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CHAPTER 3 
 

CLASSICAL COUPLED PLASTICITY AND DAMAGE THEORY 
 
3.1 Introduction 
 

The nonlinear material behavior may be attributed to two distinct material mechanical 
processes: plasticity (i.e. dislocations along crystal slip planes) and damage mechanics 
(microcracks, microcavities nucleation and coalescence, decohesions, grain boundary cracks, 
and cleavage in regions of high stress concentration). The two degradation phenomena are 
described best by the continuum theories of plasticity and damage mechanics. Thus, a multi-
dissipative model that accounts for both the material decohesions and the dislocations along 
slip planes is necessary. This is accomplished by adopting two loading surfaces and two 
potential functions, one for plasticity and the other for damage. 

Ductile materials usually fail as the result of nucleation, growth, and coalescence of 
microdamages. Experimental observations show that the accumulation of microdamages has a 
tendency to form macroscopically localized damage, which is a precursor to failure. This 
progressive physical process of degradation of the material mechanical properties up to 
complete failure is commonly referred to as damage. Various damage morphologies have 
been described in the literature, such as creep damage, low cycle fatigue, high cycle fatigue, 
and brittle damage (Kachanov, 1986; Lemaitre and Chaboche, 1990; Lemaitre, 1992; 
Voyiadjis and Kattan, 1999). The present paper is concerned with anisotropic ductile damage. 

Metallographic studies for polycrystalline metals (Thomason, 1990; Anderson, 1994; 
Hertzberg, 1996) demonstrate that the ductile damage is basically characterized by three 
mechanisms of microdamages growth: (i) nucleation of microscopic voids that initiate at 
inclusions and second phase particles, failure of particles or microcracking of the matrix 
surrounding the inclusion, (ii) growth of the microvoids by means of plastic strain and 
hydrostatic stress; and (iii) coalescence or microcracks linking the growing microvoids with 
adjacent ones, thus leading to vanishing load carrying capacity of the material, as the damage 
density approaches unity.   

Many models for estimating the microdamage accumulation in ductile materials have been 
published, some of which are based on damage micromechanics (micromechanical damage 
models) while others based on the continuum damage theory (phenomenological damage 
models). The former models are required for particles of less than 1 mµ  in diameter. A model 
of this type was formulated by Gurson (1977), where he obtained, based on an approximation 
analysis of spherical voids, a yield function for porous ductile materials with perfectly plastic 
matrix. Modification of the Gurson’s model have been proposed by several authors (e.g. 
Tvergaard, 1982; Tvergaard and Needleman, 1984). Tvergaard (1982) modified Gurson’s 
model to improve the predictions at low void volume fractions. Tvergaard and Needleman 
(1984) modified Gurson’s yield function in order to account for rate sensitivity and necking 
instabilities in plastically deforming solids and to provide better representation of final void 
coalescence. The aspects of Gurson’s model was outlined in the review article by Nemat-
Nasser (1992) and discussed by Voyiadjis and Kattan (1992a,b), Li (2000), and Mahnken 
(2002). In this way micromechanical models are based on physical soundness, and various 
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structural applications have modeled microdamage growth and ductile failure (Haj-Ali et al., 
2001). 

Phenomenological models are based on the concept of Kachanov (1958), who was the first 
to introduce for the isotropic case a one-dimensional variable, which may be interpreted as the 
effective surface density of microdamages per unit volume (Voyiadjis and Venson, 1995; 
Venson and Voyiadjis, 2001). Kachanov (1958) pioneered the subject of continuum damage 
mechanics by introducing the concept of effective stress.  This concept is based on 
considering a fictitious undamaged configuration of a body and comparing it with the actual 
damaged configuration.  He originally formulated his theory on simple uniaxial tension bars.  
Following Kachanov's work researchers in different fields applied continuum damage 
mechanics to brittle materials (Krajcinovic and Foneska, 1981; Krajcinovic, 1983, 1996) and 
ductile materials (Lemaitre, 1984, 1985; Kachanov, 1986; Murakami, 1988). In the 1990's 
numerous applications of continuum damage mechanics to plasticity were presented (e.g. 
Lubarda and Krajcinovic, 1995; Voyiadjis and Kattan, 1992a, 1992b, 1999; Voyiadjis and 
Park, 1997, 1999; Voyiadjis and Deliktas, 2000; etc). 

Often, ductile materials undergo a strong plastic deformation, which has a major influence 
on the damage evolution and reverse. There are many models with weak coupling between 
plasticity and damage. The models that adopt two separate uncoupled damage and plastic 
loading surfaces with two independent associated flow rules present a week coupling between 
plasticity and damage. Those models are being extensively used by many authors (e.g. Chow 
and Wang, 1987, 1988; Simo and Ju, 1989; Lemaitre and Chaboche, 1990; Hansen and 
Schreyer, 1994; Zhu and Cescetto, 1995; Murakami et al., 1998; etc.). While there are many 
models with weak coupling, no consistent model realizing a strong coupling has been 
published yet. However, relatively strong coupling between plasticity and damage can be 
achieved by using one single smooth generalized yield surface and an associated flow rule for 
the plasticity and damage evolutions (e.g. Gurson, 1977; Tvergaard, 1982; Tvergaard and 
Needleman, 1984; Rousselier, 1987; Ehlers, 1995; Hesebeck, 2001; Mahnken, R., 2002). 
Those models obviously cannot describe all loadings correctly since a hydrostatic stress will 
certainly cause damage before any plastic deformation can be noticed. In addition most of 
those models are restricted to low damage levels or dilute distribution of defects and therefore 
they fail to account for the interaction of the defects adequately. Another approach to achieve 
this strong coupling is by using separate plasticity and damage surfaces with separate non-
associated flow rules in such a way that both damage and plasticity flow rules are dependent 
on both the plastic and damage potentials (Voyiadjis and Deliktas, 2000). The later approach 
is adopted in this work, where the strong coupling between plasticity and damage is 
implemented by using two damage mechanisms. One mechanism is coupled with plasticity, 
while the other occurs independent of the plastic deformation. The dissipation function of the 
latter occurs in both the elastic and plastic domains. To formulate that on the basis of the 
thermodynamic principles, the two damage processes are represented using two additive 
components in the dissipation potential. Since this work focuses on the development of 
coupled plastic-damage governing equations based on thermomechanical postulates, the 
various possibilities to describe plasticity and anisotropic damage behavior in materials shall 
be considered here. 

It is generally assumed that the rate of deformation can be additively decomposed into an 
elastic (reversible) part and an inelastic (irreversible) part (e.g. Nemat-Nasser, 1983; Lubliner, 
1990; Simo and Hughes, 1998).  ‘Non-instantaneously reversible’ deformation is a more 
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general description of the inelastic deformation since it is corresponding to the following set 
of physical phenomena: instantaneous plasticity, viscoplasticity, damage, and viscodamage. 
The first type of inelastic deformation is a time-independent mechanism, which is generally 
considered in the rate-independent plasticity theories. The viscoplastic deformation, which is 
sometimes qualified as creep, is a rate-dependent mechanism. Both of those two mechanisms 
or one of them is generally not sufficient to describe the set of experimental observations. 
Therefore, degradation of the mechanical properties up to complete failure should be 
considered in the experimental simulations. The damage growth can be time-independent 
(damage theory) and/or time-dependent process (viscodamage theory). The evolution, 
nucleation, and coalescence of microcracks, voids, and cavities during manufacturing 
processes and subsequent loading enhance the material to behave inelastically in the elastic 
and plastic domains. Voyiadjis and Park (1999) summed such defects as an inelastic strain 
called the damage strain. They decomposed this damage strain into elastic-damage 
(recoverable) component attributed to crack closure and void contraction during unloading, 
and inelastic-damage (unrecoverable) component attributed to random distribution and 
orientation of the cracks that make their recovery impossible. In accordance with their work, 
two irreversible strains are considered in this study: the plastic and the damage strains.  

An outline for the work in this chapter is as follows: In Section 3.2 we demonstrate the 
motivated morphologies for the additive decomposition of the total strain into elastic, plastic, 
and damage components. Section 3.3 is devoted to the physical interpretations of the damage 
variable for both the isotropic and anisotropic damage distributions. Furthermore the 
derivation of the energy release rate is outlined for both isotropic and anisotropic damage 
distributions. In Section 3.4, we outline a general thermodynamic framework for the coupled 
elasto-plastic and damage material behavior. In Section 3.5, the derived evolution equations 
are examined for pure isotropic damage case and applied to simulate computationally the 
experimental results of Hesebeck (2001) for high strength steel specimens subjected to tensile 
loading. This chapter is restricted to small strains. 
 
3.2 The Strain Additive Decomposition 
 

Experimental observations show that in general the processes of cold-working, forming, 
machining of mechanical parts, etc. can cause an initial evolution of defects in the virgin 
material state, such as nucleation of certain amount of cracks, voids, and dislocation patterns. 
The initial defects induced in the material microstructure along with the subsequent defects 
that occur during deformation process enhance the material to behave inelastically even 
before the onset of plasticity. If the material is elastically unloaded before forming 
dislocations along slip planes (plasticity), permanent strains are observed. Those strains are 
irreversible damage strains, while the reversible strains are of two parts: elastic part and 
damage part. As plastic deformations initiate, both damage and plastic permanent 
deformations are anticipated. Next we demonstrate this behavior in uniaxial tension and 
complex loadings.            

