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Chapter 1

Plasticity for absolute beginners

This section intends to provide motivations and basic hy-

potheses of elasto–plastic theory and presents some of the

more classical results of the theory.

In particular, we present the fundamental theorems of limit

analysis (the static and kinematic one) and the Melan theo-

rem for plastic adaptation (shake–down analysis).

The discussion clarifies the real meaning of traditional pro-

cedures based on elastic analysis and admissible tension cri-

teria.
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1.1 Initial remarks

• The structural behaviour is essentially nonlinear.

• Concepts like Failure or Structural safety can not be

framed within a linear relationship between causes and

effects.

• Traditional analysis procedures, based on elastic solu-

tions and admissible tension criteria, have only a con-

ventional basis.

• The great computational power of new low–cost comput-

ers allows, now and even more in the future, a generalized

use of more sophisticated procedures, based on nonlinear

analysis algorithms.

• The new European norms on buildings (Euro–codes) are

based on a nonlinear analysis philosophy.

Therefore, the concepts and procedures of nonlinear analy-

sis will have an increasing importance in the future.

Remarks:

• The nonlinear behaviour of structures descends both from

physical aspects (nonlinear constitutive laws: Plastic-

ity) and geometrical aspects (nonlinear displacements–

deformations laws: Instability).

• Only the first theme is treated here.
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1.2 Basics of plasticity theory

The elasto–plastic structural behaviour can be framed within

a well consolidated theory (Incremental elasto–plasticity).

The theory is based on the following primitive concepts:

• Structural materials have limited strength.

That is, tensions must be limited.

This is formalized assuming that, for each point of the

analyzed body, the tension σ := {σxx, σxy, · · · , σzz} lies

within a domain of the tension space, called elastic do-

main of the material

De := {σ : f [σ] ≤ 1}
(plastic admissibility condition).

The function f [σ] depends, in general, on state para-

meters taking into account the differences in the behav-

iour which are related to mechanical or thermal processes

(hardening, fatigue, ...).

• Irreversible deformations are produced.

This means that in a loading–unloading cycle the struc-

ture does not completely recover the initial configuration.

This is formalized by decomposing the deformation in-

crement in two components:

ε̇ = ε̇e + ε̇p

ε̇e is the elastic part and ε̇p is the plastic part. Only

the first one is related to the increment of the tension:

σ̇ = Eε̇e
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1.3 Some more

• At low tension levels the behaviour is nearly

elastic.

This is formalized by assuming that the plastic compo-

nent of the incremental deformation, ε̇p, is different from

zero only if the tension belongs to the boundary of De

(yield surface):

ε̇p �= 0 only if f [σ] = 1

For smaller values of σ (smaller in the sense just speci-

fied), the incremental behaviour is purely elastic.

Remarks:

• The problem is governed by equations (equilibrium, kine-

matic compatibility, elasticity) and inequalities (plastic

admissibility).

• The elasto–plastic behaviour is essentially non–holono-

mic. The presence of residual deformations implies that

the tension and deformation state due to the application

of a load depends not only on the final load attained but

also on the loading process (path–dependence)

• The constitutive laws are expressed in incremental form ;

this allows an easier treatment of the different behaviours

during the loading and unloading phase.
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1.4 The Drucker postulate (1951)

The elasto–plastic behaviour can be more precisely described

once it is accepted the following postulate, proposed by Drucker:

• Let the structure be subjected to a loading–unloading

cycle due to the application of some additional forces.

We have:

1) during the loading phase, the work done by the

additional forces is non-negative;

2) during the entire cycle, the work done by the ad-

ditional forces is non–negative.

Considering a loading–unloading cycle which takes the ten-

sion from an initial admissible state σa (that is, belonging to

De) to a point σy lying on the yield surface and then returns

to σa, the postulate gives:

(σy − σa)
T ε̇p ≥ 0

Since the condition must be true for each σa ∈ De and

each σy ∈ ∂De, the postulate leads to the following results:

• The elastic domain De is convex.

• The plastic deformation ε̇p belongs to the sub–gradient

of De, that is to say, it is “normal” to the yield sur-

face.
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1.5 Limit analysis

Using the few results obtained is now possible to give an

answer to the following problem:

• Let the structure be subjected to a proportional load-

ing λp, evaluate the maximum value for the amplify-

ing factor λ.

The technical relevance of this problem is evident: if p cor-

responds to the nominal load, the evaluation of λmax implies

an estimate of the failure safety of the structure.

Remarks:

• The problem makes sense only if the function f [σ] is

constant with the time (elastic–perfectly plastic behav-

iour) or, at least, if it presents a bounded limit surface.

• The presence of isolated plastic zones, embedded in an

elastic matrix limiting their deformation, does not rep-

resent necessarily a cause of structural danger.

• The situation is different when the plastic deformations,

not surrounded by an elastic ring, form a kinematically

admissible mechanism.

ε̇p ⇐= u̇p

• This last occurrence, to which we will refer using the

index c, corresponds to the collapse of the structure.
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1.6 An example

• The plasticization of the central bar alone, does not cause

a plastic mechanism, which is prevented by the lateral

bars behaving elastically.

Figure 1.1: 3–bars simple structure
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1.7 The static theorem of limit analysis

Consider an elastic–perfectly plastic structure and let

σc , ε̇c , u̇c , λc

be the tension, the incremental plastic deformation, the in-

cremental plastic displacement (ε̇c and u̇c are assumed to

be kinematically compatible) and the load multiplying factor

at collapse. Further, let q and f̄ be the body and surface

external nominal loads.

