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ABSTRACT 

In this paper, a new methodology is presented to non-linear analysis of masonry shear wall under 
biaxial stress state using the finite element method. The methodology focuses on the definition / 
specification of the yield surface for the case of anisotropic masonry under biaxial stress state, as well as 
on the numerical solution of this non-linear finite elements problem. Specifically, in order to define the 
yield surface we use a cubic tensor polynomial, whereas we use the initial stress method in order to solve 
the elasto-plastic problem. In addition, novel computer code of finite elements has been developed in order 
to apply the method of elasto-plastic analysis of plane masonry wall. The main advantages of the method 
can be summarized as follows: a) The plasticity equations through a regular surface leads to the elimination 
of the problem that occurs by the use of singular surface, and b) It is clearly shown that the non-linear 
behavior of masonry is strongly affected by the yield criterion. 

Keywords: Computer code, masonry, non-linear analysis, regular yield surface, shear wall 

INTRODUCTION 
In the present work we outline the basic assumptions and associated mathematical 

expressions for a theory of plasticity, giving special attention in the case of masonry. More 
specifically, in order to formulate the quantitative expressions of the mathematical theory of 
plasticity, a new analytic method has been used for the description of the yield of the anisotropic 
masonry via a regular surface, that is, a surface defined by a single equation of the form 

( ) 0=σƒ  (Koiter, 1953). 
The significance of the use of a regular yield surface has been manifested since 1950, when 

Hill introduced in his book “The Mathematical Theory of Plasticity”. The theory of plasticity 
through a closed yield surface encounters the existence of singular points on the yield surface. 
This problem imposes additional computational difficulties in the non-linear analysis procedure 
(Zienkiewcz, Valliapan and King, 1969). 

An additional problem of the up-to-day non-linear behavior analysis of masonry (Andreaus & 
Ippoliti, 1995; Ballio et al., 1992) is the use of ready made analysis software packages that have 
been developed for the case of concrete. The basic disadvantage of these ready-made software 
packages is that their architecture is not amenable to modifications that take into account some 
important assumptions, which are valid for the case of masonry. 

To overcome these problems, a novel computer code, in FORTRAN programming language, 
has been developed. The code can be applied in elasto-plastic anisotropic masonry wall under 
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plane stress. Special attention has been given, during the development procedure, in graphic 
imaging of the analysis results. The software has also the capability of automatically producing 
not only the load – displacement diagram, but also the graphic images of the yield process, which 
are colored according to the kind of stress under which yield takes places. 

THE MATHEMATICAL THEORY OF PLASTICITY 
In order to formulate a theoretical description, capable to model elasto-plastic material 

deformation, three requirements have to be addressed: 
 
• An explicit relationship between stress and strain that will describe the material’s behavior 

under elastic conditions. 
• A yield criterion that will define the stress level at which plastic flow commences must be 

postulated. 
• A relationship between stress and strain must be developed for post-yield behaviour, i.e. 

when the deformation is made up of both elastic and plastic components. 
 

The relationship between stress and strain before the onset of plastic yielding is given by the 
following standard linear elastic expression: 

 ε=σ D  (1) 

In this expression ó and å are the stress and strain components, respectively, and D is the 
elasticity matrix. 

The yield criterion 

The yield criterion defines the stress level at which plastic deformation begins and takes the 
form of the equation: 

 ( ) 0ƒ =σ  (2) 

where ƒ is a function. 
The geometry of the yield surface tends to have a significant influence not only in the 

formulation, but also in the numerical solution of the non-linear problem, as we will show in the 
next paragraph where we will present in detail all the problems relevant to the estimation of 
elasto-plastic matrix. 

Plastic flow Rule 
Von Mises first suggested, in 1928, the basic constitutive relation that defines the plastic 

strain increments in relation to the yield surface. Various other researchers (Drucker, 1951; Prager, 
1956) have proposed heuristic methods for the validation of Von Mises proposed relationship. 
These methods have led to the current state-of-the-art hypothesis, which states that: 

If { }pεδ  denotes the increment of plastic strain, then: 

 { } { }σ∂
∂

λ=εδ
ƒ

p  (3) 

where λ  is a determinable constant (plastic multiplier). 
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FIG. 1. Geometrical representation of the normality rule in 2D Stress Space  

This rule is widely known as the normality principle because the relation (3) can be interpreted as 
requiring the normality of the plastic strain increment vector to the yield surface in the 
hyper-space of í stress dimensions. In Fig. 1 this normality rule is shown in the case of a two 
dimensional space. 