Imagine an elastically loaded representative volume element (RVE) containing uniformly 
distributed (micro)-cracks of Mode I, which are triggered by the process of cold working, and 
is deformed by a total strain 1ε . A certain part of this strain is elastically recoverable ( 1

eε ) and 
another part is induced by damage ( 1

edε ). After the loads are released before the yield limit is 
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reached, the body will have no permanent strains left. However, the magnitude of the elastic 
stiffness for the RVE maybe reduced due to the growth of microcracks. This is clearly 
demonstrated in Figure 3.1 which shows the foregoing micromechanics of a continuum point 
in the RVE and the corresponding macro-stresses and strains. We begin with an unstressed 
unit cell in the RVE containing a microcrack of length 2a  and a resulting average stiffness 

1E  (the stiffness of the matrix surrounding the microcrack remains unchanged by microcrack 
opening). Up to a certain stress level, the microcrack will not grow but only open. Therefore, 
the microcrack length will remain 2a  (neglecting the Poisson’s effect) and the RVE average 
stiffness will not change. Beyond this threshold, however, the microcrack extends by an 
amount 2( )da  and the average stiffness decreases by an amount 1dE . Upon the load release 
the microcrack will close and no further growth occurs. For the same stress (points b and d) a 
greater strain will result, due to the reduction in the RVE average stiffness. In the stress free 
state there are no permanent strains left, only the resulted average stiffness ( 1E ) is less than 
that of the initial body. The amount of the stored elastic strain energy at the end of the loading 
process is given by ( )1 1 1 2e ed

c c cσ ε ε+  and the additional surface energy resulting from the 
microcrack extension by an amount of 2da  is obtained from the work done by the applied 
stress 1 1 1 1 1[( ) ( )]e ed e e

c c c a aσ ε ε ε ε+ − + .  
Imagine now the elastically loaded RVE containing an arbitrary distribution of (micro)-

voids and (micro)-cracks of mixed modes (Mode I, II, and III), which are triggered by the 
process of cold working, and subjected to a 2-D state of stress. Generally, this situation is 
more likely to happen in materials than the former case. The RVE is deformed by a total 
strain of ε ; a certain part of it is elastically recoverable ( eε ) and another part is induced by 
the damage ( dε ). If the loads are released before yielding is observed, the body will have, 
similar to plasticity and in contrast to the previous fictitious situation, permanent deformations 
( idε ). Those irreversible damage strains are attributed to the necessary geometric constraints 

Figure 3.1. Fictitious uniaxial stress-strain elastic response resulting from a growing micro-
crack. All the damage strain is recoverable (the crack is closed but not healed). 
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set by other (micro)-defects. Figure 3.2 shows the underlying micromechanics of a continuum 
point in the RVE and the corresponding macro-stresses and strains in one of the geometric 
directions. The existing stress state is that of combined biaxial tension and shear 
( 2 1 12σ σ τ> > ) with the stress-strain behavior in the 2-directions being accounted for. We start 
with an unstressed sub-RVE containing a growing microcrack and microvoid with an average 
stiffness E  (the stiffness of the matrix surrounding the microcrack/microvoid remains 
unchanged by the microcrack opening). Up to a certain stress level, the microcrack will open 
and start growing and the microvoid will expand. This process is accompanied by shape 
change and reduction in the average stiffness, dE . Upon the loads release, part of the 
microcrack will close, the size of the microvoid will decrease, and no further growth occurs. 
For the same stress (points b and d) a greater strain will result, due to the microcrack and 
microvoid growth and the reduction in the average stiffness. In the stress free state, permanent 
strains occur and the resulted average stiffness ( E ) is less than that of the initial body. Part of 
the resulted damage strain, dε , is recovered and another part is permanent. As clearly seen, 
the recoverable part, edε , is attributed to partial closure of microcracks and size reduction of 
microvoids upon unloading (but not healing), while the unrecoverable part is attributed to lack 
of closure of all microcracks and unvanishing microvoids that cause permanent deformation. 
As we stated earlier, this may be due to the geometrical constraints set up by the interacting 
microcracks, microvoids, and grain boundaries.              

Both situations are likely to happen under different types of loading. However, the first 
situation is more likely to happen in uniaxial tension, while the second situation is likely to 
happen in complex loading.  

One now investigates the total basic one-dimensional behavior in a ductile material. 
Consider the uniaxial tension test shown in Figure 3.3. In this test, a bar of uniform cross-

Figure 3.2 Fictitious stress-strain elastic response of an RVE subjected to a 2-D state of stress 
( 1 2 12σ σ τ> > ) resulting from a growing microcrack and microvoid. Part of the damage strain 
is recoverable (not healed) and the other part is unrecoverable. 
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section is subjected to the uniaxial loading-unloading history: O → B → C , during which the 
length of the bar takes the following values: L → pl → pidl → pdl → l . Stage  O → B  
corresponds to a monotonic loading beyond the elasticity domain, and B → C  to elastic 
unloading (C → B  corresponds to elastic loading process). State C  corresponds to a stress-
free, unloaded configuration. We can write the following identity:  
 

pd p

pd p

l l l l
L l l L
=                                                             (3.1) 

or  
e d pλ λ λ λ=                                                                 (3.2) 

 
where l Lλ =  is the axial stretch ratio at the end of O → B , e pdl lλ =  can be viewed as the 
elastic stretch at the end of the elastic transformation B → F , d pd pl lλ =  corresponds to the 
damage stretch between D  state and a damage-free state between C  and O , and p pl Lλ =  
corresponds to plastic stretch between O  state and a plastic-free state between C  and O . The 
term “between C  and O ” is used due to the fact that part of the permanent deformation is 
contributed by plasticity and part from the non-recoverable damage.  
 Note that the superscripts here do not imply tensorial indices but merely indicate the 
corresponding deformation configuration such as “e” for elastic, “p” for plastic, “d” for 
damage, “ed” for elastic-damage,  “id” for inelastic-damage, and “pid” for plastic-inelastic-
damage 

Additionally dλ  can be written as: 
 

pd pd pid

p pid p

l l l
l l l

=                                                               (3.3) 
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Figure 3.3 Uniaxial stress-strain response of a metallic specimen. 
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d ed idλ λ λ=                                                                 (3.4) 
 
where ed pd pidl lλ =  is the elastic-damage stretch (recoverable damage stretch) between states 
D → C , and id pid pl lλ =  is the unrecoverable damage stretch between C  state and a 
damage-free state between C  and O . No effective configurations are used to interpret the 
above definitions. 

In the context of the kinematic linear theory of deformation (infinitesimal deformation) and 
motivated by the above schematic illustration, by the micromechanics of single crystal 
plasticity (Nemat-Nasser, 1979 and 1983), and the continuum damage mechanics (Voyiadjis 
and Park, 1999), one can assume the additive decomposition of the total strain (ε ) into elastic 
(ε e ), plastic (ε p ), and damage components (ε d ). Although the damage process is an 
irreversible deformation thermodynamically; however, the deformation due to damage itself 
can be partially or completely recovered upon unloading. Thus, the damage strain component 
is also decomposed into elastic (reversible) and inelastic (irreversible) parts. The recoverable 
part is attributed to cracks closure upon unloading (but not healing), while the unrecoverable 
part is attributed to unclosed cracks and voids that cause permanent deformation. This may be 
due to the constraints set up by the interacting (micro)-cracks, (micro)-voids, dislocation 
densities, and grain boundaries. Both reversible and irreversible parts cause degradation in the 
material stiffness. Hence, in small strain theory, the total strain can be additively decomposed 
as: 
 

e p d
ij ij ij ijε ε ε ε= + +                                                               (3.5) 

and  
d ed id
ij ij ijε ε ε= +                                                                  (3.6) 

 
where edε  and idε  are the elastic-damage and inelastic-damage parts of the damage strain, 
respectively. In this work the subscripted letters after the variables indicate the tensorial 
nature of the variables unless specifically stated otherwise.   

During the unloading process, two types of strains are purely reversible: the ordinary 
elastic strain,ε e , and the elastic-damage strain, ε ed . Thus, the total reversible elastic strain, 

Eε , due to unloading can be obtained by: 
 

E e ed
ij ij ijε ε ε= +                                                                 (3.7) 

 
On the other hand, the total inelastic strain, Iε , arises from the two irreversible sources: 
inelastic damage and plastic flow such that: 
 

I id p
ij ij ijε ε ε= +                                                                 (3.8) 

   
Eq. (3.5) can therefore be expressed as follows: 
 

E I
ij ij ijε ε ε= +                                                                  (3.9) 



 57

 
Both components of the damage tensor edε  and idε  are functions of an internal variable 
called the damage variable, φ , which is a scalar for isotropic damage and a tensor for a 
continuum that exhibits anisotropic damage. In the following section, we interpret the 
physical definition of the damage tensor in one-dimension and three-dimensions.  
 
3.3 Physical Interpretation of the Damage Variable 
 

The damage variable is a macroscopic measure of the microscopic degradation of a 
representative volume element (Kachanov, 1986; Lemaitre and Chaboche, 1990; Lemaitre; 
1992; Lubarda and Krajcinovic, 1993; Voyiadjis and Venson, 1995; Krajcinovic, 1996; 
Voyiadjis and Kattan, 1999; Voyiadjis and Deliktas, 2000). Damage in materials can be 
represented in many forms such as specific void and crack surfaces, specific crack and void 
volumes, the spacing between cracks or voids, scalar representation of damage, and general 
tensorial representation of damage. In this section, however, the physical interpretation of the 
damage variable is introduced as the specific damaged surface area, where two cases are 
considered: the isotropic damage distribution case and the anisotropic damage distribution 
case of microcracks and microvoids. Moreover, this study is limited to small strain 
deformations and an extension to finite strain deformations can be easily obtained.   
 

3.3.1 Isotropic Damage 
 

We first consider the definition of the damage variable φ  in one-dimension as originally 
proposed by Kachanov (1958), and further developed by several other authors (e.g. Lemaitre 
and Chaboche, 1990; Lemaitre; 1992; Lubarda and Krajcinovic, 1993; Voyiadjis and Venson, 
1995; Krajcinovic, 1996; Voyiadjis and Kattan, 1999; Kattan and Voyiadjis, 2001) since the 
1970s. Consider a uniform bar subjected to a uniaxial tensile load, T , as shown in Figure 
3.4(a).  The cross-sectional area of the bar in the stressed configuration is A  and it is assumed 
that both voids and cracks appear as damage in the bar and form a total damage area of DA . 
The uniaxial tensile force T  acting on the bar is easily expressed using the formula T Aσ= .  
In order to use the principles of continuum damage mechanics, one considers a fictitious 
undamaged configuration (effective configuration) of the bar as shown in Figure 3.4(b).  In 
this configuration all types of damage, including both voids and cracks, are removed from the 
bar.  The effective stressed cross-sectional area of the bar in this configuration is denoted by 
A  and the effective uniaxial stress is σ . The bars in both the damaged configuration and the 
effective undamaged configuration are subjected to the same tensile force, T .  Therefore, 
considering the effective undamaged configuration, one can write T Aσ= .  Equating the two 
expressions for T  that are obtained from both configurations, the following expression for the 
effective uniaxial stress σ  (Kachanov, 1958; and Rabotnov, 1968) is derived such that: 
 

1
σσ
φ

=
−

                                                           (3.10) 

where 
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DA A A

A A
φ −
= =                                                     (3.11) 

 
where DA  is the specific flaws (or damaged) area (Voyiadjis and Kattan, 1999; Kattan and 
Voyiadjis, 2001). 