With regard to a generic statically admissible tension field

σa (that is to say, satisfying equilibrium and plastic admis-

sibility conditions), the virtual work equation provides:∫
B

σT
c ε̇c dv = λc{

∫
B
qT u̇c dv +

∫
∂B

fT u̇c ds}
∫
B

σT
a ε̇c dv = λa{

∫
B
qT u̇c dv +

∫
∂B

fT u̇c ds}
where λa is the load multiplier associated to σa.

Subtracting these equation, we obtain:∫
B
(σc − σa)T ε̇c dv = (λc − λa){

∫
B
qT u̇c dv +

∫
∂B

fT u̇c ds}
The first member is non–negative, and the integral within

brackets in the second member is positive (as a consequence

of the Drucker postulate, if it is assumed that σ is internal

to the elastic domain). As a consequence we can derive the

following inequality:

λc ≥ λa

which corresponds to the static theorem of limit analy-

sis):

• The collapse multiplier is the maximum of all the sta-

tic multipliers, that is to say, those multipliers asso-

ciated with statically admissible tension fields.
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1.8 The kinematic theorem of limit analysis

Let {u̇p, ε̇p} be a generic plastic, kinematically admissible

mechanism.

In each point of the body for which ε̇p �= 0, we can asso-

ciate the tensionσp to the known plastic deformation, defined

by the normality law.

Then, defining the associated kinematical multiplier λp

through the energy balance:
∫
B

σT
p ε̇p dv = λp{

∫
B
qT u̇p dv +

∫
∂B

fT u̇p ds}
and recalling the equilibrium equation

∫
B

σT
c ε̇p dv = λc{

∫
B
qT u̇p dv +

∫
∂B

fT u̇p ds}
we obtain, by difference:
∫
B
(σp − σc)

T ε̇p dv = (λp − λc){
∫
B
qT u̇p dv +

∫
∂B

fT u̇p ds}
where the first member is non–negative and the bracketed

integrals are positive. As a consequence we derive the in-

equality:

λp ≥ λc

which corresponds to the kinematic theorem of limit

analysis):

• The collapse multiplier is the minimum of all kine-

matic multipliers, that is to say, those multipliers as-

sociated with admissible plastic mechanisms.
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1.9 Additional comments

• Both theorems provide neither the failure tension field

nor the failure mechanism, but only the collapse multi-

plier.

• The failure load does not depend on the initial conditions

and on the loading process.

• Thanks to the static theorem, the traditional analysis

based on nominal elastic solutions and admissible ten-

sion criteria, gets a rational meaning: in fact, as a con-

sequence of the use of an equilibrated and plastic admis-

sible tension field, it provides a limit elastic multiplier

λe, actually representing a lower bound for the failure

multiplier.

• Possible errors related to the loss of information about

the initial tension state (which is generally partially avail-

able or not available at all) are irrelevant to this scope.
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1.10 Plastic adaptation (shake–down)

• When the structure is subjected to repeated loading–

unloading cycles, the plastic failure is not the principal

cause of structural danger.

• Even if the failure condition is never attained during the

loading process, new plastic deformations can nucleate

at each loading cycle.

• for repeated cycles, the total plastic deformation can con-

sequently grow indefinitely or, anyway, (if successive de-

formations balance each other) can bring to fatigue dam-

age.

• In both cases, the loading process implies the structural

ruin.

• Therefore, it is necessary that the plastic process ends

rapidly, that is to say, after few cycles (the running–in

period) the structure gets again a purely elastic behav-

iour.

• When this occurs, we say that the structure gets plastic

adaptation .
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1.11 The Melan’s theorem (1936)

Let’s consider the loading process p[t] and let

σ∗[t] = σE [t] + ∆σ[t]

ε∗[t] = εE [t] + ∆ε[t] + εp[t]

be the out coming elasto–plastic solution, expressed in terms

of the elastic solutionσE[t] e εE[t] and of the difference ∆σ[t]

(corresponding to an auto–tension field).

We consider (if it does exist) a nominal elastic solution,

always internal to the elastic domain:

σ[t] = σE [t] + σ0 , f [σ[t]] < 1

this solution corresponds to σE[t], except for the tension σ0,

which represents the possible difference in the evaluation of

the initial stress state (obviously, this difference will be an

auto–tension field).

Introducing the quantity:

Ψ[t] :=
∫
B
(σ∗ − σ)TE−1(σ∗ − σ) dv ≥ 0

we obtain:

Ψ̇[t] = −
∫
B
(σ∗ − σ)T ε̇p dv ≤ 0 ( Ψ̇ < 0 if ε̇ �= 0)

Hence Ψ[t] is both non–negative (bounded from below) and

always decreasing during the plastic process. This implies

that the plastic process will surely stop.

As a consequence, we derive the following statement:

• If a nominal elastic solution (internal to the elas-

tic domain), does exist, the structure will get plastic

adaptation.
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1.12 Relations with admissible–tensions criteria

The previous results clarify the real meaning of procedure

based on admissible tensions criteria.

• The traditional analysis, based on (nominal) elastic so-

lutions and admissible tensions criteria, provides a lower

bound for both the plastic collapse and the plastic shake–

down.

• An erroneous evaluation of the initial tension state is

irrelevant.

