
CHAPTER 3 

FOUNDATIONS OF THE THEORY OF PLASTICITY 

3.1 INTRODUCTION 

This chapter describes some of the fundamental elements of the theory of plasticity. 
These elements include yield conditions, plastic potential and flow rule, principle 
of maximum plastic work, isotropic hardening and Drucker's stability postulate, 
kinematic and mixed hardening, and general stress-strain relations. These concepts 
form the foundations of the theory of plasticity. A good review of these fundamental 
concepts can be found in Hill (1950), Prager (1955) and Naghdi (1960). It should 
be stressed that the general stress-strain relations described here are only valid for 
small deformation, but their extension to large deformation will be covered in 
Chapter 14 when used in finite element analysis of large deformation problems. 

3.2 YIELD CRITERION 

A condition that defines the limit of elasticity and the beginning of plastic deforma­
tion under any possible combination of stresses is known as the yield condition or 
yield criterion. In the elastic region, all the deformation will be recovered once the 
applied stress is removed (i.e. unloading of stress to zero). However once the yield 
condition is reached, some of the deformation will be permanent in the sense that 
it cannot be recovered even after the stress is removed completely. This part of the 
deformation is known as plastic deformation and the remaining deformation is re­
coverable upon removal of the stress and is known as elastic deformation. 

For the simple case of one-dimensional loading, the yield criterion is defined by 
a stress value beyond which plastic deformation will occur. In other words, the cri­
terion of yield is graphically represented by apoint. For the case of two dimensional 
loading, the yielding will occur when the combination of stresses applied in the two 
loading directions touches a curve. In the same way, for the case of three dimension­
al loading, plastic deformation will occur once the combination of the stresses ap­
plied in the three directions touches a surface (often known as a yield surface). In 
short, the yield criterion is generally represented by a surface in stress space. When 
the stress state is within the yield surface, material behavior is said to be elastic. 
Once the stress state is on the yield surface, plastic deformation will be produced. 

Mathematically, a general form of yield criterion (or surface) can be expressed 
in terms of either the stress tensor or the three stress invariants as follows: 
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f{a,j) = / ( / j , / 2 , / 3 ) = 0 (3.1) 

3.3 PLASTIC POTENTIAL AND PLASTIC FLOW RULE 

A key question that the theory of plasticity sets out to answer is how to determine 
the plastic deformation (or plastic strains) once the stress state is on the yield sur­
face. The most widely used theory is to assume that the plastic strain rate (or incre­
ment) can be determined by the following formula (von Mises, 1928; Melan, 1938; 
Hill, 1950): 

dsP. = dXp- (3.2) 

where dXis si positive scalar, and 

g = g(o,j) = g{h,l2J3) = 0 (3-3) 

is known as the plastic potential, which may or may not be the same as the yield 
surface. Equation (3.2) is referred to as a plastic flow rule that basically defines the 
ratios of the components of the plastic strain rate. This plastic flow rule was based 
on the observation by de Saint-Venant (1870) that for metals the principal axes of 
the plastic strain rate coincide with those of the stress. This is the so-called coaxial 
assumption, which has been the foundation of almost all the plasticity models used 
in engineering. It must be noted that recent experimental data suggests that the 
coaxial assumption is generally not valid for soils (see Chapter 8 for details). 

If the plastic potential is the same as the yield surface, then the plastic flow rule 
(3.2) is called the associated flow (or normality) rule. Otherwise it is called non-
associated flow rule. The associated flow rule follows from considerations of the 
plastic deformation of polycrystalline aggregates in which individual crystals de­
form by slipping over preferred planes (Bishop and Hill, 1951). 

If the unit normal to the plastic potential approaches a finite number of linearly 
independent limiting values as the stress point approaches the singular point in 
question, Koiter (1953) proposes the following generalized flow rule 

dsP. = YdX:P^ (3.4) 

where cU,, are nonnegative and dgj/dOij are the linearly independent gradients. 
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Figure 3.1; Maximum plastic work principle 

3.4 PRINCIPLE OF MAXIMUM PLASTIC WORK 

Suppose the plastic strain rate ^£y'' is given and the corresponding stress state, OJ:, 

determined from the normality rule and the yield criterion, is represented by a point 
P in the stress space, Figure 3.1. If Og* is an arbitrary state of stress represented by 
a point P* on or inside the yield surface, then the difference between the incremental 
plastic works done by the two stress states on the actual plastic strain rate is 

dWp = {a.. - oy *) de/ (3.5) 