Similarly, a relation between the effective stress tensor, σ , and the nominal stress tensor, 
σ , for the case of isotropic damage (i.e. scalar damage variable) can be written as follows: 
 

 
1

ij
ij

σ
σ

φ
=

−
 (3.12) 

  
One can now derive expressions for the elastic strains and elastic moduli in the damage 

configuration as a function of the isotropic damage variable φ . Assume that the initiated 
microcracks (no microvoids are initiated) during elastic loading are totally closed (not healed) 
upon the elastic unloading process. Figure 3.5(a) shows a fictitious stress-strain response 
before plasticity occurs, where the total elastic strain ( E e ed= +ε ε ε ) is recoverable. Thus, the 
elastic stress-strain relation can be written as: 
 

e
ij ijkl klEσ ε=                                                              (3.13) 

 
where E  is the initial elastic moduli that is constant and can be obtained experimentally.  

The above equation shows that the initial elastic modulus, E , is equal to the effective 
elastic modulus, E , if no damage occurs (i.e. E E=  for no damage case). This is true if 
initially the current state has no micro-damage initiation. Thus, in this case the spatial 
configuration coincides with the effective fictitious configuration. Alternatively, Eq. (3.13) 
can also be written as follows (Figure 3.5(a)): 
  

( )e ed E
ij ijkl kl kl ijkl klE Eσ ε ε ε= + =                                                (3.14) 

 

Figure 3.4 A cylindrical bar subjected to uniaxial tension: both voids and cracks are removed 
simultaneously (Voyiadjis and Kattan, 1999; Kattan and Voyiadjis, 2001). 
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where E  is the elastic-damage Young’s modulus (degraded) that is no longer constant, and 
hence a relation between the elastic-damage modulus E  and the damage variable φ  is 
sought.   

Considering the fictitious effective (undamaged) stress-strain response shown in Figure 
3.5(b), a similar relation to Eq. (3.13) can be obtained such as: 
 

e
ij ijkl klEσ ε=                                                             (3.15) 

 

where eε  and E  are the effective counterparts of Eε  and E , respectively.  
In order to derive the transformation relations between the damaged and the hypothetical 

undamaged (effective configuration) states of the material, the elastic energy equivalence 
hypothesis (Sidoroff, 1981) is utilized. This hypothesis assumes that the elastic energy in 
terms of effective and nominal stress and corresponding strain quantities must be equal. Thus, 
the elastic strain energy is equated to the effective elastic strain energy such that: 
 

1 1
2 2

E e
ij ij ij ijσ ε σ ε=                                                      (3.16) 

 
where E e ed= +ε ε ε  is the total elastic strain recovered during unloading and eε  is the 
effective elastic strain. The total elastic strain energy is assumed to be a decomposition of two 
parts: the ordinary elastic strain energy ( 1

2
eσ ε ) and the elastic-damage strain energy 

( 1 1
2 2

E e−σ ε σ ε ). This signifies that the stored elastic-damage energy is needed to open the 
closed cracks during the elastic loading.  
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Figure 3.5 Fictitious uniaxial stress-strain elastic response where all the damage strain is 
recoverable.  
(a) all damage is recoverable (all cracks are closed but not healed) 
(b) effective configuration where all damage is removed. 
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Substituting Eq. (3.12) into Eq. (3.16), the following relation between the effective elastic 
strain, eε , and the total elastic strain, Eε , is obtained as follows: 
 

( )1e E
ij ijε φ ε= −                                                                (3.17) 

 
This is analogous to the relation derived by Voyiadjis and Kattan (1992a). However, in that 
work the strain Eε  was not explicitly decomposed into its components eε  and edε . 

A similar relation between the ordinary elastic strain, eε , and the effective elastic strain, 
eε , can be obtained by substituting Eqs. (3.12) and (3.13) into Eq. (3.15) such that: 

 
( )1e e

ij ijε φ ε= −                                                               (3.18) 
 
From the above relation it is clear that the effective elastic strain, eε , is not identical to the 
ordinary elastic strain, eε , obtained through the additive strain decomposition in Eq. (3.7). 
This relation shows that the elastic strain (excluding the damage strain) depends on the 
damage level, which conforms well to the experimental observations that show the elastic 
strain decreases as the damage level increases, in particular, at strains close to failure, see 
Figure 3.6.  

Furthermore, by rearranging Eq. (3.17) and substituting into Eq. (3.18) one obtains: 
 

( )21e E
ij ijε φ ε= −                                                              (3.19) 

 
which again emphasizes the previous result, see Figure 3.6. Considering the additive 
decomposition of the total elastic strain, Eq. (3.7), into Eq. (3.19) and simplifying the result 
we obtain a relation for the elastic-damage strain, edε , as follows: 
 

( )
( )

2

2

1 1
1

ed e
ij ij

φ
ε ε

φ

 − −
=  

−  
                                                      (3.20) 

 
or by utilizing Eqs. (3.18) and (3.19) one obtains the following relation: 
 

( )
( ) ( )

2
21 1

1 1
1

ed e E
ij ij ij

φ
ε ε φ ε

φ

 − −  = = − −   −  
                                     (3.21) 

 
This relation shows that the elastic-damage strain, edε , increases with the damage growth 
(Figures 3.6 and 3.7), which qualitatively agrees with the loading-unloading uniaxial tensile 
processes. 

Finally, by substituting Eqs. (3.10) and (3.17) into Eq. (3.15) and comparing the result with 
Eq. (3.14), one derives a relation between the elastic-damage modulus, E , and the initial 
elastic modulus, E , in terms of the scalar damage variable, φ , as follows: 
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( )21ijkl ijklE E φ= −                                                    (3.22) 
 
This coincides with the relation obtained by Voyiadjis and Kattan (1992a). 

In Figure 3.6(a) the variation of the strain ratios in the elastic range of Eqs. (3.17), (3.19), 
and (3.21) are plotted with respect to the damage variable, φ . In Figure 3.6(b) the variation of 

 

Figure 3.6 Variation of the different types of elastic strain with respect to the damage 
variable, φ . (a) with respect to the total elastic strain, (b) the elastic-damage strain to elastic 
strain ratio. 
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the strain ratio in the elastic range of Eq. (3.20) is plotted with respect to the damage variable, 
φ . Figure 3.6 shows a qualitatively correct behavior with respect to the experimental 
observations. 

It is noteworthy that if the damage variable, φ , is known, one can then calculate the 
corresponding damage strain and stiffness using the derived equations. Next, we will 
demonstrate the proposed damage concept for the anisotropic case.  
 

3.3.2 Anisotropic Damage 
 

Many researchers tend to adopt the traditional simple isotropic scalar damage variable, 
“(1 φ− )”, in order to model the material micro-damage mechanism, in which all components 
of the material stiffness are degraded by the same scalar damage parameter, φ  (e.g. 
Krajcinovic and Foneska, 1981; Krajcinovic, 1983; Kachanov, 1986; Lemaitre and Chaboche, 
1990; Lemaitre; 1992; Doghri, 2000; etc). However, in order to ensure a more realistic 
application of the principles of the damage mechanics, anisotropic damage should be 
assumed.  In this case different levels of damage are related to the principal directions, and 
thus a simple scalar damage parameter is no longer sufficient to quantify damage in all 
directions. Instead, the anisotropic phenomenon of the microdamage distribution in the 
material is interpreted using a symmetric second-order damage tensor, ijφ  (e.g. Murakani and 
Ohno, 1981; Murakami, 1983, 1988; Ortiz, 1985; Chow and Wang, 1987, 1988; Lubarda and 
Krajcinovic, 1993; Voyiadjis and Abu-Lebdeh, 1993; Voyiadjis and Kattan, 1992a, 1992b; 
Voyiadjis and Venson, 1995; Voyiadjis and Park, 1997, 1999; Seweryn and Mroz, 1998; 
Voyiadjis and Deliktas, 2000; etc.). 

We now generalize the definition of the isotropic damage variable described above (Figure 
3.4) to the anisotropic case. Consider a damaged solid in which an RVE of finite volume has 
been isolated. Assume the RVE is an elementary parallelepiped, and consider facets of 
outward unit normal in ( , ,i x y z= ). Each of the three facets has a different evolution of 
microdamage; i.e. D

xA  on the facet has a unit normal xn , D
yA  on the facet that has a unit 

normal yn , and D
zA  on the facet that has a unit normal zn . The total area of the facet in the 

xn , yn , and zn  directions are designated as xA , yA , zA , respectively. A measure of damage 
in the RVE is then given by a second-order tensor defined as follows: 
 

= ⊗φ ρ ρ    or  ij i jφ = ρ ρ                                               (3.23) 
 
where ρ  is the microdamage (microcracks and microvoids) density, and defined as follows: 
 

D
i

i
i

A
A

ρ =        (no sum on i)                                                 (3.24) 

 
where D

iA  ( , ,i x y z= ) is the total area of defects traces on the facet whose unit normal is in . 
We will see in the subsequent sections that the definition of the strain energy release rate 
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enables us to avoid calculation of D
iA  which would be extremely difficult to do because of the 

lack of knowledge of the precise geometry of the microcracks and microvoids. A compound 
definition for damage was previously defined by Kattan and Voyiadjis (2001) were both 
damages due to cracks and voids were superimposed. Their definition of voids followed the 
concept of area reduction due to damage. 