• The use of procedure based on limit analysis concepts

alone is not safe with respect to shake–down problems.

• The plastic adaptation theory provides a synthetic ap-

proach to the analysis, which does not require a com-

plete information about the time evolution of the loading

process, but only requires the knowledge of the maximum

value attained by the tensions.

• Anyway, the Melan’s theorem does not give any detailed

information about the extension that the plastic phase

reaches before the structure gets adaptation.

• A complete information can be only provided by a real

elasto–plastic analysis based on path–following solution

algorithms.
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Chapter 2

Finite–step incremental analysis

In this part some theoretical basis of the incremental elasto–

plastic analysis will be introduced.

In particular it will be presented an analysis procedure ori-

ented to furnish the complete time evolution of the structural

response due to a given loading process.

The solution, represented by a path in the load/displacement

space, is obtained through the computation of a sequence of

equilibrium points {uk,pk} fine enough to reconstruct an

interpolating curve.

Since the earlier 60’s, the interest for these topics has been

strongly increasing, thanks to the availability of powerful

computers and to the development of specific numerical al-

gorithms.
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2.1 Holonomic plasticity

In order to obtain incremental elasto–plastic solutions (using

small –but necessarily finite– loading steps), it is necessary

to solve the following problem:

• Let {σ0, ε0} be a known initial state and (p1 − p0)

a given load increment, determine the corresponding

step–end solution {σ, ε}.

Remarks:

• Because of the irreversibility of the plastic behaviour and

the path–dependence of the final state, the set of data

which defines the problem is not complete.

• Referring to the figure below, bothu1 and u2 are possible

solutions for the load increment (p1 − p0).
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2.2 The Haar–Karman principle (1908)

A possible way for getting an holonomic law in the step is to

express directly the equation of the incremental elasto–plastic

theory in terms of finite increments. In this way, the step–

end solution can be characterized by the following extremal

condition (Haar–Karman):

Π[σ] :=
1

2

∫
B

σTE−1σ dv +
∫
B

σTεp
0 dv +

∫
∂B

(Nσ)T ū ds

under the following constraints:

σ: satisfying equilibrium conditions, f [σ] ≤ 1

In fact, recalling the relations:

ε = εe + εp

σ = Eεe

(σ − σa)
T∆εp ≥ 0

where ∆εp = εp − εp
0, we obtain:

δΠ =
∫
B
δσT (εe + εp

0) dv −
∫
B
(Nδσ)Tu ds

=
∫
B
δσTεT dv −

∫
∂B

(Nδσ)Tu ds−
∫
B
δσT∆εp dv

=
∫
B
(σ − σa)

T∆εp dv ≥ 0

The Haar–Karman principle can be expressed in the following

way:

• The elasto–plastic solution minimizes the total com-

plementary energy of the system under the equilib-

rium and plastic admissibility constraints.
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2.3 Reformulation in terms of elastic prediction

Denoting with σE the “elastic” solution obtained from the

initial (step–beginning) state and the assigned load incre-

ment, the Haar–Karman principle can be rewritten as:

Π[σ] :=
1

2

∫
B
(σ − σE)

TE−1(σ − σE) dv = minimum

under the constraints:

σ: satisfying equilibrium conditions, f [σ] ≤ 1

It is worth observing that the functional Π[σ] represents, in

an energy norm, the square of the distance between σ and

σE. Hence the principle can be stated as:

• Among the stress states verifying equilibrium and plas-

tic admissibility conditions, the step–end elasto–plastic

solution σ has the minimum distance (in an energy

norm) from the elastic solution σE of the same prob-

lem.

Remarks:

• This formulation is particularly convenient from both the

numerical and the computational point of view.

• The solution can be easily characterized. If the point σ

belongs to the elastic domain, we have σ = σE. Other-

wise, σ is found as the tangential contact point between

two convex surfaces: the yield surface and a level line of

the elastic strain energy.

• Since the latter surface is strictly convex, the uniqueness

of the solution is proved.
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2.4 The Ponter–Martin extremal paths theory

The extremal paths theory, formulated by Ponter & Martin

in 1972, furnishes a convenient link between incremental and

holonomic plasticity. The following results hold:

• Among all the incremental elasto–plastic paths start-

ing from the initial state {σ0,ε0}, there are some ex-

tremal paths that realize both the minimum of deforma-

tion work (for fixed step–end strain ε1) and the maxi-

mum complementary work (for fixed step–end stress σ1)

• The use of extremal paths defines a holonomic law in

the step that, for Drucker’s materials, satisfies the con-

ditions:

0 ≤ (σ2 − σ1)
T (ε2 − ε1) ≤ (ε2 − ε1)

TE(ε2 − ε1)

• For elastic perfectly–plastic materials, the extremal path

solution corresponds to the one defined by the Haar–

Karman principle.

Figure 2.1: Extremal solution ({σ1, ε1}
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2.5 A deep insight

Let σ[t] be a path between σ0 and σ1 in the stress space and

let ε[t] be the corresponding path in the strain space, image

of σ[t] through the constitutive law.

The complementary work on σ[t] is defined as

U [σ[t]] :=
∫
σ[t]

σ̇Tε dt

We define extremal the paths characterized by the following

(extremal) condition:

Û [σ1] := U [σ̂[t]] ≥ U [σ[t]]

In order to complete the definition domain of Û , we assume

that

Û [σ1] := +∞
when no admissible path between σ0 and σ1 does exist. So,

Û [σ1] has been characterized as a function defined in all the

σ space, and will be called extremal–path potential .

