
Chapter 7

Plasticity

7.1 Introduction

Various plasticity models of mechanics are developed to describe a class of permanent
deformations. These deformations are generated during loading processes and remain
after the removal of the load. In this Chapter we present a few aspects of the classical
linear plasticity. This model is based on the assumption on the additive separation of
elastic and plastic deformation increments. In nonlinear models it is the deformation
gradient F in which these permanent deformations are separated

F = FeFp, (7.1)

where the plastic deformation is described by Fp and the elastic part is Fe. Only the
product of these two objects is indeed the gradient of the function of motion f . Neither
Fe nor Fp can be written in such a form — they are not integrable. In spite of this
problem, material vectors transformed by Fp form a vector space for each material point
X ∈B0 and these spaces are sometimes called intermediate configurations. We shall not
elaborate these issues of nonlinear models1 . However, it should be mentioned that the
assumption (7.1) indicates the additive separation of increments of deformation in the
linear model. Namely, the time derivative of the deformation gradient has, obviously,
the form

Ḟ = ḞeFp + FeḞp, (7.2)

which yields for small strains
ė = ėe + ėp, (7.3)

where ėe is the elastic strain rate and ėp is the plastic strain rate. In some older models it
is even assumed that this additive decomposition concerns strains themselves: e = ee+ep

which is obviously much stronger than (7.3) and yields certain general doubts.

1 e.g. see: A�*����� B�����
; Elasticity and Plasticity of Large Deformations, Springer Berlin,
2008.
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136 Plasticity

The aim of the elastoplastic models in the displacement formulation is to find the
displacement vector u whose gradient defines the strain e — as in the case of linear
elasticity, and the plastic strain ep which becomes an additional field.

Fig. 7.1: States of material in the stress space Σ. A — the elastic state, B
— the plastic state.

The most fundamental characteristic feature of classical plasticity is the distinction of
an elastic domain in the space of stresses Σ = {T} ,T = σijei⊗ ej . All paths of stresses
which lie in the elastic domain produce solely elastic deformations, i.e. after inverting
the process of loading the material returns to its original state. This is schematically
shown in Fig. 7.1.

The elastic domain lies within the bounding yield surface also called the yield limit or
the yield locus. Stress states which lie beyond this limit are attainable only by moving
the whole yield surface. Such processes are called hardening. In Fig. 7.1. we demonstrate
the so-called isotropic hardening. We return to this notion in the sequel. Increments of
plastic strains are described by stresses whose direction points in the outward direction
of the yield surface. This is related to the so-called Drucker2 stability postulate which
we present further.

The above described way of construction of plasticity is sometimes called stress space
formulation and it was motivated by properties of metals. There is an alternative which
has grown up from soil mechanics3 . Such materials as rocks, soils and concrete reveal
softening behaviour which violates Drucker’s postulate. In order to avoid this problem,
the so-called strain space formulation4 was developed in which, instead of Drucker’s
postulate one applies the Ilyushyn5 postulate. The detailed discussion of these stability
problems can be found, for instance, in the book of Wu [24].

2D. C. D�
����; A more fundamental approach to plastic stress-strain relations, in: Proc. 1st Nat.
Congress Appl. Mech., ASME, 487, 1951.

3This formulation has been initiated by the work: Z. M�6.; Non-associated flow laws in plasticity,
Journ. de Mecanique, 2, 21-42, 1963.

4J. C���4, P. M. N�����; On the nonequivalence of the stress space and strain space formulations
of plasticity theory, J. Appl. Mech., 50, 350, 1983.

5A. A. I�4
����; On the postulate of plasticity, PMM, 25, 503, 1961.
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Fig. 7.2: Schematic plastic behaviour of various materials

In Fig. 7.2. we show schematically strain-stress curves for different types of materials.
The steepest curve in both pictures correspond to the so-called brittle materials which
practically do not reveal any plastic deformations prior to failure. Their deformations
under high loading are small and they absorb only a little energy before breaking. It
should be underlined that many materials may behave this way in low temperatures
whereas their properties are very different in high temperatures. This transition explains
mysterious catastrophes of Liberty ships in 40th of the XXth century.

The curves for ductile materials in Fig. 7.2. correspond to materials for which the
classical plasticity was developed. They possess relative large irreversible deformations
and by failure absorb a large amount of energy. Therefore they are called tough.
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Many damages and accidents of cargo
vessels were occurred, and especially
for Liberty Ships. The vast majority
of the sea accidents were related
to brittle fracture. By 1st of April 1946,
1441 cases of damage had been reported
for 970 cargo vessels, 1031 of which were
to Liberty Ships. Total numbers of 4720
damages were reported. Seven ships were
broken in two, e.g. "Schenectady".