The damage tensor φ  in Eq. (3.23) can be written in a matrix form as follows: 
 

 [ ]
x x y x z

xx xy xz

yx yy yz y x y y z

zx zy zz
z x z y z

φ φ φ
φ φ φ φ

φ φ φ

 ρ ρ ρ ρ ρ      = = ρ ρ ρ ρ ρ        ρ ρ ρ ρ ρ 

    (3.25) 

 
which is a generalization of the Kachanov’s parameter that has in some simple special cases 
the same meaning. In the work of Voyiadjis and Venson (1995) crack densities as a measure 
of microcracks only without microvoids was considered. In a later work by Voyiadjis and 
Kattan (1999), and Kattan and Voyiadjis (2001) the two types of damages were incorporated 
under the same variable, φ . In the present work all the defect traces that evolve on the RVE 
facets (i.e. microcracks and microvoids) are considered.  

It is worth to say that the above definition is defined from a pure geometric point of view; 
that is the larger the surface damage traces, the more severe the damage. From the material 
point of view, the distribution (spacing and orientation) and size of the surface damage traces 
have a considerable influence on the material behavior. For example the same total damaged 
area can be contributed by a smaller number of large voids/cracks or a larger number of small 
voids/cracks. Those effects are implicitly considered in the evolution equations derived in the 
subsequent sections. This implicit consideration comes from the fact that the proposed model 
follows the phenomenological approach because the material behavior is described through a 
suitable set of internal variables, acting at the micro-structural level, and whose relation to 
micromechanical processes is not exactly defined. However, an explicit consideration of such 
effects can be achieved by the use of the non-local or gradient damage theories (e.g. Pijaudier-
Cabot and Bazant, 1987; Aifantis, 1992; Zbib and Aifantis, 1992; Voyiadjis et al., 2001, 
2003; Voyiadjis and Abu Al-Rub, 2003; Taylor et al., 2002). This explicit consideration of the 
shape, size, and distribution of micro-cracks and micro-voids by the use of the non-local or 
gradient theories can be easily adapted to the proposed model, but the matter is beyond the 
scope and the limit of the present work. 
 One can write the linear elastic constitutive equations for the damaged material according 
to the principle of strain energy equivalence between the virgin material and damaged 
material (Sidoroff, 1981). That is, the damaged material is modeled using the constitutive 
laws of the effective undamaged material in which the Cauchy stress tensor, σ , is replaced by 
the effective stress tensor, σ  (Murakani and Ohno, 1981): 
 

ij ikjl klMσ σ=                                                          (3.26) 
 
where M  is the fourth-order damage-effect tensor. Many different expressions for M  have 
been proposed in the literature in order to symmetrize the effective stress tensor, σ . A 
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comprehensive review of the most widely used expressions are presented by Voyiadjis and 
Park (1997). The following expression for M , which is proposed by Cordebois and Sidoroff 
(1979), is used here due to its attractiveness in the mathematical formulations, such that: 
 

( ) ( ) 1
2ikjl ik ik jl ik jl jlM δ φ δ δ δ φ

−
 = − + −                                        (3.27) 

 
where ijδ  is the Kronecker delta.  

Furthermore, using the strain energy equivalence principle, Eq. (3.17) which relates the 
effective elastic strain tensor eε  with the total elastic strain tensor Eε  can be expressed for 
anisotropic damage as follows: 
 

1e E
ij ikjl klMε ε−=                                                              (3.28) 

 
Also similar to Eq. (3.18), one can write: 
 
 e e

ij ikjl klMε ε=  (3.29) 
 

Analogous to Eq. (3.22), the elastic-damage stiffness, E , can be rewritten using the fourth 
order damage-effect tensor M  as follows (Voyiadjis and Park, 1999): 
 

1 1
ijkl imjn mnpq pkqlE M E M− −=                                                   (3.30) 

 
where 

 

( ) ( )1 1
2ikjl ik ik jl ik jl jlM δ φ δ δ δ φ−  = − + −                                       (3.31) 

 
and E  is the fourth-order elastic moduli tensor given by: 
 

12
3ijkl ij kl ik jl ij klE K Gδ δ δ δ δ δ = + − 

 
                                      (3.32) 

 
where K  and G  are the elastic bulk and shear moduli, respectively. 

Analogous to Eq. (3.21) one can express edε  in terms of the applied stress, σ , by 
substituting Eqs. (3.13) and (3.14) into Eq. (3.7), such that: 
 
 ( )1 1ed

ij ijkl ijkl klE Eε σ− −= −  (3.33) 
 

where 1−E  and 1−E  are the inverse counterparts of Eqs. (3.30) and (3.32), respectively. 
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3.3.3 The Strain Energy Release Rate (G ) 
 

The strain energy release rate G  for the isotropic damage case is defined as the rate of 
change in the elastic potential energy density EΨ  with respect to the specific damaged area 

DA  for a linear elastic material, such that: 
 

 
E

DA
∂Ψ

= −
∂

G  (3.34) 

 
Now, we illustrate the derivation of the strain energy release rate G  in one dimension. 
Consider an elastically loaded body containing microdamages (Figure 3.5). The potential 
energy EΨ  for damage growth is given by: 
 
 E U WΨ = −  (3.35) 
 
where U  is the strain energy stored in the body ( 2Eσε ) and W  is the additional energy 
necessary for damage growth and obtained from the work done by Eσε . The potential energy 

EΨ , therefore, can be written as follows: 
 

 1
2

E EσεΨ = −  (3.36) 

 
Eq. (3.36) is obtained when the loading is stress controlled (the displacement is fixed). 
However, if the loading is strain controlled (the load is fixed), the potential energy EΨ  is 
given as: 
 

 1
2

E EσεΨ =  (3.37) 

 
Now substitution of Eq. (3.37) into Eq. (3.34) along with E Eε σ= , yields the following 
expression:  
   

 21 2 1
2 D DE A A E

σ σ σ ∂ ∂  = − +   ∂ ∂   
G  (3.38) 

 
The stiffness of the body E  is decreasing whether the body is rigidly gripped (strain control) 
such that the damage growth would result in a stress drop or whether the stress is fixed (stress 
control) such that the damage growth would result in a strain increase. For the strain control 
case, both σ  and E  would decrease, but the ratio Eσ  would remain the same, such that: 
 

 1 1 0D DE A A E
σ σ∂ ∂  + = ∂ ∂  

 (3.39) 
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Using the above equation with Eq. (3.38), the following expression is obtained for G , such 
that: 
 

 21 1
2 DA E
σ ∂  =  ∂  

G  (3.40) 

 
In the case of stress control or strain control loading, the magnitude of EΨ  is equivalent as 
given by Eqs. (3.36) and (3.37). Thus, under fixed stress loading condition the strain energy 
release rate is the same as given by Eq. (3.40), only the sign is reversed, reflecting the fact the 
G  is independent of the type of load application (e.g. displacement control, load control, 
combinations of stress change and strain change). 

We found for the case of isotropic damage (Eq. (3.22)) that E  for a one-dimensional case 
can be expressed in terms of the undamaged stiffness E  and the damage variable φ  as 
follows: 
 
 ( )21E E φ= −      (3.41) 
 
with DA Aφ =  is given by Eq. (3.11).  

Substitution of Eq. (3.41) into Eq. (3.40), yields the following expression for the energy 
release rate G : 
 

 
( )

2

31AE
σ

φ
=

−
G  (3.42) 

   
By substituting the nominal stress σ  from Eq. (3.10) along with the elastic strain energy 
equivalence principle (Eq. (3.16)), the strain energy release rate G  can be written as a 
function of the energy potential and the damage variable as follows:   
 

 
( )
2
1

E

A φ
Ψ

=
−

G  (3.43) 

 
The strain energy release rate for the anisotropic damage can be defined as follows: 

 

 
E

ij D
ijA

∂Ψ
= −

∂
G  (3.44) 

where D D D
ij i jA A A=  as defined in Eq. (3.23). 

Similar to the procedure outlined above, one can derive the strain energy release rate for 
the anisotropic damage case (G ) with the aid of the definition presented by Eqs. (3.23), (3.30) 
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and (3.31). Assuming that the total area of the RVE’s facets in the xn , yn , and zn  normals are 
constant, one can write G  as follows: 
 

 
1

2 kplqE ab
ij kplq D

ab ij

M
M

A
φ

φ

−∂ ∂
= Ψ

∂ ∂
G  (3.45) 

Using Eq. (3.27), one can write: 
 

 
1

kplq
kplqab

ab

M
J

φ

−∂
= −

∂
 (3.46) 

 
where J  is a sixth-order tensor and is given by: 
 

 ( )1
2kplqab lq ka pb kp la qbJ δ δ δ δ δ δ= +  (3.47) 

Hence, Eq. (3.45) can be written as: 
 

 2 E ab
ij kplq kplqab D

ij

M J
A
φ∂

= − Ψ
∂

G  (3.48) 

where EΨ  is given by: 
 

 1 11 1
2 2

E
ij ijkl kl ij ijkl klE Eσ σ σ σ− −Ψ = =  (3.49) 

 
It is noteworthy that since the magnitude of EΨ  is path independent as was shown in the 

beginning of this section, the expression of G  does not differ whether the imposed loading is 
strain control or stress control. This particularly agrees well with the definition of strain 
energy release rate made in fracture mechanics (Thomason, 1990; Anderson; 1994; Hertzberg, 
1996). However, this does not imply that the strain energy release rate, presented in Eq. (3.43) 
for isotropic damage or Eq. (3.48) for anisotropic damage, is stress/force path independent. 
The expression for the strain energy release rate, which is used later to define the conjugate 
damage force, has in its composition the damage variable φ  which is stress/force path 
dependent. This makes both the strain energy release rate and the damage conjugate force 
path dependent.   
 