From the decomposition of the total strain in the elastic

and plastic components (ε = εe+εp), it is possible to derive

the decomposition of the complementary work in the elastic

part Ue[σ] and the plastic part Up[σ]. Only the latter is

path–dependent, and we can express it in this way:

Up[σ[t]] :=
∫
σ[t]

σ̇Tεp dt

Then, by difference, we obtain the extremal–path plastic

potential

Û p[σ1] = Û [σ1]− Ue[σ1]
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2.6 Convexity of the extremal–path potential

Let’s consider an extremal path between σ0 and σ1, and a

different path made up of an extremal part between σ0 and

σ2 and a linear part between σ2 and σ1:

σL[t] = σ2 + tσ̇L , σ̇L = (σ1 − σ2)

We have, as a consequence of the previous definition:

Û [σ1] ≥ Û [σ2] +
∫ 1

0
(σ1 − σ2)

T (ε̂2 + ∆εL[t]) dt

= Û [σ2] + (σ1 − σ2)
T ε̂2 +

∫ 1

0
(σ1 − σ2)

T∆εL[t] dt

The last expression can be rewritten
∫ 1

0
(σ1 − σ2)

T∆εL[t] dt =
∫ 1

0
{

∫ t

0
σ̇T

Lε̇L dτ} dt
For Drucker’s materials (which satisfy the condition σ̇T ε̇ ≥
0) this expression is non–negative.

We can derive, therefore, the following fundamental in-

equality:

Û [σ1]− Û [σ2]− ε̂T
2 (σ1 − σ2) ≥ 0

As a consequence, using the standard results of convex analy-

sis, we obtain some important results:

1. The functional Û [σ1] is convex.

2. The strain ε̂ belongs to the sub–differential ∂Û of Û :

ε̂[σ1] ∈ ∂Û [σ1] := {η : Û [σ2]−Û [σ1]−ηT (σ2−σ1) ≥ 0 , ∀σ2}
In the same way it is possible to prove the convexity of the

extremal–path plastic potential Û p[σ1] and the normality law

for the plastic strain ε̂p

ε̂p[σ1] ∈ ∂Ûp[σ1]
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2.7 Consequences of convexity

Let σ1 and σ2 be two step–end stresses; using the property

of convexity of the extremal potential, we obtain

Û [σ2]− Û [σ1]− ε̂T
1 (σ2 − σ1) ≥ 0

Û [σ1]− Û [σ2]− ε̂T
2 (σ1 − σ2) ≥ 0

then, adding up the two members of the equations:

(σ2 − σ1)
T (ε̂2 − ε̂1) ≥ 0

In the same way, using the property of convexity of the

extremal–path plastic potential, we obtain:

(σ2 − σ1)
T (ε̂p

2 − ε̂p
1) ≥ 0

This relation, applying the strain decomposition law:

ε̂ = εe + ε̂p , σ = Eεe

which implies that

(ε̂2 − ε̂1)
TE(ε̂2 − ε̂1) = (ε̂2 − ε̂1)

T (σ2 − σ1)

+(ε̂p
2 − ε̂p

1)
T (σ2 − σ1) + (ε̂p

2 − ε̂p
1)

TE(ε̂p
2 − ε̂p

1),

provides the condition:

(ε̂2 − ε̂1)
TE(ε̂2 − ε̂1) ≥ (ε̂2 − ε̂1)

T (σ2 − σ1)

The two previous inequalities can be rearranged in the fol-

lowing form:

0 ≤ (ε̂2 − ε̂1)
T (σ2 − σ1) ≤ (ε̂2 − ε̂1)

TE(ε̂2 − ε̂1)

Later on, this inequality will have a great importance.
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2.8 Principle of Minimum for Drucker’s materi-

als

Let σ be the elasto–plastic extremal–path end–step solution,

and σeq a generic stress field, in equilibrium under the same

end–step loads. The following extremal condition must hold:

Û [σeq]− Û [σ]− ε̂[σ]T (σeq − σ) ≥ 0

Moreover, since σeq − σ is an auto–tension field, we have:
∫
B

ε̂[σ]T (σeq − σ) dv −
∫
∂B

(N(σeq − σ)Tu ds = 0

Therefore, by integrating the inequality over the domain B,

we obtain:
∫
B
Û [σ] dv−

∫
∂B

(Nσ)Tu ds ≤
∫
B
Û [σeq] dv−

∫
∂B

(Nσeq)
Tu ds

This result can be expressed with the following statement:

• Among all the equilibrated stress fields, the elasto–

plastic extremal–path solution minimizes the extremal–

path potential.

The statment represents a generalization of the principle of

minimum of the total complementary energy, valid for elasto–

plastic, stable materials which satisfy the normality law

ε̂p[σ] ∈ ∂Ûp[σ]
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2.9 Principle of Minimum for elastic perfectly–

plastic materials

With respect to elastic perfectly-plastic materials, the follow-

ing conditions hold:

• any admissible stress σ can be reached through a purely

elastic path.