Equation (3.5) represents the scalar product of the vector P*P and PQ. If the yield 
surface is strictly convex, the angle between these vectors is acute and the scalar 
product is positive. Therefore 

(a,j - o^j *) def > 0 (3.6) 

This condition, due to von Mises (1928) and Hill (1948, 1950), is known as the 
maximum plastic work principle or theorem. It states that the actual work done in 
a given plastic strain rate (or increment) is greater than the fictitious work done by 
an arbitrary state of stress not exceeding the yield limit. Alternatively the maximum 
plastic work principle can be stated as follows: the plastic work done in a given plas­
tic strain rate has a maximum value in the actual state, with respect to varying stress 
systems satisfying the yield criterion (Hill, 1948,1950). As will be seen later in this 
book, the maximum plastic work theorem (3.6) is the basis for a number of impor­
tant theorems concerning elastic-plastic solids. For example, it can be shown that 
the stress field in a material that obeys the maximum plastic work principle is al­
ways unique. 
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In short, the maximum plastic work principle is a mathematical statement of the 
following two important ideas: (a) The yield surface is convex; (b) The plastic 
strain rate (or increment) is normal to the yield surface. 

3.5 STRAIN HARDENING AND PERFECT PLASTICITY 

Plastic deformation leads to the hardening of a material and the increase of its elas­
tic limit (i.e. the stress limit under which only elastic deformation occurs). In other 
words, the yield surface will generally not be fixed in stress space, rather it will ex­
pand or contract depending on previous plastic deformation and loading history. 
Let us for the present consider the case when plastic deformation only changes the 
size of the yield surface equally in all directions but not its shape (which is known 
as isotropic hardening). If the yield surface is expanding in size, the material is said 
to be hardening (i.e. making it more difficult to yield). On the other hand, if the yield 
surface is contracting in size, then the material is said to be undergoing softening 
(i.e. making it easier to yield). 

The change of the size of the yield surface is often related to some measure or 
integral of plastic strain rates. The most common measures include the total plastic 
work per unit volume, the accumulated plastic strain (Hill, 1950), the volumetric 
plastic strain rate (Schofield and Wroth, 1968; Yu, 1998), or a combination of volu­
metric and shear plastic strain rates (Wilde, 1977; Yu etal.,2005). The yield surface 
for a strain-hardening or softening material is also called the loading surface. Math­
ematically, the loading surface, which changes with plastic deformation, may be 
expressed by 

fio,j,e/) = 0 (3.7) 

where Eif denotes the plastic strain tensor 

If the yield surface does not change with stress history (i.e. fixed), the material 
is known a perfectly plastic solid. This is a special case of strain-hardening materi­
als. For a perfectly plastic material, the behaviour is elastic when the stress state lies 
inside the yield surface. Plastic strains will occur as long as the stress state lies on 
or travels along the yield surface. The complete stress conditions for plastic and 
elastic behaviour may be stated as 

df 
Elastic : /(a, ,) < 0 or df = -j^do. < 0 (3.8) 

Plastic : f(o:,) = 0 and df = -^da. = 0 (3.9) 
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The elastic behaviour of a strain-hardening solid i s the same as that of a perfectly 
plastic one. Therefore the conditions for initial yield must be the same. Indeed, the 
difference between the two concerns only the mechanism for continuing plastic 
flow, plus the fact that the conditions for current yielding will depend on the plastic 
history of the material. The complete stress conditions for plastic and elastic beha­
viour for a strain-hardening material are 

Elastic: / (a,y,ep < 0 or df = -^do^j < 0 (3.10) 

Plastic : f{Oij,EP) = 0 and df = -^do^j > 0 (3.11) 

Note that in the above conditions, df is evaluated only with respect to the incre­
ments in the stress components (that is, with constant plastic strains, see Kachanov, 
1974). 

For solving boundary value problems involving elastic-plastic behaviour, it is 
essential to clearly determine what behaviour will result from a further stress incre­
ment when the stress state is already on the yield surface. Three possible conditions 
exist and they are 

Unloading: fiaij,EP) = 0 and df = ^do^j < 0 (3.12) 

Neutral loading: f(oij,£P) = 0 and df = -^—doij = 0 (3.13) 

Loading: f(o^J,eP) = 0 and df =-^do^j > 0 (3.14) 

It is commonly assumed that for both unloading and neutral loading, material 
behaviour is purely elastic. Plastic behaviour occurs only when the loading condi­
tion is satisfied. 

