete, mortar, and many rocks
(such as marble and sandstone) are also unlike such characteristically brittle
solids as glass and cast iron, which fracture shortly after the elastic limit is
attained. Instead, they attain their ultimate strength after developing per-
manent strains that, while small in absolute terms, are significantly greater
than the elastic strains. The permanent deformation is due to several mech-
anisms, the foremost of which is the opening and closing of cracks.

Strain-Softening

Following the attainment of the ultimate strength, concrete and many
rocks exhibit strain-softening , that is, a gradual decrease in strength with
additional deformation. The nature of this decrease, however, depends on
factors associated with the testing procedure, including sample dimensions
and the stiffness of the testing machine.

The effect of machine stiffness can be described as follows. Let P denote
the load applied by the machine to the sample, and u the sample displace-
ment. In the course of a small change ∆u in the displacement, the sample
absorbs energy in the amount P∆u. If the machine acts like an elastic spring
with stiffness k, then a change ∆P in the load implies a change P ∆P/k in
the energy stored in the machine. This change represents release of energy
if P ∆P < 0, that is, once softening takes place. The energy released by
the machine is greater than that which can be absorbed by the sample if
k < |∆P/∆u|, resulting in an unstable machine-sample system in the case
of a “soft” machine; the sample breaks violently shortly after the ultimate
strength is passed. A “stiff” machine, on the other hand, makes for a system
that is stable under displacement control. It is only with a stiff machine,
therefore, that a complete load-displacement (or stress-displacement) curve
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can be traced.
It is not certain, however, whether the stress-displacement curve may le-

gitimately be converted into a stress-strain curve, such as is shown in Figure
2.1.1(d) (page 78), that reflects material properties, since specimen defor-
mation is often far from homogeneous. Experiments by Hudson, Brown and
Fairhurst [1971] show a considerable effect of both the size and the shape of
the specimens on the compressive stress-strain curve of marble, including as
a particular result the virtual disappearance of strain-softening in squat spec-
imens. Read and Hegemier [1984] conclude that no strain-softening occurs
in specimens of soil, rock and concrete that are homogeneously deformed. A
similar conclusion was reached by Kotsovos and Cheong [1984] for concrete.
It should be remarked that some rocks, such as limestone, exhibit classi-
cally brittle behavior in unconfined compression tests even with stiff testing
machines — that is, they fracture shortly after the elastic limit is reached.

The Effect of Pressure

An important feature of the triaxial behavior of concrete, mortar and
rocks (including those which are classically brittle in unconfined tests) is
that, if the confining pressure σ3 is sufficiently great, then crack propagation
is prevented, so that brittle behavior disappears altogether and is replaced
by ductility with work-hardening. Extensive tests were performed on marble
and limestone by von Kármán [1911] and by Griggs [1936]; some results are
shown in Figure 2.1.1(e). Note that the strains attained in these tests can
become quite large.

The relation between hydrostatic pressure and volumetric strain also
exhibits ductility with work-hardening; the curves resemble those of Figure
2.3.1(b). It can be said, in general, that rocks and concrete behave in a
ductile manner if all three principal stresses are compressive and close to
one another.

Dilatancy

If the transverse strain ε2 = ε3 is measured in uniaxial compression tests
of rock and concrete specimens in addition to the axial strain ε1, then, as
discussed in 1.2.2, the volumetric strain εV equals ε1+ε2+ε3. If the stress σ1

is plotted against εV (positive in compression), it is found that εV begins to
decrease from its elastic value at stresses greater than about half the ultimate
strength, reaches zero at a stress near the ultimate strength, and becomes
negative (signifying an increase in volume) in the strain-softening range (see
Figure 2.3.4, showing both a σ1-ε1 and a σ1-εV diagram). Similar results
are obtained in triaxial tests under low confining pressures. This volume
increase, which results from the formation and growth of cracks parallel
to the direction of the greatest compressive stress, is known as dilatancy .
This term is sometimes also applied to the swelling of dense granular soils,
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Figure 2.3.4. Compression tests on concrete or rock: stress against longitudinal
strain and volume strain.

although the mechanism causing it is unrelated.

Tensile Behavior

Uniaxial tension tests are difficult to perform on rock and concrete, and
the results of such tests vary considerably. The most reliable direct tension
tests are those in which the ends of the specimen are cemented with epoxy
resin to steel plates having the same cross-section as the specimen, with the
tensile force applied through cables in order to minimize bending effects.
The uniaxial tensile strength of rock and concrete is typically between 6 and
12% the uniaxial compressive strength. Strain-softening, associated with the
opening of cracks perpendicular to the direction of tension, is observed in
tests performed in stiff machines.