• let σ and σa be two admissible stresses and ε̇p the in-

cremental plastic strain associated to σ, we have:

(σa − σ)T ε̇ ≤ 0

Moreover, the path–depended part of the complementary

work can be written as:
∫ T

0
(εp[t]− εp[0])T σ̇[t]dt =

∫ T

0

{∫ t

0
ε̇p[τ ]Tdτ

}
σ̇[t]dt

=
∫ T

0
ε̇p[t]T

{∫ T

t
σ̇[τ ]dτ

}
dt =

∫ T

0
ε̇p[t]T (σa − σ[t])dt ≤ 0

and this proves that the complementary work is maximized

when ε̇p = 0.

As a consequence, the extremal paths can be characterized

as purely elastic paths. Then we can write:

Û [σ] =



Ue se f [σ] ≤ 1

+∞ se f [σ] > 1

and the principle of minimum becomes equivalent to the

Haar-Karman principle:

• Among all the equilibrated and admissible stress fields,

the elasto–plastic extremal–path solution minimizes

the complementary energy.
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Chapter 3

Computational strategies

This part intends to discuss some numerical strategies suit-

able for the finite element elasto-plastic analysis of complex

structures.

In particular, the discussion will refer to the incremental

elasto–plastic problem, using the so called initial stress strat-

egy combined with a path–following incremental method.
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3.1 Numerical algorithms for plastic analysis

1. Limit analysis:

• Linear programming algorithms (based on limit analy-

sis theorems and on the static–kinematic duality).

• Nonlinear programming (algorithms based on limit

analysis theorems).

• Alternative variational formulations combined with

the use of specialized solution algorithms.

This class of algorithms has been very popular (at

least within the Italian academy) during the 60’s –

70’s. At the present time, it is not used at all, ex-

cept for rare cases, because it is considered much less

efficient then the incremental approach.

2. Plastic adaptation (shake–down):

• The situation is the same as limit analysis.

In a certain sense, the problem is similar to that

of limit analysis, and therefore similar solution al-

gorithms could be used. However, the methods re-

cently proposed are poorly efficient, even if there is

the possibility of providing synthetic results for com-

plex loading combinations, circumstance that makes

this approach particularly interesting.

Because of the technical relevance of the topic, it is

desirable an increasing development in the research.
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3. Incremental analysis:

• Heuristic algorithms (Euler extrapolation ...).

• Quadratic programming.

• Initial stress approach:

– Secant matrix iteration

– Newton–Raphson method

– Modified Newton–Raphson

– Riks’ arc–length method

– ....

• Explicit algorithms based on pseudo–dynamic ap-

proach.

The algorithms belonging to this class are widely used,

thanks to their good efficiency.

Some implementations of the initial stress method,

combined with an incremental Riks strategy, are stan-

dard features of the commercial FEM codes.

Pseudo–dynamical algorithms usually require very high

computational power.
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3.2 Incremental elasto–plastic analysis

Let the structure be modeled by finite elements an let p[λ]

be the assigned loading path; we have to solve the following

problem:

• Determine a sequence of equilibrium points (uk, λk)

fine enough to obtain the path by interpolation.

The problem has a recurrent structure and can be decom-

posed in two sub–problems:

P1: Knowing the initial state (at the beginning of the step)

and the final nodal displacement vector u (at the end of

the step), determine the corresponding vector of internal

nodal forces, s[u].

P2: At the end of the step the vector of nodal loads p is

given; determine u such that the following equilibrium

equation is satisfied:

s[u] = p

Remarks:

• Only the subproblem P1 requires the description of the

elasto–plastic response of the structure (i.e., contains the

physics of the problem).

• The subproblem P2 actually corresponds to the solution

of a implicit non–linear vectorial equation.

29



3.3 Solution of subproblem P1

The theory of extremal paths provides a good theoretical

frame for the subproblem P1.

Making use of extremal paths, in fact, the load step is per-

formed through a real incremental elasto–plastic path, which

–in addition– presents some theoretical advantages (as shown

by Ponter-Martin, a little shift in the trajectory leads to neg-

ligible differences in the attained final state).

By integrating the conditions written for the material on

the overall structure, we obtain for s[u] a representation char-

acterized by the following inequalities:

0 ≤ (s[u2]− s[u1])
T (u2 − u1) ≤ (u2 − u1)

TKE(u2 − u1)

where u1 and u2 are two possible final displacement vectors

and KE is the standard elastic stiffness matrix of the struc-

ture.

Practically, the nodal forces s[u] can be obtained through

a standard element–by–element assemblage of the single ele-

ment contributions. That is to say:

1. For each element we determine the elastic solution due

to the initial stress state σ0 and to the assigned displace-

ment increment (u− u0) (elastic prediction):

σE = σ0 + Eε , ε := D(u− u0)

2. The nodal displacements in the element are assigned.

Therefore there is no nodal equilibrium condition to be

satisfied, and no interaction among elements. Conse-

quently, the Haar–Karman minimization condition only

implies local, independent conditions defined for each el-

ement.
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3.4 Example 1: constant tension plane elements

Let σ̄ and σ̃ij be the cubic and deviatoric components of

the final stress, and let σ̄E, σ̃Eij be the corresponding elastic

predictions.

• The elastic strain energy Φ[σ] and the plastic admissi-

bility condition (Mises) f [σ] ≤ 1 are expressed by:

Φ[σ] :=
1

2E


(1 + ν)

∑
ij
σ̃2
ij + 3(1− 2ν)σ̄2




f [σ] :=
1

σ2
y

∑
ij
σ̃2
ij < 1

Figure 3.1: Haar-Karman solution

• In the deviatoric space, the level curves of Φ[σ] and f [σ]

have both spherical shape. The Haar–Karman solution

Φ[σ] = min. , f [σ] ≤ 1

which corresponds to the tangent point, is then obtained

as:

σ̃ij :=
σ̃Eij

max(f [σE]1/2, 1)
, σ̄ := σ̄E
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3.5 Some comments

• The solution process described can be employed, more

generally, in the case of compatible elements based on

numerical integration; in this case it will be applied to

each Gauss point.