Based on the loading conditions (3.12)-(3.14), Hill (1950) shows that a general 
expression for plastic strain rates can be assumed to be 

dsP = G,y df (3.15) 

where G,-,- is a symmetric tensor, which is supposed to be a function of the stress 
components and possibly of the previous strain history, but not of the stress rate (or 
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increment). This last assumption is very significant as it means that the ratios of the 
components of the plastic strain rate are functions of the current stress but not of 
the stress rate. This can be satisfied by assuming Gjj to be of the following form 

y Say (3.16) 

where h and g are scale functions of the stress tensor, and possibly also of the strain 
history, g is also known as plastic potential. With equation (3.16), the plastic strain 
rate can be determined by the following equation 

d£P. = hp- df (3.17) 

which was first used by Melan (1938). 

3.6 DRUCKER'S STABILITY POSTULATE 

The notations of normality and convexity outlined earlier are just mathematical 
ideas. In an attempt to provide a missing link between material behaviour and these 
mathematical ideas, Drucker (1952, 1958) introduced a fundamental stability pos­
tulate. In essence, Drucker's stability postulate is a generalization of simple facts 
which are valid for certain classes of materials, and is not a statement of any thermo­
dynamic principle, as it is often presented (Green and Naghdi, 1965). 

Ao; > 0 

(a) Stable (b) Unstable 

Figure 3.2: Drucker's stability postulate 

Figure 3.2 shows two types of typical stress-strain behaviour observed in experi­
ments on real engineering materials. In case (a), the stress increases with increasing 
strain and the material is actually hardening from the beginning to the end. In other 
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words, an additional loading (i.e., Aog > 0) gives rise to an additional strain (i.e., 

zl£y > 0), with the product Aog A Eg > 0. The additional stress Aoy therefore 

does positive work as represented by the shaded triangle in the figure. Behaviour 

of this kind is called stable. 

In case (b), the deformation curve has a descending branch which follows a 
strain-hardening section. In the descending section, the strain increases with de­
creasing stress. In other words, the additional stress does negative work (i.e., 
AOjj Asij < 0). Behaviour of this kind is called unstable. 

In the light of this basic fact, Drucker (1952,1958) introduced the idea of a stable 
plastic material. This postulate, when applied to an element of elastic-plastic mate­
rials in equilibrium under the action of surface loads and body forces, may be stated 
as follows: 

Consider an element initially in some state of stress, to which by an external 
agency an additional set of stresses is slowly applied and slowly removed. 
Then, during the application of the added stresses and in a cycle ofapplica-
tion-and-removal of the added stresses, the work done by the external 
agency is non-negative. 

If we assume that the existing state of stress (on or inside a loading surface in the 
stress space) be denoted by a^ *, Drucker's stability postulate, as stated above, can 
be shown to lead to the following two important inequalities (Drucker, 1952,1960): 

( a , ^ -a , ^* ) j £ / > 0 (3.18) 

da. ds/ > 0 (3.19) 

where (3.18) is in fact the same as the maximum plastic work principle described 
before in (3.6). It is noted that the equality sign in both (3.18) and (3.19) holds only 
during neutral loading. 

In simpler terms, a material that is stable in Drucker's sense would have the fol­
lowing properties: (a) The yield surface must be convex; (b) The plastic strain rate 
must be normal to the yield surface (i.e. with an associated flow rule); (c) The rate 
of strain hardening must be positive or zero (i.e. an additional stress must cause an 
additional strain); (d) The maximum plastic work principle is valid. 

Although Drucker's postulate only covers certain types of real stress-strain beha­
viour for engineering materials, it does provide a neat way of unifying a whole set 
of features of plastic stress-strain relations. It must be stressed that while Drucker's 
postulate implies that the material must obey Hill's maximum plastic work (3.18), 
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the reverse is not true. This is because Drucker's stability postulate also requires 
a non-decreasing hardening rate, (3.19). 

3.7 ISOTROPIC AND KINEMATIC HARDENING 

Hardening in the theory of plasticity means that the yield surface changes, in size 
or location or even in shape, with the loading history (often measured by some form 
of plastic deformation). When the initial yield condition exists and is identified, the 
rule of hardening defines its modification during the process of plastic flow. 