7.2 Plasticity of ductile materials

We proceed to specify the yield surface in the stress space. As mentioned above this stress
formulation was primarily motivated by plastic deformations of metals. In such materials
the pressure p has practically no influence on plastic strains which means that the yield
surface should be described only by the stress deviator: σDij = σij + pδij , p = −13σkk.
The eigenvalues of the stress deviator follow from the eigenvalue problem

(
σDij − sδij

)
nj = 0, (7.4)

and the solutions must satisfy the condition

Is = s(1) + s(2) + s(3) = 0. (7.5)

The eigenvalues s(α) and the eigenvalues σ(α) of the full stress tensor σij are, of course,
connected by the relation

σ(α) = s(α) − p, α = 1, 2, 3. (7.6)

For the purpose of formulation of various hypotheses for the yield surface, it is con-
venient to calculate invariants of the stress deviator and the maximum shear stresses.
As presented in Subsection 3.2.4 (compare the three-dimensional Mohr circles), the ex-
tremum values of shear stress are given by the differences of three principal values of the
stress tensor (radii of Mohr’s circles)

τ (1) =
σ(2) − σ(3)

2
, τ (2) =

σ(1) − σ(3)
2

, τ (3) =
σ(1) − σ(2)

2
. (7.7)

Hence, we have as well

τ (1) =
s(2) − s(3)

2
, τ (2) =

s(1) − s(3)
2

, τ (3) =
s(1) − s(2)

2
. (7.8)
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Further we use the sum of squares of these quantities. In terms of invariants of the stress
tensor and of the stress deviator it has the form

3∑

α=1

(
τ (α)

)2
=
3

2

[
1

3
I2σ − IIσ

]
= −3

2
IIs =

1

2
σ2eq, σeq =

√
3

2
σDijσ

D
ij , (7.9)

where σeq = σ(1) in the uniaxial tension/compression for which σ(2) = σ(3) = 0. It
is clear that the second invariant of the deviatoric stresses must be negative. These
relations follow from the definitions of the invariants

Iσ = σkk = −3p, IIσ =
1

2

(
I2σ − σijσij

)
, IIIσ = det (σij) , (7.10)

Is = 0, IIs = −
1

2
σDijσ

D
ij = −J2 = −

σ2eq
3
, IIIs = J3 = det

(
σDij
)
.

The quantity σeq =
√
3J2 is called the equivalent (effective) stress.

Now, we are in the position to define the elastic domain in the space of stresses. It
is convenient to represent it by a domain in the three-dimensional space of principal
stresses. In this space we choose the principal stresses σ(1), σ(2), σ(3) as coordinates. The
assumption that the pressure does not influence plastic strains means that yield surfaces
in this space must be cylindrical surfaces with generatrix perpendicular to surfaces s(1)+
s(2) + s(3) = 0, i.e. σ(1) + σ(2) + σ(3) + 3p = 0. The axis of those cylinders is, certainly,
the straight line σ(1) = σ(2) = σ(3). This line is called the hydrostatic axis. In general,
we can write the equation of the yield surface in the form

f
(
J2, J3, e

p
ij , κ, T

)
= 0, (7.11)

with the parametric dependence on the plastic strain epij , temperature T and the harden-
ing parameter κ. We return to these parameters later. Two examples of yield surfaces,
discussed further in some details, are shown in Fig. 7.3.

It is also convenient to introduce a normal (perpendicular) vector to the yield surface
in the stress space given by its gradient in this space, i.e.

N =
∂f
∂T∣∣∣ ∂f∂T
∣∣∣
, i.e. Nij =

∂f
∂σij√
∂f
∂σkl

∂f
∂σkl

. (7.12)

Then we can introduce local coordinates in which the yield function f identifies the elastic
domain of the Σ-space assuming there negative values, i.e. for all elastic processes f < 0.

We skip here the presentation of the history of the definition of yield surfaces which
goes back to Galileo Galilei. There are two fundamental forms of this surface which are
still commonly used in the linear plasticity of solids. The older one was proposed by H.
Tresca in 1864 and it is called Tresca-Guest surface. Its equation has the form

max
α

∣∣∣τ (α)
∣∣∣ = σ0 ⇒ σ(1) − σ(3) = 2σ0 > 0, (7.13)

where σ0 is the material parameter and we have ordered the principal stresses σ(1) ≥
σ(2) ≥ σ(3). It means that the beginning of the plastic deformation appears in the point of
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the maximum shear stress. In the space of principal stresses it is a prism of six sides and
infinite length (see: Fig. 7.3.). The parameter σ0 may be dependent on all parameters
listed in the general relation (7.11).

Fig. 7.3: Yield surfaces in the space of principal stresses

The second yield surface was proposed in 1904 by M. T. Huber6 and then rediscovered
in 1913 by R. von Mises and H. von Hencky. It says that the limit of elastic deformation
is reached when the energy of shape changes (distortion energy) reaches the limit value
ρεY . The distortion energy ρεD is defined as a part of the full energy of deformation ρε
reduced by the energy of volume changes ρεV (e.g. compare (5.175)). We have

ρε =
1

2
σijeij =

1

2

(

σij
σkk
9K

δij + σij
σDij
2µ

)

=

=
1

2K

(σkk
3

)2
+
1

4µ

(
σDijσ

D
ij

)
⇒ ρεV =

p2

2K
, ρεD =

1

4µ

(
σDijσ

D
ij

)
, (7.14)

i.e. ρεD = ρεY ⇒ ρεY =
1

4µ

(
σDijσ

D
ij

)
=
σ2eq
6µ

.