3.4 Coupled Damage/Plasticity Thermodynamic Formulation 
 

3.4.1 Helmholtz Free Energy Density 
 
In this work, the elasto-plastic-damage material behavior is considered. This implies that 

stress path material dependence and the nonlinear material response are considered. Thus, the 
dependent constitutive variables are functions of the total elastic strain tensor, Eε , and intn - of 
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internal state variables, kℵ  ( int int1,..., ; 1k n n= ≥ ). Within the thermodynamic framework, the 
Helmholtz free energy density can be written as: 
 
 ( );E

ij kεΨ = Ψ ℵ  (3.50) 
 
Since the main objective is to develop strong-coupled constitutive equations for a plastic-

damaged material, the effects of plastic strain hardening and micro-damage mechanisms are 
to be considered. Experimental observations show that the accumulation of the material 
defects during the deformation process has a tendency to form macroscopically localized 
deformation regions. In those localized zones, many defects may undergo irreversible growth; 
coalescence of pre-existing cracks and voids may occur; propagation of dislocations may 
proceed; and new defects may nucleate with their ultimate coalescence results in failure. 
Moreover, intensive interaction mechanisms of the evolved defects may take place at those 
localized zones; such as dislocation - dislocation interaction, microdamage - microdamage 
interaction, crack dominated - dislocation interaction, dislocation dominated - crack 
interaction, dislocation/crack - grain boundary interaction, etc. In order to consider such 
mechanisms in the constitutive equations, a finite set of internal state variables kℵ , acting at 
the micro-structural level, representing either a scalar or a tensorial variable are assumed such 
that (Voyiadjis and Deliktas, 2000): 
 
 ( ), , , ,k k ij ij ijp rα Γ φℵ =ℵ  (3.51) 
 
where α  is the plastic flux variable related to the kinematic hardening (movement of the 
loading surface), and p   is the equivalent plastic strain related to the isotropic hardening (size 
of the loading surface). Furthermore, since this work focuses on the development of a coupled 
plastic-damage framework based on the thermomechanical postulates, the various possibilities 
to describe anisotropic damage are to be presented here. The damage internal variables consist 
of the damage flux variable Γ  corresponding to the kinematic hardening (movement of the 
damage surface), r  the cumulative inelastic-damage strain (size of the damage surface), and 
φ  the anisotropic damage tensor. p  and r  can be expressed as follows: 
 

 3
2

0

t
p p

ij ijp dtε ε= ∫  (3.52) 

 
0

t
id id
ij ijr dtε ε= ∫  (3.53) 

                 
Using the Clausius-Duhem inequality for isothermal state, one obtains:  

 
 0ij ijσ ε ρψ− ≥  (3.54) 
 
where ρ  denotes the mass density. In Eq. (3.54) the total strain rate tensor, ε , is decomposed 
into two parts: total elastic part, E e ed= +ε ε ε  and inelastic part, I p id= +ε ε ε . 
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The time derivative of Eq. (3.50) with the respect to its internal state variables, kℵ , is 
given by: 
 

 E
ij ij ij ijE

ij ij ij ij

p r
p r

ε α Γ φ
ε α Γ φ
∂Ψ ∂Ψ ∂Ψ ∂Ψ ∂Ψ ∂Ψ

Ψ = + + + + +
∂ ∂ ∂ ∂ ∂ ∂

 (3.55) 

 
Substituting the rate of the Helmholtz free energy density, Eq. (3.55), into the Clausius-
Duhem inequality, Eq. (3.54), along with Eq. (3.5), one obtains the following thermodynamic 
constraint: 
 

      0E I
ij ij ij ij ij ij ijE

ij ij ij ij

p r
p r

σ ρ ε σ ε ρ α ρ ρ Γ ρ ρ φ
ε α Γ φ

 ∂Ψ ∂Ψ ∂Ψ ∂Ψ ∂Ψ ∂Ψ
− + − − − − − ≥  ∂ ∂ ∂ ∂ ∂ ∂ 

 (3.56) 

 
Eq. (3.56) results in the following thermodynamic state laws for the conjugate thermodynamic 
forces: 
 

 ij E
ij

σ ρ
ε
∂Ψ

=
∂

 (3.57) 

 ij
ij

X ρ
α
∂Ψ

=
∂

 (3.58) 

 R
p

ρ ∂Ψ
=

∂
 (3.59) 

 ij
ij

H ρ
Γ
∂Ψ

=
∂

 (3.60) 

 K
r

ρ ∂Ψ
=

∂
 (3.61) 

 ij
ij

Y ρ
φ
∂Ψ

− =
∂

 (3.62) 

 
where X , R , H , K , and -Y  are the thermodynamic forces conjugate to the fluxes α , p , 
Γ , r , and φ , respectively.  

The complexity of a model is directly determined by the form of the Helmholtz free energy 
Ψ  and by the number of conjugate pairs of variables. The specific free energy, Ψ , on the 
long-term manifold (neglecting the short-term manifolds) is assumed as follows: 
 

 ( )1 1 1 1 1
2 3 2

E E bp cr
ij ijkl kl ij ij ij ijE C Q p e a q r e

b c
ρ ε ε α α Γ Γ− −   Ψ = + + + + + +   

   
φ  (3.63) 

 
where ( )φE  is the fourth-order damage elastic tensor and C , Q , b , a , and c  are material-
dependent constants.  
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 The form of the first term in Eq. (3.63) has been often postulated in damage mechanics, 
and is based on the concept of the effective stress σ  so that it presents the same strain or the 
same elastic energy as a damaged element subjected to the nominal stress σ . The rest of the 
terms in Eq. (3.63) have been assumed in this form in order to derive nonlinear evolution 
equations for the isotropic and kinematic hardening that describe more accurately the 
plasticity and damage deformation mechanisms. The second and third terms take a form as 
proposed by Chaboche (1989). The fourth and fifth terms are assumed analogous to the 
second and third terms, respectively for the case of damage.  

The proposed definition of Ψ  allows the derivation of the constitutive equations and the 
internal dissipation described next. The state laws of the assumed internal state variables are 
obtained by substituting Eq. (3.63) into Eqs. (3.57)-(3.61), such that: 
 
 ( )p id

ij ijkl kl kl klEσ ε ε ε= − −  (3.64) 

 2
3ij ijX Cα=  (3.65) 

 ( )1 bpR Q e−= −  (3.66) 

 ij ijH aΓ=  (3.67) 

 ( )1 crK q e−= −  (3.68) 
 
Now, one can obtain an expression for the damage driving force Y  in terms of the strain 
energy release rate presented in Eq. (3.45). By using the chain rule, the thermodynamic state 
law of Y  (Eq. (3.62)) can be written as follows: 
 

 
DE
mn

ij D
mn ij

AY
A

ρ
φ

∂∂Ψ
= −

∂ ∂
 (3.69) 

 
Using the definition of strain energy release rate for anisotropic damage (Eq. (3.44)) and the 
physical definition of the damage tensor φ  (Eqs. (3.23) and (3.24)) along with the assumption 
of A  designating the total area of the RVE’s facets in the xn , yn , and zn  directions, one can 
write Eq. (3.69) in terms of the strain release rate, G , as follows: 
 

 
D
mn

ij mn
ij

AY
φ

∂
=

∂
G  (3.70) 

 
Substituting the expression derived for the strain energy release rate for anisotropic damage 
G  (Eq. (3.48)) into Eq. (3.70), one can express the damage driving force Y  as follows: 
 
 2 E

ij kplq kplqijY M J= Ψ  (3.71) 
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where EΨ  and J  are given by Eqs. (3.47) and (3.49), respectively. Furthermore, we may 
replace : 2E eΨ =σ ε  by its expression in terms of equivalent stress 3 : 2eqσ = τ τ  and the 

hydrostatic stress ( ) / 3P trac= σ  as follows: 
 

 
2 29

6 2
eqE P
G K

σ
Ψ = +  (3.72) 

 
where 3 /(1 2 )K E ν= − , / 2(1 )G E ν= + , and ν  is the Poisson’s ratio. For the isotropic 
damage case we may write an expression for Y  as follows: 
 

 
( ) ( )

2 2* *

1 1
Y

E E
σ σ

φ φ
= =

− −
 (3.73) 

with  
 
 2* 2 1/ 2

3[ (1 ) 3(1 2 )( / ) ]eq eqPσ σ ν ν σ= + + −  (3.74) 
 
where * *(1 )σ φ σ= − . This is referred to as the equivalent damage stress according to the 
notation by Lemaitre and Chaboche (1990). The ratio / eqP σ  expresses the triaxiality of the 
state of stress. 
 

3.4.2 The Dissipation Function and the Maximum Dissipation Principle   
 

Using the equations of state (Eqs. (3.57)-(3.62)), the Clausius-Duhem inequality 
expression (Eq. (3.56)) becomes: 
 
 ( ) 0p id

ij ij ij ij ij ij ij ij ijX Rp H Kr Yσ ε ε α Γ φΠ = + − − − − + ≥  (3.75) 
 
where Π  defines the dissipation due to plasticity and damage morphologies and requires to be 
non-negative. It can be seen from the dissipation function Π  that both irreversible and 
reversible damage strains cause energy dissipation. This is caused by the irreversible strains 
through : idσ ε  and the reversible strains through :φY .   

The rate of the internal state variables associated with plastic and damage deformations are 
obtained by utilizing the calculus of functions of several variables with the Lagrange 
multipliers pλ  and dλ , respectively. The dissipation function Π  (Eq. (3.75)) is subjected to 
the two constraints, namely 0f =  and 0g =  (Voyiadjis and Kattan, 1992a), such that: 
 

p df gλ λΩ = Π − −                                                      (3.76) 
 
We now can make use of the maximum dissipation principle (Simo and Honein, 1990; Simo 
and Hughes, 1998), which states that the actual state of the thermodynamic forces (σ , Y ) is 
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that which maximizes the dissipation function over all other possible admissible states. Thus, 
we maximize the objective function Ω  by using the necessary conditions as follows: 
 

0
ijσ

∂Ω
=

∂
  and   0

ijY
∂Ω

=
∂

                                              (3.77) 

  
Substitution of Eq. (3.76) into Eq. (3.77) along with Eq. (3.75) yields the thermodynamic laws 
corresponding to the evolution of the total inelastic strain rate ( Iε ) and the damage variable 
(φ ), where Eq. (3.77)1 gives the inelastic strain rate as follows: 
 

I p d
ij

ij ij

f gε λ λ
σ σ
∂ ∂

= +
∂ ∂

                                                 (3.78) 

 
Considering the earlier postulate of the additive decomposition of the inelastic strain rate into 
plastic and damage parts, Eq. (3.8), the following assumption is made: 
 

p p
ij

ij

fε λ
σ
∂

=
∂

  and  id d
ij

ij

gε λ
σ
∂

=
∂

                                     (3.79) 

 
This assumption suggests that the inelastic-damage strains, idε , may be anticipated even 
before any plastic deformation can be observed, which qualitatively meets the discussion 
outlined in Section 3.2.    