Stress–strain relations 
During an infinitesimal increment of stress, changes of strain are assumed to be partly elastic 

and partly plastic as: 

 { } { } { }pe εδ+εδ=εδ  (4) 

The elastic strain increments are related to the stress increments via a symmetric matrix of 
constants [D] known as the elasticity matrix: 

 { } [ ] { }σδ=εδ −1
e D  (5) 

Expression (4) can be readily rewritten as 

 { } [ ] { } { }λ
σ∂

∂
+σδ=εδ − ƒ

D 1  (6) 

Manipulation of the above equations leads to the following elasto-plastic stress-strain 
relation: 

 { } { }εδ=σδ epD  (7) 

where: 
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is the elasto-plastic matrix, and 

 { }







σ∂
∂

=α
ƒ

 (9) 

is the flow vector. 

YIELD SURFACE GEOMETRY EFFECT IN NON-LINEAR SOLUTION 
As we have already mentioned in the previous paragraph, the yield criterion affects the 

formulation of the non-linear problem. In this paragraph we will describe the yield surface 
geometry effect in the formulation and the numerical solution of the elasto-plastic problem. 

“Corners” in a yield surface 
Sometimes the yield surface is not defined by only a single continuous (and convex) function, 

but by a series of functions. 
According to Koiter (1953), a surface of this kind is called singular. Such a surface is the 

yield surface of Tresca and the surface about the masonry in three mutually intersected cones 
proposed by Dhanasekar, Page, and Kleeman (1985). 

According to Zienkiewicz, Valliapan, and King (1969), the use of singular areas imposes 
important problems to the elasto-plastic analysis process. The researchers propose to avoid 
calculating the singular points in yield surface by a suitable choice of continuous surfaces, which 
usually can with a good degree of accuracy represent the true conditions. 

Regular yield surface 
Having in mind the computational problems introduced during the formulation and the 

numerical solution of the non linear problem using singular yield surfaces, we will use a new 
method in order to define the yielding for the case of anisotropic masonry (Syrmakezis and 
Asteris, 2001) via a regular surface, that is, a surface defined by a single equation of the form: 
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Eliminating all third order terms in eq. 10, a simplified yield criterion is derived: 

 ( ) 01F2FFFFF,, yx12
2

66
2
y22

2
x11y2x1yx =−σσ+τ+σ+σ+σ+σ=τσσƒ  (11) 

This latter simple form of the criterion has already been used by Dhanasekar, Page and 
Kleeman (1985) and Andreaus (1996). 

According to Syrmakezis and Asteris (2001) the general yield criterion (10) through its 
non-symmetric form, fit the non-symmetrically dispersed experimental data better than the 
simplified model (11). 

COMPUTER CODE 
In order to implement the method, a specific computer program for a 2D non-linear finite 
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element analysis of masonry plane wall under monotonic static loads has been developed. During 
the development procedure, we have made use of the ready-made databanks of Owen & Hinton 
PLAST computer code (Owen & Hinton, 1982) 

It must be mentioned that many other researchers have used Owen & Hinton software in 
order to develop non-linear software for the analysis of masonry. The most representative is a 
non-linear analysis computer code developed by Adreaus (1996). The main disadvantages of the 
Owen & Hinton software are the isotropic consideration of the materials and the use of isotropic 
yield criteria. 

For the non-linear solution the method of initial stiffness proposed by Zienkiewicz, Valliapan 
and King (1969) has been used. According to authors this method can calculate an elasto-plastic 
problem based on a series of successive approximations. 

The software used in the present research, overcomes the above mentioned disadvantages of 
PLAST, and is appropriate to model the anisotropic behavior of the materials, allowing the use of 
anisotropic and regular yield surface (Eqs. 10 and 11). During the development phase we gave 
special attention to the graphic representation of the analysis results. Also, with this software we 
can produce not only the load–displacement diagram, but also the graphic images of the yield 
process colored according to the kind of stress (yield under biaxial compressive, tensile or 
heterosemous stress). 