• In presence of a discontinuity between elastic and plastic

zones, it isn’t possible to localize with accuracy the in-

terface between the different behaviours in the element.

Then, the discretization error is always proportional to

the dimension h of the element, even using complex ele-

ments, that in elasticity present a better error estimate

(proportional to hn, being n ≈ 2–4).

• The error usually appears in the form of locking and can

be relevant.

• The use of mixed elements is a way to avoid locking

phenomena.

• Because of the particular structure of the Haar–Karman

principle, hybrid elements, defined by compatible bound-

ary displacements and equilibrated internal stress fields,

are particularly convenient.
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3.6 Example 2: framed structures

We use a hybrid beam element, defined by the end–sections

displacements and rotations and by internally equilibrated

fields for the bending moment and the axial strength. The

element behaviour depends on 6 kinematic and 3 static vari-

ables.

Let N be the axial strength, Mi and Mj the bending mo-

ments (in the two edge sections of the element), and NE ,

MEi, MEj the elastic predictions corresponding to the as-

signed nodal displacements.

• The complementary strain energy is defined by:

Φ[σ] :=
1

2


 &

EA
N2 +

3&

EJ
(M 2

i +M 2
j − 2cMiMj)




where

c :=
1− β/2

2 + β
β :=

12EJ

GA&2

• The plastic admissibility condition (expressed only for

the end sections) provides:

−My ≤ Mi ≤ My , −My ≤ Mj ≤ My

• The Haar-Karman solutions is directly obtained from the

following 3–steps algorithm:

1) Mi := max{−My,min{MEi,My}}
2) Mj := max{−My,min{MEj−c(MEi−Mi),My}}
3) Mi := max{−My,min{MEi−c(MEj−Mj),My}}
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3.7 Solution of subproblem P2

The equilibrium at the end of the step is expressed by the

condition:

s[u] = p

which corresponds to a nonlinear implicit equation in the

unknown u.

The equation can be iteratively solved using the modified

Newton–Raphson method:

rj := p− s[u]

uj+1 := uj + K̃−1rj

where K̃ is a suitable approximation for the Hessian matrix

Kt[u] :=
ds[u]

du

The convergence of the MNR iteration scheme can be dis-

cussed introducing the secant matrix Kj, defined in the j–th

iteration step by the following equivalence

Kj(uj+1 − uj) = s[uj+1]− s[uj]

The iteration scheme implies

rj+1 =
[
I−KjK̃

−1
]
rj

Therefore, we derive the following (sufficient) convergence

condition:

ρ
[
I−KjK̃

−1
]
< 1 , ∀j

where ρ[·] is the spectral radius of the matrix.

The convergence condition can be rearranged in a more

useful form:

0 < Kj < 2K̃
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3.8 Some remarks

• The inequality

0 ≤ (s[uj+1]−s[uj])
T (uj+1−uj) ≤ (uj+1−uj)

TKE(uj+1−uj)

which is true for solutions obtained through extremal

paths, starting from u0, can be written in the following

matrix form:

0 ≤ Kj ≤ KE

Hence, the second part of the convergence condition (i.e.,

Kj < 2K̃) is trivially satisfied once it is assumed (as in

the initial stress method)

K̃ := KE

(or a reasonable approximation of KE).

• the first part of the convergence condition (Kj > 0)

is more critical because, even if we have Kj ≥ 0, the

iteration scheme fails to converge near to the collapse,

where:

Kt[u] → 0

• For this reason, the MNR–based incremental process is

not able to describe the collapse state of the structure.

• Actually, when the plasticization process goes on, the

convergence of the iterative process rapidly decreases,

and this generally means that the process itself will pre-

maturely stop.
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3.9 The arc–length method

• The convergence problems arising near the limit point

of the equilibrium path are related to the parametric

representation adopted to describe this curve. In fact,

the representation has been assumed in the form u =

u[λ], even if the curve we are looking for is not analytical

in λ.

Figure 3.2: Load–controlled analysis and arc–length method

• These difficulties are easily avoided if an analytical rep-

resentation is used. A proper description is obtained as-

suming a curvilinear arc–length abscissa as description

parameter, in the {u, λ} space.

• The arc–length method has been proposed by Riks in

1974 for the path–following analysis of nonlinear elastic

problems. At the present time, it can be considered as

the “de facto” standard method for nonlinear analysis.
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3.10 Riks’ iteration scheme

The iteration scheme due to Riks represents the first, and jet

more efficient, implementation of the arc–length method.

Its main idea is to introduce explicitely the load multiplier

λ as further unknown. At the same time a further constraint

is needed, and it is given in the following way:

∆uTMu̇ + µ∆λλ̇ = 0

where M and µ are appropriate metric factors. This condi-

tion implies the orthogonality (in the enlarged space {u, λ})
between the iterative correction


u̇ = uj+1 − uj
λ̇ = λj+1 − λj

and the total step increment


∆u = uj − u0
∆λ = λj − λ0

If the iteration starts from a suitable extrapolation {u1, λ1}
that realizes the required distance from {u0, λ0}, the con-

straint represents an approximate, but computationally effi-

cient way to fix the arc–length.