Making use of the identity, following from (7.5),

3
(
s(1)s(2) + s(1)s(3) + s(2)s(3)

)
= −1

2

[(
s(1) − s(2)

)2
+
(
s(1) − s(2)

)2
+
(
s(1) − s(2)

)2]
,

(7.15)
6M. T. H
*��; Przyczynek do podstaw wytrzymałósci, Czasop. Techn., Lwów, 22, 1904. Due to

the publication of this work in Polish it remained unknown until the hypothesis was rediscovered by von
Mises and von Hencky.
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we obtain

σDijσ
D
ij =

1

3

[(
s(1) − s(2)

)2
+
(
s(1) − s(2)

)2
+
(
s(1) − s(2)

)2]
. (7.16)

Consequently, bearing (7.6) in mind, the yield limit is reached when the principal stresses
fulfil the condition

3σDijσ
D
ij =

(
σ(1) − σ(2)

)2
+
(
σ(2) − σ(3)

)2
+
(
σ(1) − σ(3)

)2
= 2σ2Y , (7.17)

i.e. σeq = σY ,

where
σY =

√
6µρεY , (7.18)

is the yield limit (σ(1) = σY in uniaxial tension, i.e. for σ(2) = σ(2) = 0). It means that
for processes in which σeq < σY all states are elastic (f < 0) and otherwise the system
develops plastic deformations. Clearly, the relation (7.17) defines a circular cylinder in
the space of principal stresses. Its axis is again identical with the line σ(1) = σ(2) = σ(3),
it is extended to infinity and it has common generatrix with the prism of Tresca as shown
in Fig. 7.3.
⋆In order to compare analytically both definitions of the yield surface we show that

the yield stress σY calculated by means of the distortion energy of the Huber-Mises-
Hencky hypothesis (7.17) is not bigger than the material parameter 2σ0 of the Tresca
hypothesis (7.13). Let us write (7.17) in the following form

σY =
1√
2

√(
σ(1) − σ(2)

)2
+
(
σ(2) − σ(3)

)2
+
(
σ(1) − σ(3)

)2
=

=

∣∣σ(1) − σ(3)
∣∣

√
2

√(
σ(1) − σ(2)
σ(1) − σ(3)

)2
+

(
σ(2) − σ(3)
σ(1) − σ(3)

)2
+ 1 =

=

∣∣σ(1) − σ(3)
∣∣

√
2

√(
1− µσ
2

)2
+

(
1 + µσ
2

)2
+ 1 =

=
∣∣∣σ(1) − σ(3)

∣∣∣

√
3 + µ2σ
4

, (7.19)

where

µσ =
2σ(2) −

(
σ(1) + σ(3)

)

σ(1) − σ(3) , (7.20)

is the so-called Lode parameter which describes an influence of the middle principal
stress σ(2). Obviously −1 ≤ µσ ≤ 1 which corresponds to σ(2) = σ(3) for the lower
bound, and σ(2) = σ(1) for the upper bound. It plays an important role in the theory of
civil engineering structures. Hence

σY ≤
∣∣∣σ(1) − σ(3)

∣∣∣ = 2σ0.♣ (7.21)
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⋆ We demonstrate on a simple example an application of the notion of the yield
stress. We consider a circular ring of a constant thickness with external and internal
radii a and b, respectively, and an external loading by the pressures pa and pb on these
circumferences. We check when the material of the ring reaches in all points the yield
stress according to the Huber-Mises-Hencky hypothesis. This is the so-called state of the
load-carrying capacity of this structure.

This is the axial symmetric problem of plane stresses. Consequently, the principal
stresses in cylindrical coordinates are given by σ(1) = σrr, σ(2) = σθθ, σ(3) = 0. These
components of stresses must fulfil the equilibrium condition (momentum balance (5.43))

dσrr
dr

+
σrr − σθθ

r
= 0, (7.22)

and, according to (7.17), at each place of the ring

(σrr − σθθ)2 + (σrr)2 + (σθθ)2 = 2σ2Y . (7.23)

By means of (7.22) we eliminate the component σθθ of stresses and obtain the following
equation (

r
ds

dr

)2
+ s

(
r
ds

dr

)
+ s2 − 1 = 0, s =

σrr

σY
√
2
. (7.24)

Solution of this quadratic equation with respect to the derivative ds/dr yields

ds

dr
= − s

2r
± 1

2r

√
4− 3s2. (7.25)

Consequently
ds

−s±
√
4− 3s2

=
dr

2r
. (7.26)

As we have to require |s| < 2/
√
3 we can change the variables

s =
2√
3
sinϕ, (7.27)

and this yields

− dϕ

tanϕ∓
√
3
=
dr

2r
. (7.28)

Hence, we obtain two solutions but only one of them is real and it has the form

r = C

√√√√√√√√

1 +
3s2

4− 3s2√
s
√
3

4− 3s2 +
√
3

exp

[

−
√
3

2
arctan

s
√
3√

4− 3s2

]

, (7.29)

where C is the constant of integration.
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The construction of solution is shown in Fig. 7.4. in arbitrary units. For the radius b
the value of the radial stress is given by σr = −pb. We adjust the curve described by the
relation (7.29) in such a way that it intersects the point (−pb, b) indicated by the circle
in Fig. 7.4. This yields the value of the constant C in the solution. Then for the given
value of the radius a we find the value of the pressure pa which yields the limit value for
the load of this structure, i.e. its load-carrying capacity.