On the other hand, Eq. (3.77)2 gives the damage rate evolution law as follows: 
 

 p d
ij

ij ij

f g
Y Y

φ λ λ∂ ∂
= +

∂ ∂
 (3.80) 

 
Eq. (3.80) signifies, once again, that the damage growth occurs even if there is no plastic flow 
(i.e. 0pλ = ), which agrees well with the experimental observations in brittle materials and is 
justified in Figure 3.5. 
   In order to obtain non-associative rules for the damage and plasticity hardening variables, 
one can assume the existence of a plastic potential F  and a damage potential G  such that 
they are respectively not equal to f  and g . This postulate is essential in order to obtain 
nonlinear plastic and damage hardening rules, which give a more realistic characterization of 
the material response in the deformation process. The complementary laws for the evolution 
of the other internal state variables can then be obtained directly from the generalized 
normality rule, such that: 
 

 p
ij

ij

F
X

α λ ∂
= −

∂
                                                      (3.81) 

p Fp
R

λ ∂
= −

∂
                                                            (3.82) 
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d
ij

ij

G
H

Γ λ ∂
= −

∂
                                                      (3.83) 

d Gr
K

λ ∂
= −

∂
                                                            (3.84) 

 
where pλ  and dλ  are determined using the consistency conditions 0f =  and 0g = , 
respectively. 

The next step is the selection of the appropriate form of the plastic potential function F , 
the plastic yield surface f , the damage potential function G , and the damage growth surface 
g  in order to establish the desired constitutive equations that describe the mechanical 
behavior of the material. 
 

3.4.3 Plasticity and Damage Dissipation Potentials and Hardening Rules 
 
Plastic Dissipation Potential and Hardening Rules  
 

Once a material is damaged, further loading can only affect the undamaged material. Thus, 
the damage potential function G  is defined in terms of the effective stresses and strains. By 
combining plasticity with damage, it seems natural that plasticity can only affect the 
undamaged material skeleton. Thus plastic potential F  is also defined in terms of the 
effective stresses and strains. The plastic potential F  is defined as: 
 

3
4 ij ijF f

C
γ

= + Χ Χ                                                    (3.85) 

 
where γ  and C  are material constants used to adjust the units of the equation. The yield 
function, f , is of a von Mises type given as follows: 
 

( )3
2 ( )( ) 0ij ij ij ij ypf X X R pτ τ σ= − − − − =                                 (3.86) 

 
where ypσ  is the initial size of the yield surface, and τ  and X  are expressed in terms of the 
damage tensor Μ  (given by Eq. (3.27)) and the corresponding damage states as follows 
(Voyiadjis and Kattan, 1999): 

 ij ikjl klMτ σ′=     where   1
3ikjl ikjl rkrl ijM M M δ′ = −  (3.87) 

and 
 ij ikjl klX M X=   (3.88) 
 
The plastic parameter 0pλ ≥ , which is known as the plastic consistency parameter, is 
assumed to obey the following Kuhn-Tucker loading/unloading conditions: 
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                               (3.89) 

 
In order to derive the evolution of the plasticity isotropic hardening function, the time rate 

of Eq. (3.66) gives: 
 
 bpR bQpe−=  (3.90) 

  
A relation between R  and p  can be obtained from Eq. (3.66), such that: 
 

 1 ln 1 Rp
b Q

 
= − − 

 
 (3.91) 

 
which upon substituting it into Eq. (3.90) yields the following expression for R , such that: 
 
 [ ]R b Q R p= −  (3.92) 
 

The isotropic hardening represents a global expansion in the size of the yield surface with 
no change in shape. Thus for a given yield criterion and flow rule, isotropic hardening in any 
process can be predicted from the knowledge of the function R , and this function may in 
principle, be determined from a single test (e.g. the tension test). Therefore, the effective 
isotropic hardening function R  is related to the nominal isotropic hardening function by Eq. 
(3.10) as follows: 
 

 
1 eq

RR
φ

=
−

 (3.93) 

where (Voyiadjis and Park, 1997) 
 
 eq ij ijφ φ φ=  (3.94) 
    

Using Eq. (3.82) along with the chain rule and Eqs. (3.86) and (3.93), it can be easily 
shown that p  is related to pλ  by: 
 
 ( )1p

eq pλ φ= −  (3.95) 
 

Using the chain rule and Eq. (3.88), Eq. (3.81) is now expressed as follows: 
 

 p
ij minj

mn

FM
X

α λ ∂
= −

∂
 (3.96) 
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Substitution of Eq. (3.85) into the above equation yields: 
 

 3
2

p
ij minj mn

mn

fM X
X C

γα λ
 ∂

= − + ∂ 
 (3.97) 

 
Since f f∂ ∂ = −∂ ∂σX  as it is clear from Eq. (3.86), it is easily shown with using the chain 
rule and Eqs. (3.26), (3.79)1, (3.88) together with the time rate of Eq. (3.65) that the evolution 
equation of the plastic kinematic hardening X  is related to pε , X , and M  as follows: 
 

 2
3

p p
ij ij minj mrns rsX C M M Xε γλ= −  (3.98) 

 
Substituting Eq. (3.95) into the above equation, gives the following form for the evolution 
equation of the backstress tensor X , such that: 
 

 ( )2 1
3

p
ij ij eq minj mrns rsX C M M X pε γ φ= − −  (3.99) 

 
Damage Dissipation Potential and Hardening Rules 
 

The anisotropic damage governing equations are formulated using similar mathematical 
concepts as those used for plasticity. Thus, analogous to the plasticity potential function F , 
one can assume the following form of the damage potential function G  in the space of the 
damage forces and the conjugated forces of the hardening variables (Voyiadjis and Deliktas, 
2000): 
 

1
2 ij ij

dG g H H
a

= +                                                       (3.100) 

 
where d  and a  are material constants used to adjust the units of the equation. g  is the 
damage growth function postulated as follows: 
 

 ( )( ) ( ) 0ij ij ij ij dg Y H Y H l K r= − − − − =  (3.101) 

 
where dl  is the initial damage threshold. The damage consistency parameter 0dλ ≥  is 
assumed to obey the following Kuhn-Tucker conditions: 
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                (3.102) 
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Using Eq. (3.84) along with Eq. (3.101), the following relation is obtained: 
 
 d rλ =  (3.103) 
 
Taking the time rate of Eq. (3.68) and expressing r  in terms of K , the evolution of the 
damage isotropic hardening function K  can be easily written as: 
 
 ( )K c q K r= −  (3.104) 
  
Now, we derive an expression for the damage kinematic hardening rule by taking the time 
rate of Eq. (3.67) and making use of Eqs. (3.80), (3.83), (3.100), and (3.103) such that: 
 

 ij ij
ij

gH a d H r
Y

 ∂
= −  ∂ 

 (3.105) 

where  

 
( )( )

ij ij

ij kl kl kl kl

Y Hg
Y Y H Y H

−∂
≡

∂ − −
 (3.106) 

 
Next, explicit expressions for the plasticity and damage Lagrange parameters pλ  and dλ  

are derived using the consistency conditions f  and g , respectively. 
 

3.4.4 Plasticity and Damage Consistency Conditions  
 

Since σ , X , and R  are functions of φ  and their corresponding nominal counter parts σ , 
X , and R , it follows that the yield function f  may be expressed as a function φ , such that 
the corresponding consistency condition 0f =  can be written as follows: 
 

 0ij ij ij
ij ij ij

f f f ff X R
X R

σ φ
σ φ
∂ ∂ ∂ ∂

≡ + + + =
∂ ∂ ∂ ∂

 (3.107) 

 
By assuming that the elastic-damage stiffness, E , is constant within each stress/strain 
increment, which is the case in the strain-driven problem, one can write the time rate of the 
Cauchy stress tensor (σ ) as follows: 
 
 E

ij ijkl klEσ ε=  (3.108) 
 
Making use of the above equation, Eqs. (3.78), (3.80), (3.86), (3.92), (3.93), (3.95), (3.99), 
and the chain rule while noting that f f∂ ∂ = −∂ ∂X σ , it can be shown, after some 
manipulation, that the consistency condition, Eq. (3.107), gives the following relation 
between pλ  and dλ , such that: 
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 11 12 1

p da a bλ λ+ =  (3.109) 
where  
 

      ( )
( )11 2

2
3 1

ijkl minj mrns rs
ij kl ij ij ij ij ij eq

b Q Rf f f f f f fa E C M M X
Y

γ
σ σ σ σ σ φ φ

−∂ ∂ ∂ ∂ ∂ ∂ ∂
= + − − +
∂ ∂ ∂ ∂ ∂ ∂ ∂ −

 (3.110) 

    

 12 ijkl
ij kl ij ij

f g f ga E
Yσ σ φ

∂ ∂ ∂ ∂
= −
∂ ∂ ∂ ∂

 (3.111) 

and 

 1 ijkl kl
ij

fb E ε
σ
∂

=
∂

 (3.112) 

where  

 mn
minj

ij mn ij mn

f f fMσ
σ σ σ σ

∂∂ ∂ ∂
= =

∂ ∂ ∂ ∂
   with   

( )( )3
2

3
2

mn mn

mn kl kl kl kl

Xf

X X

τ
σ τ τ

−∂
≡

∂ − −
 (3.113) 

 

 
( )