With this choice, the iteration scheme can be rearranged:


K̃u̇ −p̂λ̇ = rj
∆uTMu̇ +µ∆λλ̇ = 0

where

p̂ :=
dp[λ]

dλ
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3.11 Convergence of Riks’ scheme

The use of the Riks’ iteration scheme leads to the relation:

rj+1 =
[
I−KjK̃

−1
]
[I− αjBj] rj

the matrix Bj and the factor αj are defined by:

Bj :=
p̂dT

j

p̂Tdj
, αj :=

p̂Tdj

µ∆λj + p̂Tdj

Where we have called:

dj := K̃−1M∆uj

The following sufficient condition for convergence is de-

rived:

ρ
[
[I−KjK̃

−1][I− αjBj]
]
< 1 , ∀j

Remarks:

• The better performance of the Riks’ scheme is strictly

related to the filter effect produced by the matrix

[I− αjBj]

• The filter does not affect the components of rj orthogonal

to dj, and reduces the parallel components of a (1−αj)

factor.

• For µ ≈ 0 and, in any case, near to a limit point (where

∆λ → 0), we have αj ≈ 0 and then the filter corresponds

to an orthogonal projection on the direction dj.
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3.12 Implementation of the Riks’ scheme

The Riks’ scheme is a very powerful tool, but its efficiency

partially depends on the appropriate choice of the metric

factors µ ed M.

A convenient choice can be to assume µ = 0 and M such

that

dj = û := K̃−1p̂

(These choice is equivalent to the assumption M ≈ Kj.)

Now, the scheme can be rearranged in the following, ex-

plicit form:


λj+1 = λj − rTj û/p̂

Tû

uj+1 = uj + K̃−1rj + (λj+1 − λj)û

Using arguments similar to the load–controlled scheme, we

can derive the following (sufficient) convergence condition:

0 < Kt[u] <2K̃ ; in Ū :=
{
u̇ : p̂Tu̇ = 0

}

analogous to the condition obtained in the previous case.

Now the inequalities do not need to be satisfied in the whole

incremental displacement space, but only in a subspace, or-

thogonal to the vector p̂.

We have, trivially:

p̂T u̇c =
∫
B
σT
c ε̇c dv > 0

for each non–null collapse mechanism u̇c. Then, the direction

of singularity of the operator Kt[u] does not lie in the or-

thogonal subspace and the global convergence of the scheme

is assured.
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3.13 Adaptive solution strategy

An efficient incremental process should have an adaptive be-

haviour; that is, it should be able, on the basis of autonomous

choices, to vary its internal parameters in order to reduce the

computational cost and increase the accuracy of the analysis.

In particular, the following features are required:

• the process should tune the step length: that is, it should

increase such length where the equilibrium curve is weekly

nonlinear, and reduce it in the strongly nonlinear parts.

This allows either a better description of the curve and

the computation of a smaller number of equilibrium points.

• The process should tune the iteration matrix K̃ too, in

order to follow the evolution of Kj: for instance, we

should use the full elastic stiffness matrix only in the

nearly elastic incremental steps, and a reduced stiffness

in the plastic steps.

• The adaptivity feature must be computationally cheap

and, anyway, must preserve the reliability of the overall

analysis.
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3.14 Some implementation details

It is convenient to introduce two adaptive parameters: β and

ω.

• The first one controls the initial extrapolation

u1 = u0 + β∆u0
λ1 = λ0 + β∆λ0

where ∆u0 and ∆λ0 are the total increments attained

in the previous step.

• The second one controls the evaluation of the iteration

matrix K̃, which is assumed to be proportional to KE

K̃ =
1

ω
KE

(The use of this scalar does not bring additional compu-

tational costs: in fact, being K̃−1 = ωK−1
E , it is possible

to use the matrix KE which is assembled and decom-

posed once for all)

The following formulas can be used:

• in the j–th iteration loop,

ωj+1 = ωj
rTj u̇j

(rj − rj+1)Tu̇j
with the limits 0 < ω < 2

• in the k–th step of the incremental process,

βk+1 = βkt
n−n̄
2nn̄

where n is the number of iteration loops performed in

the previous step, n̄ is the number of desired loops (usu-

ally 4–10) and t is the relative tolerance required for the

equilibrium.
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Chapter 4

Finite element discretization

The presence of the discontinuities related to the elastoplas-

tic behaviour requires an approach different from the one

generally used for elastic problems, for which the solution is

characterized by an high degree of regularity.

Discretization methods (finite element modeling) which

are efficient for elastic problems can be not so convenient

for plastic ones.

In this part a rapid sketch on this topics is given, with the

aim to describe some finite elements potentially suitable for

elasto–plastic problems.
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4.1 Some initial remarks

• Within plastic zones, because of the discontinuities in

the strain field (introduced by the plastic behaviour),

the finite element discretization error depends linearly

on the size h of the mesh, even using high interpolation

elements.

• Therefore the use of complex elements, characterized by

a high number of variables per element, is not advanta-

geous.

• The accuracy must be attained through the mesh refine-

ment.

• All this consideration suggests the use of simple elements,

with few variables per element, and fine meshes.

• An accurate evaluation of the stress field is more impor-

tant than in elasticity, because the material behaviour is

strictly related to the level of stress.