Fig. 7.4: Construction of solution for the load-carrying capacity of the ring♣

Yield surfaces impose conditions on elastic solutions under which the system possesses
only elastic strains. In some design problems this is already sufficient. However, many
engineering structures admit some plastic deformations — for example, in the case of
concrete it is the rule — and then we have to find a way to describe the evolution of
plastic strains ep. We proceed to develop such models.

First of all, we have to define not only the shape of the yield surface in the stress space,
as we did above, but also its dependence on parameters listed in (7.11). We indicate here
a few important examples. It is convenient to write the yield function in the form

f
(
J2, J3, e

p
ij , κ, T

)
= F (J2, J3)− σY

(
epeq, κ, T

)
= 0, (7.30)

where σY is the yield limit in the uniaxial tension/compression test for which

σ22 = σ33 = σ(2) = σ(3) = 0 ⇒ σeq = σ(1) = σ11, (7.31)

ėp11 = −2ėp22 = −2ėp33, ėpij = 0 for i �= j ⇒ ėpeq = ėp11.

where σeq is given by (7.9), and it is assumed to be given in terms of arguments listed
in (7.30). epeq is the equivalent plastic strain obtained from the integration in time of the
effective rate of plastic deformation

ėpeq =

√
2

3
ėpij ė

p
ij . (7.32)
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Obviously, for isotropic materials we expect ėpij to be deviatoric. This yields relations
(7.31).

Let us begin with the simplest case. In a particular case of ideal plasticity we consider
materials without hardening. Then the function (7.30) has the form

f =

√
3

2
σDijσ

D
ij − σY = 0, (7.33)

with the constant yield limit σY . Of course, the stress tensor must be such that elastic
processes remain within the elastic domain which is characterized by f < 0. Plastic
deformations may develop for stresses which belong to the yield surface. Their changes
yielding plastic deformation must remain on this surface which means that the increments
of stresses described by σ̇ij must be tangent to the yield surface. Hence, for such processes

ḟ =
∂f

∂σij
σ̇ij = 0, (7.34)

as the gradient ∂f/∂σij is perpendicular to the yield surface.
Now we make the fundamental constitutive assumption, specifying the rate of plastic

strain ėpij and require that this quantity follows from a potential G (σij) defined on the
stress space

ėpij = λ̇
∂G

∂σij
, (7.35)

where λ̇ is a scalar function following from the so-called Prager consistency condition.
We demonstrate it further.

Let us introduce the notion of the outward normal vector to the surface f = 0 (com-
pare (7.12)). Clearly

Nij =
∂f

∂σij

∥∥∥∥
∂f

∂σkl

∥∥∥∥
−1

,

∥∥∥∥
∂f

∂σkl

∥∥∥∥ =
√

∂f

∂σkl

∂f

∂σkl
, (7.36)

is such a vector. For the yield surface (7.33) it becomes

Nij =
σDij∥∥σDkl
∥∥ ,

∥∥σDkl
∥∥ =

√
σDklσ

D
kl =

√
2

3
σY . (7.37)

Obviously, we have the following classification

ėpij =

{
0 for f < 0 or f = 0 and Nijσ̇ij < 0.

λ̇ ∂G
∂σij

for f = 0 and Nijσ̇ij = 0.
(7.38)

The condition Nijσ̇ij < 0 means that the process yields the unloading — as Nij is or-
thogonal to the yield surface, σ̇ij must point in the direction of the elastic domain and,
consequently, the process must be elastic.

In a particular case when the potential G and the yield function are identical we
obtain
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ėpij = λ̇
∂f

∂σij
. (7.39)

This is the so-called associated flow rule. In this case, the rate of plastic deformation ėpij
is perpendicular to the yield surface, i.e. it is parallel to the normal vector Nij .

It is appropriate to make here the following remark concerning the geometry of the
yield surface. If this surface were not convex then in points in which it is concave tangent
changes of the stress tensor σ̇ij , i.e. (∂f/∂σij) σ̇ij = 0, would yield stresses in the interior
of the yield surface, i.e. in the range f < 0. This would be related to the development
of pure elastic deformations in contrast to the assumption that tangent changes of stress
yield plastic deformations. Therefore, in the classical plasticity nonconvex yield surfaces
are not admissible. This is the subject of the so-called Drucker stability postulate. In
the local form for the associated flow rules (7.39) it can be written as

ėpijσ̇ij > 0. (7.40)

It is also sometimes postulated in the global form
∫ (

σij − σ0ij
)
depij > 0, (7.41)

which shows that the postulate imposes a restriction on the work of plastic deformations
between an arbitrary initial state of stress σ0ij and an arbitrary finite state of stress σij .