( )2
1

mn mn

ij mn ij mn ij ij

ij
mrns mpnqij pkql kl kl

rs eq

Xf f f f R
X R

fM J M X R

σ
φ σ φ φ φ

φ
σ

σ φ

∂ ∂∂ ∂ ∂ ∂ ∂
≡ + +

∂ ∂ ∂ ∂ ∂ ∂ ∂

∂
= − +

∂ −

 (3.114) 

 

 
1

ijmn

ij mn ij mn mn

Yf f f
Y Y

σ
σ σ σ

−
∂ ∂∂ ∂ ∂

≡ =  ∂ ∂ ∂ ∂ ∂ 
 with  ij E

kplq kplqij mn
mn

Y
M J ε

σ
∂

=
∂

 (3.115) 

 
On the other hand, the consistency condition for the damage, 0g = , can be written as follows: 
 

 0ij ij
ij ij

g g gg Y H K
Y H K
∂ ∂ ∂

≡ + + =
∂ ∂ ∂

 (3.116) 

 
However, since the damage driving force Y  is a function of σ  and φ  (see Eq. (3.71)), the 

damage consistency condition can be rewritten as follows: 
 

 0ij ij ij
ij ij ij

g g g gg H K
H K

σ φ
σ φ
∂ ∂ ∂ ∂

≡ + + + =
∂ ∂ ∂ ∂

 (3.117) 

 
Making use of Eqs. (3.78), (3.80), (3.101), (3.103), (3.104), and (3.105) along with the chain 
rule, it can be shown, after some manipulation, that the consistency condition, Eq. (3.117), 
gives the following relation between pλ  and dλ , such that: 
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 21 22 2

p da a bλ λ+ =  (3.118) 
where  
 

 21 ijkl
ij kl ij ij

g f g fa E
Yσ σ φ

∂ ∂ ∂ ∂
= −
∂ ∂ ∂ ∂

 (3.119) 

    

 ( )22 ijkl ij
ij kl ij ij ij

g g g g ga E d H c q K a
Y Yσ σ φ

∂ ∂ ∂ ∂ ∂
= − − + − +
∂ ∂ ∂ ∂ ∂

 (3.120) 

and 

 2 ijkl kl
ij

gb E ε
σ
∂

=
∂

 (3.121) 

where 
 

 Emn
ij kplq kplqmn

ij mn ij mn

Yg g g M J
Y Y

ε
σ σ

∂∂ ∂ ∂
≡ =

∂ ∂ ∂ ∂
 (3.122) 

 

 

2

mn mn

ij mn ij mn ij ij

ijE mn
kalb rpsq arbsij kplqmn

mn ij eq

Y Hg g g g K
Y H K

Hg M M J J a
Y

φ φ φ φ

φ
φ φ

∂ ∂∂ ∂ ∂ ∂ ∂
≡ + +

∂ ∂ ∂ ∂ ∂ ∂ ∂

 ∂∂
= Ψ − −  ∂ ∂ 

 (3.123) 

 
The plastic multiplier, pλ , and the damage multiplier, dλ , can be found from the linear 
system of equations given by Eqs. (3.109) and (3.118) such that: 
 

 22 12 1

21 11 2

1p

d

a a b
a a b

λ
λ

−     
=    −∆     

 (3.124) 

 
where 
 11 22 12 21a a a a∆ = −  (3.125) 
 

3.4.5 The Elasto-Plastic-Damage Tangent Stiffness 
 

Substituting pλ  and dλ  from Eq. (3.124) into Eq. (3.78), the evolution equation for the 
inelastic strain rate Iε  can be written in the following form: 
 
 I

ij ijkl klε χ ε=  (3.126) 
 
where χ  is a fourth-order tensor and is expressed as follows: 
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 ijkl ijkl ijklP Zχ = +  (3.127) 
where  
 

 ijkl rs rskl
ij

fP A E
σ
∂

=
∂

 (3.128) 

 

 ijkl rs rskl
ij

gZ B E
σ
∂

=
∂

 (3.129) 

 

 22 12
1

rs
rs rs

f gA a a
σ σ

 ∂ ∂
= − ∆ ∂ ∂ 

 (3.130) 

 

 11 21
1

rs
rs rs

g fB a a
σ σ

 ∂ ∂
= − ∆ ∂ ∂ 

 (3.131) 

 
Substitution of Eqs. (3.126) and Eq. (3.33) into Eq. (3.108), yields the following: 

 
 ij ijkl klDσ ε=  (3.132) 
 
where D  represents the elasto-plastic-damage tangent stiffness given by: 
 
 ijkl ijkl ijmn mnklD E E χ= −  (3.133) 
 
The tangent stiffness D  has two possible expressions, such that: 
 

0 0 & 0 0

0 0 0 0
ijkl

ijkl p d
ijkl ijmn mnkl

E if f or f g or g
D

E E if f f or g gχ λ λ

 < < < <= 
− = ⇔ = = ⇔ =

                 (3.134) 

 
The above expression signifies that =D E  if there is no damage and no plastic flow; and 

=D E  if there is total crack closure, total void contraction, and no plastic flow.  
The set of constitutive equations for the proposed model with damage and plasticity 

coupling are summarized in Table 3.1.  
 
3.5 Qualitative and Quantitative Results 
 

The pure damage and the coupled plastic-damage model behavior are examined in the 
sequel for the case of isotropic damage. The new features that the proposed model is 
attempting to represent are illustrated by providing qualitative and quantitative plots of stress 
versus strain.  
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Table 3.1 Constitutive equations of the proposed coupled elasto-plastic-damage model. 
 

 i. Elastic stress-strain relationship 
( ): ed p id= − − −σ ε ε ε εE  

 
ii. Damage stress-strain relationship 

( ): p id= − −σ ε ε εE      with     : :=E M E M  
 
iii. Flow-Rules 

p p fλ ∂
=

∂
ε

σ
,  id d gλ ∂

=
∂

ε
σ

,  p df gλ λ∂ ∂
= +

∂ ∂
φ

Y Y
 

 
iv. Isotropic and kinematic hardening laws 
 a. Plasticity 

  [ ]R b Q R p= − , 2 : :
3

pC pγ= −εX M M X  

 b. Damage 

  ( )K c q K r= − ,  ga d r∂ = − ∂ 
H H

Y
 

 
v. Yield and damage conditions 
  ( ) ( )3

2 : 0ypf Rσ= − − − − ≤X Xτ τ ;  

  ( ) ( ): 0dg l K= − − − − ≤Y H Y H  
 
with 2 :E= ΨY M J  

 
vi. Kuhn-Tucker conditions  

0, 0 0p pf fλ λ≥ ≤ ⇔ =  
0, 0 0d dg gλ λ≥ ≤ ⇔ =  

 
vii. Consistency conditions 

0 if 0 & 0 if 0f f g g= = = =  
 
viii. Tangent stiffness 

0 0 & 0 0

: 0 0 & 0 0p d

if f or f g or g

if f f g gλ λ

 < < < <= 
− = ⇔ = = ⇔ = χ

E
D

E E
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3.5.1 The Case of Pure Isotropic Damage 
 

In this section some properties of the damage model proposed in Section 3.4.3.2 are 
investigated for some simple uniaxial processes using a dissipation mechanism produced by 
the damage potential only. The damage criterion with linear isotropic damage hardening is 
considered such that Eq. (3.101) can be expressed as follows: 
 

 ( )
( )

3
2

2

1
0

1
d

E
g l q

φ
ε φ

φ

−
= − − =

+
 (3.135) 

 
where e ed idε ε ε ε= + +  is the total strain, dl  is the damage threshold, and q  is the damage 
hardening modulus. The evolution of the damage variable φ  in uniaxial extension can be 
obtained from Eq. (3.135) for a given ε , dl , and q . The limit uniaxial strain and stress at 
which damage initiates are obtained by setting 0φ =  in Eq. (3.135) such that: 
 
 o dl Eε = ,       o dE lσ =  (3.136) 
 
The elastic strain, eε , the elastic-damage strain, edε , and the inelastic-damage strain, idε , can 
be obtained from the relations presented in Section 3.3.1 and Eq. (3.79)2 such that: 
 

 ( )
( )

31
1

e φ
ε ε

φ
−

=
+

,      ( ) ( )
( )

31 1
1

ed φ φ
ε ε

φ
− − −

=
+

,     2
1

id φε ε
φ

=
+

 (3.137) 

 
For 0φ = , eε ε=  and edε =  0idε = , the stress relation follows from the elastic constitutive 
relation: 

 secDσ ε=   with ( )
( )

3

sec

1
1

D E
φ
φ

−
=

+
 (3.138) 

 
The stress-strain curves are shown in Figure 3.7 for different values of the damage 

threshold dl  and the damage hardening modulus q . It is evident that the model allows 
simulating a continuous change from hardening to softening as well as the reduction in the 
stiffness. It is noteworthy that the energy necessary to initiate the damaged state (that can be 
interpreted as fracture energy fG ) is finite, in fact it is expressed as follows: 
 

 21 1d
2 2

o

f o d
o

G E l
ε

σ ε ε= = =∫  (3.139) 

 
Therefore, for 0q = , Eq. (3.135) characterizes a fracture-type criterion. Moreover, it can be 
noted from Figure 3.7(b) that for 0q =  (i.e. no damage hardening), for each φ  there is a 
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unique value of stress; while for 0q ≠  (i.e. with damage hardening), for each φ  there are two 
possible stress values. Therefore, due to the presence of damage the application of this model 
to structural problems will cause strain localization with the consequent mesh-dependency of 
the numerical results. Several regularization approaches, either in time or space, have been 
proposed in the literature to accommodate this problem (see Voyiadjis et al., 2001). However, 

 

Figure 3.7 Influence of the (a) ld parameter and (b) q (Mpa) parameter for E =199 GPa. 
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the purpose of this study is to introduce the model and the possible strategies for coping with 
strain localization are beyond the goal of the present work. 