Most plasticity models currently in use assume that the shape of the yield surface 
remains unchanged, although it may change in size or location. This restriction is 
largely based on mathematical convenience, rather than upon any physical princi­
ple or experimental evidence. The two most widely used rules of hardening are 
known as isotropic hardening and kinematic (or anisotropic) hardening. 

3.7.1 Isotropic hardening 

The rule of isotropic hardening assumes that the yield surface maintains its shape, 
centre and orientation, but expands or contracts uniformly about the centre of the 
yield surface. 

02 

Figure 3.3: Isotropic hardening with uniform expansion of the yield surface 

A yield surface with its centre at the origin may be generally described by the 
following function 

f = f(o,)-R{a) = 0 (3.20) 
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where R represents the size of the yield surface, depending on plastic strains 
through the hardening parameter a. As shown in Hill (1950), the two earliest and 
most widely used hardening parameters are the accumulated equivalent plastic 
strain 

«= I Jlids,Pde/y/^ (3.21) 

and the plastic work 

(3.22) a = jo^j de( 

Figure 3.3 shows an example of isotropic hardening where the yield surface is 
uniformly expanding during the process of plastic flow when a stress increment is 
applied from step / to /+/ . The size of the yield surface at any stage of loading is 
determined as long as an evolution rule defining the relationship between R and a 
is defined. 

3.7.2 Kinematic hardening 

The term kinematic hardening was introduced by Prager (1955) to construct the 
first kinematic hardening model. In this first model, it was assumed that during 
plastic flow, the yield surface translates in the stress space and its shape and size 
remain unchanged. This is consistent with the Bauschinger effect observed in the 
uniaxial tension-compression. 

Assume that the initial yield surface can be described by 

/ = /((Ty - ay) - i?o = 0 (3.23) 

where aij represents the coordinates of the centre of the yield surface, which is also 
known as the back stress. RQ is a material constant representing the size of the origi­
nal yield surface. It can be seen that as the back stress a ^ changes due to plastic flow, 
the yield surface translates in the stress space while maintaining its initial shape and 
size. 

It is clear now that the formulation of a kinematic hardening model involves as­
suming an evolution rule of the back stress a^j in terms of Eff, Oy or ay. 

The first simple kinematic hardening model was proposed by Prager (1955). 
This classical model assumes that the yield surface keeps its original shape and size 
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and moves in the direction of plastic strain rate tensor (see Figure 3.4). Mathemati­
cally it can be expressed by the following linear evolution rule 

da- = c d£:f' (3.24) 

where c is a material constant. 

CT3 

dttij = cd£ij 

/ = o ^ 

dttij = dniOy - a,.,) 

(a) Prager's hardening (b) Ziegler's hardening 

Figure 3.4: Prager's and Ziegler's kinematic hardening 

Whilst Prager's model is reasonable for one-dimensional problems, it does not 
seem to give consistent predictions for two- and three-dimensional cases (Ziegler, 
1959). The reason is that the yield function takes different forms for one-, two- and 
three-dimensional cases. To overcome this limitation, Ziegler (1959) suggested 
that the yield surface should move in the direction as determined by the vector 
Oij — ay, see Figure 3.4. Mathematically Ziegler's model can be expressed as fol­
lows 

da. = dju (a.- - a.) (3.25) 

where dju is a material constant. 

3.7.3 Mixed hardening 

The term mixed hardening is used to indicate cases when the yield surface not only 
expands or contracts but also translates in the stress space upon plastic loading (see 
Figure 3.5). This means that both the centre and size of the yield surface will depend 
on plastic strain. In this case, the yield function can be expressed by 
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/ = / ( a , . - a , ) - i ? ( a ) = 0 (3.26) 

where the size of the yield surface can be assumed to be a function of either plastic 
strain or plastic work., while either Prager's rule (3.24) or Ziegler's rule (3.25) may 
be used to control the translation of the yield surface upon loading. 

datj = dfiiOij - Uij) 

(a) Prager's hardening plus isotropic liardening (b) Ziegler's hardening plus isotropic hardening 

Figure 3.5; Mixed hardening 

3.8 GENERAL STRESS-STRAIN RELATIONS 

In order to determine the complete relation between stress and strain for elastic-
plastic solids, we still need to assume consistency condition (Prager, 1949). For per­
fectly plastic solids, consistency condition means that the stress state remains on 
the yield surface. For strain-hardening materials, consistency means that during 
plastic flow the stress state must remain on the subsequent yield surface (or loading 
surface). In other words, loading from a plastically deforming state will lead to 
another plastically deforming state. 