For the Huber-Mises-Hencky yield function (7.33) we obtain the associated flow rule

ėpij = λ̇

√
3

2

σDij∥∥σDkl
∥∥ = λ̇

√
3

2
Nij . (7.42)

In the simple uniaxial tension/compression test we have then

ėpeq = ėp11 = λ̇ ⇒ ėpijσij = λ̇

√
3

2

∥∥σDkl
∥∥ = λ̇σ11 = ėpeqσY . (7.43)

Hence for the rate of work (working) we obtain

Ẇ = ėijσij =
(
ėeij + ė

p
ij

)
σij ⇒

⇒ Ẇp = ėpijσij = λ̇

√
3

2

∥∥σDkl
∥∥ = ėpeqσeq = ėpeqσY . (7.44)

The last expression — ėpeqσY — describes the plastic working in the one-dimensional test
which is an amount of energy dissipated by the system per unit time due to the plastic
deformation. Hence

λ̇ ≥ 0, (7.45)

and the equality holds only for elastic deformations. This statement follows easily from
the second law of thermodynamics.



146 Plasticity

In order to construct an equation for plastic strains we account for the additive de-
composition (7.3). For f < 0 we have elastic processes and then this property indicates
(compare (5.26)) the following Prandl-Reuss equation for the rate of deformation

ėij =

(
σ̇Dij
2µ

+
σ̇kk
9K

δij

)

+ λ̇

√
3

2
Nij = (7.46)

=

(
σ̇Dij
2µ

+
σ̇kk
9K

δij

)

+ Ẇp

σDij∥∥σDkl
∥∥2
. (7.47)

This follows from the property of isotropic elastic materials for which the eigenvectors
for the stress and for the strain are identical7 . The spherical part is, obviously, purely
elastic while the deviatoric part can be written in the form

dσDij
dt

+ Ẇp
4µ

3σ2Y
σDij = 2µ

deDij
dt

. (7.48)

This equation is very similar to the evolution equation for stresses within the standard
linear model of viscoelasticity (6.58) divided by the relaxation time τ . However, there is
a very essential difference between these two models. It is easy to check that the equation
of viscoelasticity (6.58) is not invariant with respect to a change of time scale t → αt,
where α is an arbitrary constant. This indicates the rate dependence in the reaction of
the material. It is not the case for the equation of plasticity (7.48). Differentiation with
respect to time appears in all terms of this equation and for this reason the transformation
parameter α cancels out. This is the reason for denoting the consistency parameter by
λ̇ = depeq/dt. It transforms: t → αt ⇒ λ̇ → λ̇/α. Therefore, the classical plasticity is
rate independent. The response of the system is the same for very fast and very slow
time changes of the loading. In reality, metals do possess this property when the rate of
deformation ėpeq is approximately 10−6−10−4 1/s. For higher rates one has to incorporate
the rate dependence (compare the book of Lemaitre, Chaboche [9] for further details).
This yields viscoplastic models presented further in these notes.

In the more general case of isotropic hardening and for isothermal processes σY be-
comes a function of epeq alone. For many materials it is also important to include the
temperature dependence. Then σY becomes the function of these two quantities. The
model is similar to this which we have considered above but one has to correct the defin-
ition of the consistency parameter λ̇. Finally, a dependence on the hardening parameter
κ means that we account for the accumulation of plastic deformations in the material.
The most common definitions of this parameter are as follows

a) the parameter accounting for the accumulation of the plastic energy

κ =

t∫

0

σij (ξ) ė
p
ij (ξ) dξ, (7.49)

7 In order to prove it, it is sufficient to compare the eigenvalue problems for deviatoric stress and
strain tensors.
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b) Odqvist parameter accounting for the accumulation of the plastic deformation
(compare (7.30) and (7.32))

κ =

t∫

0

√
2

3
ėpij ė

p
ijdξ =

t∫

0

depeq
dξ

dξ. (7.50)

Then the relation (7.11) yields the consistency condition

ḟ = 0 ⇒ ∂f

∂σij
σ̇ij +

∂f

∂epij
ėpij +

∂f

∂T
Ṫ +

∂f

∂κ
κ̇ = 0. (7.51)

Simultaneously, ėpij �= 0 only in processes of loading which are defined by the relation

∂f

∂σij
σ̇ij +

∂f

∂T
Ṫ > 0. (7.52)

In the limit case
∂f

∂σij
σ̇ij +

∂f

∂T
Ṫ = 0, (7.53)

we say that the process is neutral. Finally, for the process of unloading,

∂f

∂σij
σ̇ij +

∂f

∂T
Ṫ < 0. (7.54)

Consequently, for the evolution of plastic deformation we have the following relations

ėpij =






0 for either f < 0 or f = 0 and ∂f
∂σij

σ̇ij +
∂f
∂T Ṫ ≤ 0

λ̇
∂f

∂σij
for f = 0 and ∂f

∂σij
σ̇ij +

∂f
∂T Ṫ > 0.

(7.55)

In the case of the hardening parameter (7.49) the consistency condition (7.51) can be
written in the form

ḟ =
∂f

∂σkl
σ̇kl +

∂f

∂T
Ṫ +

[
∂f

∂epij
++

∂f

∂κ
σij

]

ėpij = 0.