APPLICATION 
Using this computer program, we studied the non-linear behavior of a plane masonry wall 

with openings under uniform compressive and shear loading as shown in Fig. 2 with the 
following assumptions: 

 
• The loads are uniformly distributed at the wall top; the reference load amplitude in both 

directions is assumed to equal 0.1 MPa and the load factor increment is equal to 0.1. 
• The masonry wall has been discretized by means of four-node isoparametric quadrilateral 

elements, whose length is 1.00 m. 
• Isotropic linearly elastic behaviour has been assumed for masonry material in the purely 

elastic range, with Young’s modulus E=5700 MPa and Poisson’s ratio ν=0.19. 
• The use of both a simple and a general yield criterion. 

 
For the mechanical characteristics of the masonry, we used the experimental results of Page 
(1981). With the same results they defined (Asteris, 2000; Syrmakezis and Asteris, 2001) the 
regular yield surface for the case of the general yield criterion (Eq. 10) through the equation: 
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 (12) 

as well as for the case of the simplified yield criterion (Eq. 11) ) through the equation: 

 1454.025.632.1573.087.927.2 yx
22

y
2
xyx =σσ−τ+σ+σ+σ+σ  (13) 

The regular yield surface described by Eq. (12) is depicted in Figure 3a, whereas the 
simplified yield surface described by Eq. (13) is depicted in Figure 3b. 
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FIG. 2. Shear wall with openings under uniform compressive and shear loading 
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(a) Simplified yield surface     (b) General yield surface 

FIG. 3.Yield surface of masonry in normal stress terms (Asteris, 2000; Syrmakezis 
and Asteris; 2001) 

 
 

FIG. 4. Load factor lamda ( λ )-displacement diagram 

A. General yield criterion (12) 
 
B. Simplified yield criterion (13) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

  : yield under biaxial tension  : yield under biaxial 

compression 

 

  : yield under heterosemous 

stress 
 : non yield   

FIG. 5. Successive representations of yield pattern 

Fig. 4 shows the load factor λ  – displacement diagram using both a simple and a general yield. 
It is clear that the non-linear behavior of masonry is affected by the yield criterion. It must be 
noted that this strong variation appeared during the study of this wall although both criteria have 
the same mechanical masonry characteristics (same mono-axial compressive and tensile strength 
as well as the same strength in pure shear). 

With this software we can produce not only the load–displacement diagram (Fig. 4), but also 
the graphic images of the yield process (Fig. 5), which are colored according to the kind of stress 
(yield under biaxial compressive, tensile or heterosemous stress). These graphic representations 
are especially useful not only because of the information they give, but also because of the 
validation they provide. 

CONCLUSIONS 
The present research shows a new methodology for the non-linear 2D finite element analysis 

of anisotropic masonry under monotonic loads. The methodology focuses on the definition / 
specification of the yield surface for the case of anisotropic masonry under biaxial stress state, as 
well as on the numerical solution of this non-linear problem. Specifically, in order to define the 
yield surface we use a cubic tensor polynomial, whereas we use the initial stress method in order 
to solve the elasto-plastic problem. In addition, novel computer code of finite elements has been 
developed in order to apply the method of elasto-plastic analysis of plane masonry wall, which 
takes account of their specifically intense anisotropic behavior. The main advantages of the 
method can be summarized as follows: a) The plasticity equations through a regular surface leads 
to the elimination of the problem that occurs by the use of singular surface, and b) It is clearly 
shown that the non-linear behavior of masonry is strongly affected by the yield criterion. 
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APPENDIX I. NOTATION 
The following symbols are used in this paper: 
 
epD  = elasto-plastic matrix; 

E  = Young’s modulus; 
iF  = strength tensor second rank; 
ijF  = strength tensor fourth rank; 

ijkF  = strength tensor sixth rank; 
α  = flow vector; 
λ  = both plastic multiplier and load factor; 
ν   Poisson’s ratio; 

σ σ
x y
,  = normal plane stresses along x-axis and y-axis, respectively; 

τ  = shear stress measured in the x, y- plane;  
 