• From this point of view, compatible elements, which eval-

uate displacements more accurately than stresses (the

latter are only obtained by derivation from the former),

could represent a bad choice.

• Mixed or Hybrid elements, for which the accuracy for

displacements and stresses can be balanced, seem to be

more convenient.
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4.2 Further comments

• Since plastic deformations are typically localized on slip

(yield) planes, above all when the load approaches the

collapse level, it is convenient the use of elements suitable

to allow discontinuity both in the tension and in the

strain field.

• With respect to kinematics, elements should assure the

continuity, on contact surfaces, of normal displacements

but not of tangential ones (just the opposite of what

usually happens).

• With respect to statics, elements should assure the conti-

nuity of normal and tangential stresses but not of transver-

sal ones (just the opposite of what usually happens).

• A compromise between different continuity requirements

is not easy and does not lead to a simple algebraic for-

mulation of the element. Moreover, the use of discon-

tinuous fields could be inappropriate for the part of the

body which remains elastic.

• Apparently, the only alternative is the use of very fine

meshes, such that discontinuities can develop in a band

of small thickness (comparable to the mesh size).
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4.3 Simplex mixed elements

• These elements are triangular (more generally, a tetra-

hedron with n+ 1 vertices, n being the space dimension

of the problem).

• Both displacement and stress fields are linearly interpo-

lated on the basis of the nodal values.

• both displacements and stresses are continuous on the

element interfaces. Neverthless, if the ratio n.of elements

/ n.of vertices is 2, the model requires 2.5 variables per

element, and the algebra of the problem is very simple.

This allows the use of fine meshes.

• It may be convenient to combine 4 triangular elements

into a single quadrangular element (the quadrangle is di-

vided along the two diagonals). In this case we have 5

variables (2 displacements and 3 stresses) for each ele-

ment.

• A convenient variant is the assumption of a constant

stress within the influence area of each node.
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4.4 Flux–law elements

• These are, usually, quadrangular elements (but triangu-

lar versions are also possible), endowed with topological

regularity (regular geometry is even better).

• Stress and displacement variables are associated to the

total flux which passes through the interfaces.

• The balance equations (equilibrium and kinematic com-

patibility) are written in absolute form (rigid body equi-

librium and mass conservation law). The discretization

error is related to the internal stress interpolation used

to define the discrete form of the strain energy.

• We have 6 variables per element (2 displacements and 4

stresses). The element is suitable for fine meshes.

• The algebra is very simple for regular geometry (rectan-

gular elements)
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4.5 HC elements

• HC stands for High Continuity (of the displacement

field).

• These elements are quadrilateral, and require a regular

topology (regular geometry is even better).

• The displacement is interpolated by means of biquadratic

functions, using control nodes located at the center of the

element. The fullfillment of the displacement and dis-

placement gradient continuity allows to reduce the total

number of variables to only one node per element (hence

there are two displacement variables).

• The (almost) compatible element type require 5 stress

(Gauss) points per element. A mixed version can be de-

fined with stress nodes located at the vertices of elements

(the nodes of the mesh).

• The overall interpolation allows C1 continuity, using a

minimum number of displacement variables. So this ele-

ment is suitable for very fine meshes.

• The element algebra is very easy for regular meshes (rec-

tangular elements). However it becomes rather complex

for meshes described in curvilinear coordinates.

• The element is particularly convenient for the analysis of

regular domains, using regular meshes.

• It is suitable for large displacement analysis.
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4.6 Flat elements

• This element is a mixed, triangular one, and is used for

plates and shells.

• For the displacements a linear intepolation is used, while

stresses are constant over the element. The flexural strain

is taken into account introducing the relative rotations

on the element edges.

• The element is quite rough, neverthless it has a very easy

algebra. It requires very fine discretizations.

• It is suitable for large displacement analysis.

• Different mixed variants are possible, using different in-

terpolations for the stress (linear over the element, con-

stant on the nodal area, localized on the edges).

• It is suitable for analysis based on explicit algorithms

(e.g., pseudo–dynamical simulation) or when the solu-

tion is obtained using refined meshes (e.g., multigrid so-

lutions).
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4.7 Super–convergence, Multigrid solutions and

much more...

• The use of appropriate elements, fine meshes, regular

topology and regular (at least, nearly regular) geometry

leads to a phenomenon called super–convergence.

That is, the errors produced in the single elements com-

pensate each other on the overall mesh, so that the total

error is smaller than the expected one (the magnitude

order can be relevant, e.g., from h2 to h6).

• Neverthless, the use of really fine meshes implies a high

number of variables and this, even if a very simple al-

gebra is involved for the single element, can make the

overall analysis extremely expensive, if traditional solu-

tion strategies (based on explicit assemblage and Gauss

decomposition of the stiffness matrix) are used. This last

operation alone, for a problem with n variables, would

involve O(n2) computational arithmetic operations.

• In situations like these, adaptive multigrid strategies are

very useful. They are based on the simultaneous use of

a sequence of discretization meshes increasingly refined,

and allow to catch the solution which corresponds to the

finest mesh, working essentially on the coarse ones. We

obtain therefore a very powerful tool, which can solve

the problem performing less than O(n) operations, that

is to say with an efficiency of some order greater of the

one obtained through traditional procedures.

• An efficiency even greater is obtained using adaptive (se-

lective) refinement (the solution process automatically

controls the refinement).
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