Hence, we obtain the following relation for the consistency parameter

λ̇ =

∂f
∂σkl

σ̇kl +
∂f
∂T Ṫ

D
, D = − ∂f

∂epij

∂f

∂σij
− ∂f

∂κ

∂f

∂σij
σij . (7.56)

The quantity D is called the hardening function. We have

λ̇ > 0 ⇒ D > 0. (7.57)

The flow rule can be now written in the form

ėpij =
1

D

∂f

∂σij

(
∂f

∂σkl
σ̇kl +

∂f

∂T
Ṫ

)
. (7.58)
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The right hand side is the homogeneous function of σ̇ij and Ṫ . Consequently, this flow
rule possesses the same time invariance as the rule (7.39) for the model without hardening,
i.e. the model is rate independent.

Apart from the above presented isotropic hardening materials reveal changes of the
yield limit which can be attributed to the shift of the origin in the space of stresses. A
typical example is the growth of the yield stress in tensile loading with the simultaneous
decay of the yield stress for compression. In the uniaxial case it means that the whole
stress-strain diagram will be shifted on a certain value of stresses. This is the Bauschinger
effect.

Fig. 7.5: An example of Bauschinger effect in cyclic loading

The corresponding hardening is called kinematical or anisotropic. It is described by
the so-called back-stress Z = Zijei⊗ej which specifies the shift of the origin in the stress
space. The yield function can be then written in the form

f (T,Z, κ) = F (T,Z)− σY
(
epeq, T

)
=

√
3

2
σ̄Dij σ̄

D
ij − σY = 0, (7.59)

where
σ̄Dij = σDij − Zij . (7.60)

One has to specify an equation for the back-stress. It is usually assumed to have the
form of the evolution equation, e.g.

Żij = β̇ (σij − Zij) , (7.61)

where β̇ is a material parameter. We skip here the further details referring to numerous
monographs on the subject8 .

8 e.g. see the book [9] or
A�*����� B�����
; Elasticity and Plasticity of Large Deformations, Springer Berlin, 2008.
M����7 K���*��; Handbook of Computational Solid Mechanics, Springer, Heidelberg, 1998.
G����� A. M�
���; The Thermomechanics of Plasticity and Fracture, Cambridge University Press,

1992.
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7.3 Plasticity of soils

Theories of irrecoverable, permanent deformations of soils is very different from the
plasticity of metals presented above. Metals produce plastic deformations primarily
due to the redistribution and production of crystallographic defects called dislocations.
Plastic behaviour of soils is mainly connected with the redistribution of grains and it is
strongly influenced by fluids filling the voids (pores) of such a granular material. Strain
due to the deformation of grains is often negligible in comparison to the amount of shear
and dilatation caused by relative motions of grains. The behaviour is entirely different
in the case of dry granular materials (frictional materials) than a material saturated by,
for instance, water or oil where the cohesive forces play an important role. A detailed
modern presentation of the problem of permanent deformations of soils can be found in
the book of D. Muir Wood [23] (compare also a set of lectures von Verruijt [19]). Similar
issues for rocks are presented in the classical book of Jaeger, Cook and Zimmerman[6].
We limit the attention only to few issues of this subject.

Attempts to describe the plasticity of granular materials stem from Coulomb, who
formulated a simple relation between the normal stress σn on the surface with a normal
vector n and the shear stress τn on this surface. It is a generalization of the law of
friction between two bodies and has the form

|τn| = c− σn tanϕ, (7.62)

where ϕ is the so-called friction angle (angle of repose) and c denotes the cohesion
intercept. This relation is called Mohr-Coulomb law. For dry granular materials the
cohesion does not appear, c = 0, and then the angle of repose ϕ is the only material
parameter. It is, for instance, the slope of natural sand hills and pits (Fig. 7.6).

Fig. 7.6: Sand pit trap
of antlion in dry sand.
Slope almost equal to ϕ

The above relation leads immediately to the yield function in terms of principal
stresses σ(1) > σ(2) > σ(3).. Namely

f
(
σ(1), σ(2), σ(3)

)
=
(
σ(1) − σ(3)

)
+
(
σ(1) + σ(3)

)
sinϕ− 2c cosϕ = 0. (7.63)
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The derivation from properties of Mohr’s circle is shown in Fig. 7.7. Namely

|τn| =
σ(1) − σ(3)

2
cosϕ, σn =

σ(1) + σ(3)

2
− σ(1) − σ(3)

2
sinϕ. (7.64)

Substitution in (7.62) yields (7.63).
For ϕ = 0 and c = σ0 the yield function (7.63) becomes the Tresca-Guest yield

condition (7.13).

Fig. 7.7: Construction of Mohr-Coulomb yield function

Cohesive forces are influencing not only the relation between normal and shear stresses.
Due to the porosity of granular materials a fluid in pores yields cohesive interactions as
well as it carries a part of external loading. This observation was a main contribution of
von Terzaghi to the theory of consolidation of soils9 . He has made an assumption that
the pore pressure p does not have an influence on the plastic deformation of soils. The
meaning of p is here the same as in Subsection 6.4. and it should not be confused with
the trace of the bulk stress σij , i.e. p �= −13σkk. It means that the stress appearing in
yield functions must be reduced by subtracting the contribution of this pressure. If we
define the effective stress

σ′ij = σij + pδij , (7.65)

then the Mohr-Coulomb yield function becomes
(
σ′(1) − σ′(3)

)
+
(
σ′(1) + σ′(3)

)
sinϕ− 2c cosϕ = 0. (7.66)

σ′(α) = σ(α) + p, α = 1, 2, 3.