The loading-unloading behavior is considered in Figure 3.8(a). When damage occurs, it 
can be seen upon unloading that there is a permanent strain in the stress free state. This 
qualitatively agrees with the experimental observations in concrete (Van Mier, 1984), where 

 

Figure 3.8 Damage Hardening effect. (a) Loading-unloading uniaxial tensile process, 
(b) variation of different type of strains with damage, for E =199 GPa and dl =3 MPa. 
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plasticity is assumed to be negligible. The stress-strain plot in Figure 3.8(a) with damage 
hardening is obtained for very large value of 50q MPa=  so that the secant stiffness, secD , 
after initiation of damage does not degrade immediately, as it has been observed in some 
experimental tests on concrete. Hardening then decreases fast as soon as damage localization 
develops. Figure 3.8(b) shows the variation of the different coupled-damage strains with 
respect to the damage variable φ . Figure 3.8 shows an important feature of the proposed 
damage model that has not been considered by most of the previous models. Furthermore, it 
can be seen that for the same corresponding imposed strain, the elastic-damage modulus is 
bigger for pure damage with hardening than without hardening. This implies an increase in 
the material strength due to the interaction between microdamages. This is also a new aspect 
that was not provided by many in previous damage models. 

The influence of the hardening modulus q  is shown in Figure 3.9 for 3.0dl MPa=  and 
199E GPa= . The evolution of φ  and the elastic-damaged modulus E  are also reported. 

Increasing values of q  determine stronger reduction in φ  and stronger increase in E . The 
parameter q  particularly influences the degradation of the elastic modulus and the concavity 
of the stress-strain curve ( )E φ  that can be obtained from experiments (Figure 3.9).   
 

3.5.2 Coupled Plasticity and Damage: Application to High Strength Steel 
 

In this section the experimental results of Hesebeck (2001) for a high strength steel are 
numerically simulated using the proposed model. The tested high strength steel 30CrNiMo8 
contains 33% carbon. Further details of the chemical composition are documented in 
Hesebeck (2001). In the mechanical testing, force controlled tension tests with partial 
unloadings were performed at a stress rate of 130 /MPa sσ −= . The resulting stress versus 
strain curve obtained by Hesebeck (2001) is plotted in Figure 3.10. 

Considering the fact that there are no unified experimental methods developed to quantify 
the damage variable, one can obtain φ  with sufficient precision by evaluating the unloading 
(i.e. the decrease in the stiffness) in the stress-strain curve, such that one can write from Eq. 
(3.22) the following expression: 

 

1 E
E

φ = −            (3.140) 

 
Voyiadjis and Venson (1995) proposed the use of the sectioned specimens together with the 
use of the SEM for the determination of crack densities. However, different interpretations of 
the experimental damage variable have been made by Hesebeck (2001), which is based on the 
strain equivalence principle (i.e. ( )1E E φ= − ). However, the strain energy equivalence is 
considered in the present work. The result for the damage variable using Eq. (3.140) is plotted 
in Figure 3.11 versus the elastic-damage modulus, E . 
 Identification of the material constants associated with any proposed material model is one 
of the most challenging issues for researchers in order to obtain better representation of their 
material models. The identification approach of the material constants for the evolution 
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equations outlined in the previous sections is based on the experimental results in Figures 
3.10, 3.11, and 3.12 by using the least-square minimization method.  

Young’s modulus, Poisson’s ratio, and the initial flow stress were pre-determined by 
Hesebeck (2001) as 199E GPa= , 0.3ν = , and 870yp MPaσ = , respectively. The object of 
the identification process here is to identify the four parameters (Q , b , C , γ ) of Eqs. (3.92) 
and (3.99), characterizing the plastic isotropic and kinematic hardening, and the five 

 

Figure 3.9 (a), (b) Influence of q (MPa) parameter for E =199 GPa and dl =3 MPa. 
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parameters ( dl , q , c , d , a ) of Eqs. (3.101), (3.104), and (3.105), characterizing the initial 
damage threshold, and damage isotropic and kinematic hardening. The plasticity hardening 
parameters are determined using the effective stress-effective and plastic strain curve in 
Figure 3.10, while the damage parameters are determined using all the experimental data in 
Figures 3.10, 3.11, and 3.12. The obtained material parameters are listed in Table 3.2. 

Preliminary results not reported here revealed that the effective stress-effective plastic 
strain curve could be obtained with reasonable agreement with the experimental data by 
considering only the isotropic hardening evolution. However, this is only by using different 
material parameters than those listed in Table 3.2. Nevertheless this is not a problem for the 
practical applicability of the developed model. The emphasis of this work is to understand 
better the different deformation morphologies that affect the material behavior by considering 
their synergetic effects. Therefore, the influence of the different cooperative phenomena on 
plasticity and damage growth are discussed here. The curves plotted in Figures 3.13-3.15 
represent the synergetic effects of the combined isotropic and kinematic hardening associated 

Table 3.2 The plasticity and damage material parameters for 30CrNiMo8 high strength steel. 
 

Mechanism Isotropic Hardening Kinematic Hardening Initial Flow 
Threshold 

Plasticity 
409Q MPa=  

9.3b =  
15,000C MPa=  

37γ =  
870yp MPaσ =  

Damage 
8.2q MPa=  

5.2c =  
14.70a MPa=  

0.11d =  
3.8dl MPa=  

Figure 3.10 Stress-strain diagram for damaged and effective undamaged 30CrNiMo8-steel as 
compared to the experimental data.  
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Figure 3.12 Comparison of experiments by Hesebeck (2001) with the simulated data of the 
present work for the damage variable versus the inelastic strain.  
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with plasticity, combined isotropic and kinematic hardening associated with damage, and 
damage mechanisms.    

Figure 3.10 depicts the resulting effective stress versus the effective plastic strain curve of 
the proposed model, thus revealing a very good agreement with the experimental data. Also, 
the true stress ( ( )1σ φ σ= − ) versus the inelastic strain ( (1 )I pε ε φ= − ) curve is shown in 
Figure 3.10. The results of the present work for the damage variable (φ ) versus the inelastic 
strain ( Iε ) are shown in Figure 3.12 while considering the experimental calculation of the 
damage variable and using both the strain equivalence and the strain energy equivalence 
principles. Also for this type of data it becomes apparent that the proposed model is able to 
give a good agreement with the experimental data for the material under consideration. High 
nonlinear dependency between φ  and Iε  is noticed in Figure 3.10, which agrees well with the 
experimental observations. 

The evolution of the plasticity dissipative forces R  and X , and the damage dissipative 
forces K , H , and Y  are shown in Figures 3.13 and 3.14, respectively. Closed form 
expressions have been derived for the plasticity and damage hardening forces by integrating 
Eqs. (3.92), (3.99), (3.104), and (3.105) over the uniaxial tensile stress-strain data. The 
damage force Y  is simplified for the one-dimensional case by using Eq. (3.71).   

The calculated additive decomposition of the total elastic strain ( Eε ) into the ordinary 
elastic strain ( eε ) and the elastic-damage strain ( edε ) as a function of φ  is shown in Figure 
3.15(a). In addition, the calculated additive decomposition of the total inelastic strain ( Iε ) 
into the plastic strain ( pε ) and the inelastic-damage strain ( idε ) as a function of φ  is shown in 
Figure 3.15(b). Figure 3.15 shows qualitatively the correct mechanical behavior as anticipated 
in the discussion outlined in Section 3.2. 

Figure 3.13 Evolution of the plasticity dissipative forces using the present model. 
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Although this study is restricted to small strains, usually up to 2-4%, the results in Figures 

3.10-3.15 are extended to inelastic strains up to 6%. However, the proposed model is in 
reasonable quantitative agreement with the experimental data for uniaxial loading and exhibits 
a qualitatively correct behavior for the evolution of the different strain types. Moreover, one 
will find in the literature considerable fewer published experimental results for multiaxial 
loadings. In this work uniaxial tension experimental data with unloadings are used to obtain 
the constitutive parameters of the proposed model. The reduction in the elastic stiffness, 
particularly, has been measured from the uniaxial case.  

In the current chapter the systematic construction of a thermodynamic consistent model for 
ductile materials, which provides a strong coupling between plasticity and damage, is 
presented. The model considers the different interaction mechanisms exhibited by the 
plasticity and the damage morphologies. Plasticity and damage combined isotropic and 
kinematic hardening are considered. In addition, an additive decomposition of the total strain 
into elastic, plastic, and damage parts is proposed in this chapter. Although microstructural 
arguments are used to motivate many aspects of the formulation, the fact remains that the 
formulation is phenomenological. The material behavior is described through a suitable set of 
internal variables and whose relation to micromechanical structure and processes is not 
exactly defined.            

A strong coupling between the two dissipative processes, plasticity and damage, is 
implemented. This strong coupling is assessed by using two separate plasticity and damage 
surfaces with separate non-associated flow rules in such a way that both damage and inelastic 
flow rules are dependent on the plastic and damage potentials. Two damage mechanisms are 
considered, one mechanism is coupled with plasticity, and while the other one occurs 
independent of plastic deformation. The dissipation function of the latter occurs in both the 
elastic and plastic domains. Even though the verification is based on a limited set of data, 

Figure 3.14 Evolution of the damage dissipative forces using the present model. 
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namely that of uniaxial stress and strain, this could specifically motivate experimentalists to 
look for the new features that would provide justification for the approach used in the current 
study.     

Explicit treatment of the microdamage distribution (spacing and orientation) and size, 
which have a considerable influence on the interaction between defects, will be addressed in 
the coming chapters. Chapter 5 is directed for implementing the proposed model in a finite 
deformation framework to model problems that exhibit non-homogenous deformation. These 

Figure 3.15 Variation of the strain decomposition with the damage variable. (a) Elastic strain 
decomposition, (b) inelastic strain decomposition. 
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additional investigations should be based on the results of the micromechanical 
characterization of the materials that exhibit heterogenous behavior. Moreover, the problem of 
size effect, strain localization, and mesh dependency, typical of plasticity and damage 
evolution, is not adressed in this chapter. Some of these aspects are presented in the coming 
chapters using the framework of this chapter and the gradient-depndent theories. The ordinary 
plasticity and damage consistutive relations with which Chapter 2 and this chapter have been 
concerned cannot capture such problems of size effects, but the gradient-dpendent theory is a 
continuum theory that can.   