This function is shown in the upper panel of Fig. 7.8.
Further we distinguish by primes all quantities based on the effective stress.

9K. '�� T��.����; Erdbaumechanik auf bodenphysikalischer Grundlage, Franz Deuticke, Wien, 1925.
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Incidentally, a similar notion of effective stresses appears in the theory of damage — it
is related to changes of reference surface due to the appearance of cracks. Such models
shall be not presented in these notes.
⋆Remark. There exists some confusion within the soil mechanics concerning the

definition of positive stresses. Soils carry almost without exception only compressive
loads (compare Fig. 7.7. and 7.8.) and, for this reason, in contrast to the classical
continuum mechanics, a compressive stress is assumed to be positive. This is convenient
in a fixed system of coordinates related to experimental setups such as triaxial apparatus.
Then pressure p in the definition of effective stresses (7.65) would appear with the minus
sign. Usually it is denoted in soil mechanics by u. In some textbooks10 both conventions
concerning the sign of stresses appear simultaneously. However, such a change of sign
in a general stress tensor yields the lack of proper invariance with respect to changes of
reference systems. It is also contradictory with the choice of the positive direction of
vectors normal to material surfaces on which many mathematical problems of balance
laws and the Cauchy Theorem rely. For these reasons, we work here with the same
convention as in the rest of this book — tensile stress is positive.

In addition, one should be careful in the case of relation of such one-component models
to models following from the theory of immiscible mixtures, for instance to Biot’s model.
Such models are based on partial quantities and then the pore pressure p is not the partial
pressure pF of a multicomponent model but rather p = pF/n, where n is the porosity.♣

In soil mechanics, where the definitions of elastic domains described in the previous
Subsection are not appropriate, it is convenient to introduce special systems of reference
in the space of effective principal stresses. One of them is directly related to the set of
invariants (7.10)

p′ =
1

3
I ′1 = −

1

3
I ′σ, q =

√
3J ′2 = σeq, r = 3

3

√
J ′3
2
. (7.67)

Another one is a cylindrical system. One of the axes is the pressure
(
−13σ′kk

)
, i.e. it

is oriented along the line σ′(1) = σ′(2) = σ′(3). It is denoted by ξ and scaled ξ = I ′σ/
√
3.

The other two coordinates are defined by the relations

ρ =
√
2J ′2 ≡

√
2

3
σ′eq ≡

√
σ′Dij σ

′D
ij , cos (3θ) =

(
r

σ′eq

)3
. (7.68)

These are the so-called Haigh—Westergaard coordinates. The (ξ, ρ)- planes are called
Rendulič planes and the angle θ is called the Lode angle. The transformation from these
coordinates back to principal stresses is given by the relation




σ′(1)

σ′(2)

σ′(3)



 =
1√
3




ξ
ξ
ξ



+
√
2

3
ρ




cos θ

cos
(
θ − 2

3π
)

cos
(
θ + 2

3π
)



 . (7.69)

Mohr-Coulomb yield function in the Haigh—Westergaard coordinates has the following
form [√

3 sin
(
θ +

π

3

)
− sinϕ cos

(
θ +

π

3

)]
ρ−
√
2ξ sinϕ =

√
6c cosϕ. (7.70)

10 e.g. [23] or R. L����������; Geotechnical Engineering, Balkema, Rotterdam, 1995.
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Alternatively, in terms of the invariants (p′, q, r) we can write
[

1√
3 cosϕ

sin
(
θ +

π

3

)
− 1
3
tanϕ cos

(
θ +

π

3

)]
q − p′ tanϕ = c, (7.71)

θ =
1

3
arccos

(
r

q

)3
.

As in the classical theory of plasticity, modifications of Mohr-Coulomb condition were
introduced in order to eliminate corners in the yield surface. One of such modifications
was introduced by D. C. Drucker and W. Prager. This condition for the limit state of
soils has the following form

√
J ′2 −

√
3 cosϕ

√
3 + sin2 ϕ

c− sinϕ
√
3
(
3 + sin2 ϕ

)I
′
σ = 0, (7.72)

where the invariants J ′2 and I ′σ are defined by relations for effective stress analogous
to (7.10). This function is shown in the lower panel of Fig. 7.8. The dependence on
the invariant I ′σ follows from the dependence of the yield in soils on volume changes,
i.e. it describes an influence of dilatancy on the appearance of the critical limit state.
For ϕ = 0 and c = σY /

√
3 this condition becomes identical with Huber-Mises-Hencky

condition (7.17).
Due to its simplicity the Mohr-Coulomb yield surface is often used to model the

plastic flow of geomaterials (and other cohesive-frictional materials). However, many
such materials show dilatational behavior under triaxial states of stress which the Mohr-
Coulomb model does not include. Also, since the yield surface has corners, it may
be inconvenient to use the original Mohr-Coulomb model to determine the direction of
plastic flow. Therefore it is common to use a non-associated plastic flow potential that
is smooth. For example, one is using the function

g =

√
(αcY tanψ)

2
+G2 (ϕ, θ) q2 − p′ tanϕ, (7.73)

where α is a parameter, cY is the value of c when the plastic strain is zero (also called
the initial cohesion yield stress), ψ is the angle made by the yield surface in the Rendulič
plane at high values of p′ (this angle is also called the dilation angle), and G (ϕ, θ) is an
appropriate function that is also smooth in the deviatoric stress plane.
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Fig. 7.8: Yield surfaces (7.66) and (7.72) in the space of principal effective
stresses σ1 = σ′(1), σ2 = σ′(2), σ3 = σ′(3).

We shall not expand this subject anymore. Due to the vast field of applications: soils,
powders, avalanches, debris flows and many others, the number of models describing the
critical behaviour of such materials is also very large. Cap plasticity models, Cam-Clay
(CC) models, Modified-Cam-Clay (MCC) models, Mroz models, etc. are based on similar
ideas as the models presented above. There exists also a class of hypoplasticity models
in which the notion of the yield surface does not appear at all and which seem to fit well
phenomena appearing in sands11 .

11 compare articles of E. B�
��: Analysis of Shear Banding with a Hypoplastic Constitutive Model
for a Dry and Cohesionless Granular Material, 335-350, and D. K��4
*��: The Importance of Sand
in Earth Sciences, both in: B. A�*��� (ed.); Continuous Media with Microstructure, Springer, Berlin,
2010.
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7.4 Viscoplasticity

There are many ways of extension of the classical plasticity to include rate dependence.
Obviously, one of them would be to incorporate additionally some viscous properties
as we did in Chapter 7. This kind of the model is developed since early works of P.
Perzyna12 . The other way, less ambitous, is to incorporate a rate dependence in the
definition of the yield function. In principle, the classical yield function cannot exist in
such models but one gets results by direct extension of plasticity models presented in
this Chapter. For such models it is advocated in the books of Lemaitre, Chaboche [9]
and Lemaitre, Desmorat [10].

We present here only a few hints to the model of the second kind. Namely, it is
assumed that the yield criterion satisfies the relation

f = 0, ḟ = 0 — plasticity,

f = σV > 0 — viscoplasticity, (7.74)

with f < 0 satisfied in the elastic domain. σV is a viscous stress given by a viscosity law.
In both cases f can be chosen according to the rules discussed in previous Subsections.
For instance, in the case of Huber-Mises-Hencky model with isotropic and kinematic
hardening we have

f = (T−Z)eq − κ− σY , (7.75)

(T−Z)eq =

√
3

2

(
σDij − ZD

ij

) (
σDij − ZD

ij

)
,

where κ describes the isotropic hardening related to the size growth of the yield surface.
It may be, for instance, assumed to have the exponential form

κ = κ∞
[
1− exp

(
−bepeq

)]
, (7.76)

where κ∞, b are material parameters depending on temperature. Sometimes a power law
κ = Kp

(
epeq
)1/M

is sufficient.
Kinematic hardening described by the back-stresses Zij requires an evolution equa-

tion. It may have the form (7.61) or it may be the so-called Armstrong-Frederick law13

d

dt

(
Zij
C

)
=
2

3
ėpij −

γ

C
Zij ė

p
eq, (7.77)

for which the identification of parameters is easier [10].
The viscous stress σV is also given by various empirical relations. Two of them have

the form
1) Norton power law

σV = KN

(
ėpeq
)1/N

, (7.78)

12 e.g. P. P��.4��; The constitutive equations for the rate sensitive plastic materials, Quart. Appl.
Math., 20, 321-332, 1963.

13P. J. A�
������, C. O. F��������; A mathematical representation of the multiaxial Bauschinger
effect, CEGB Report, RD/B/N731, Berkeley Nuclear Laboratories, 1966.
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2) exponential law leading to the saturation at large plastic rates

σV = K∞

[
1− exp

(
−
ėpeq
n

)]
, (7.79)

where KN ,K∞, N and n are material parameters.
In Fig. 7.9 we show a comparison of results for various viscous models14 .

Fig. 7.9: Relaxation test for the identification of viscosity parameters —
Inconel alloy at θ = 6270 C.

For the alloy investigated by Lemaitre and Dufailly the following parameters are
appropriate

E = 160 GPa, KN = 75 GPa/s1/N , N = 2.4, K∞ = 104 GPa, n = 1.4× 10−2s−1.

Rate-dependent viscoplastic models must be used in cases of high deformation rates.
For metals, the rates up to app. 10−3 1/s do not influence substantially results in the
plastic range of deformations. For higher rates the yield limit may grow even three times
by the rate 100 1/s15 .

14J. L�
�����, J. D
-����4; Damage measurements, Engn. Fracture Mech., 28, 1987

15P. P��.4��; Thermodynamics of Inelastic Materials (in Polish), PWN, Warsaw, 1978.
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