3.8.1 Isotropic hardening 

For isotropic hardening material, the yield function can be described by 

f(Oy,a) = 0 (3.27) 

then Prager's consistency condition requires 
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-J-do. + 4-da = 0 (3.28) 
dOi, 'J da ^ -^ 

Since the hardening parameter is a function of plastic strains, so the consistency 
condition (3.28) can be further written as follows: 

^do, + f^def = 0 (3.29) 
do.j y da de:P '} ^ ' 

For the special case of perfectly plastic solids, the second term of (3.28) will be 
zero. 

The plastic strain rate can be determined from a plastic potential by equation 
(3.17), which is in fact the same as the plastic flow rule (3.2). This flow rule sug­
gests that once a plastic potential is given, the plastic strain rate will be assumed 
to be normal to the plastic potential. However the non-negative quantity hox dX 
needs to be determined in order for the plastic strain rate to be calculated. The con­
sistency condition (3.28) can be used to determined dX. 

A general procedure for deriving a complete stress-strain relation for perfectly 
plastic and hardening materials is given below: 

(1) To divide the total strain rate (or increment) into elastic and plastic strain rates, 
namely 

(/£,.,• = dE% + deP. (3.30) 
y y I] 

(2) Hooke's law is used to link the stress rate with elastic strain rate by elastic stiff­
ness matrix D^^^^ as follows 

^^,y = ^ijki d^i = D,j,i ide,i - dePJ (3.31) 

(3) The general non-associated plastic flow rule is used to express equation (3.31) 
in the following form 

do,j = D^j,i(de,i-dX§-) (3.32) 

(4) By substituting equation (3.32) into the consistency condition (3.29), we obtain 

d^ = JjSij^ijic^'ki (3-33) 

where H is given by 
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(5) By substituting equation (3.33) into equation (3.32), we obtain a complete rela­
tion between a stress rate and a strain rate as follows 

"^""iJ = ^m ^^« (3.35) 

where the elastic-plastic stiffness matrix D^.^ is defined by 
ijk.1 

D^ = D,,, - - l D , ^ „ ^ i D ^ ^ , , (3.36) 

The above procedure is valid for both strain-hardening and perfectly plastic sol­
ids. It is noted that for the case of perfectly plastic solids, the yield surface remains 
unchanged so that (3.34) takes the following simpler form 

3.8.2 Kinematic hardening 

For kinematic hardening material, the yield function may be expressed as 

/ = f{Oij - ay) - /?o = 0 (3.38) 

where a^ denote the coordinates of the centre of the yield surface, often known as 
the back stress tensor. 

Prager's translation rule 

Let us now consider the kinematic hardening law proposed by Prager first, then 

da:: = c ds:,f = c dX^- (3.39) 
y y dO:: ^ ' 

where $ denotes the plastic potential. 

With Prager's consistency condition applied to the yield function (3.38), we have 

^do:: + -^da:: = 0 (3.40) 
aa .̂ y aa,̂  y 
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(3.41) 

The assumed form of the yield function (3.38) gives 

doy day 

With equations (3.39) and (3.41), equation (3.40) can be rewritten as 

^dOif = ^ c d k - ^ (3.42) 

which gives the plastic multiplier 

1 dOii'i 1 df 

dOtj dOij dOij dOij 

Then the increments of the back stress tensor and the plastic strains are determined 
by 

da. = c ds/ = cdXp- = -J^^ (3.44) 

dg_ 

do a dOij 

By using an elastic stress-strain relation, we can determine the elastic strain rate 

d^i/ = Ciji^i dou (3.46) 

where C^^i is the elastic compliance matrix. The total strain rate is the sum of the 

elastic and plastic parts 

dsy = qj„ do,i + i^^df (3.47) 

dOij dOij 

which can be further written as 
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"^'ii = S ^ / ^^« (3-48) 

where the elastic-plastic compliance matrix is 

1 doa doM 

'^., = C * + l ^ (3.49) 

dOfj dO^j 

It is worth noting that equation (3.48) can be inverted to give 

^̂ ^ = [Cy"'^^« = ^S,^^« (3.50) 

Ziegler's translation rule 

Ziegler's translation rule is 

da^j = dn (Oy - a^j) (3.51) 

where aja is a constant to be determined. 

With Prager's consistency condition applied to the yield function (3.38), we have 

which gives 

dOijiJ df 

The increment of the back stress tensor is therefore given by 

da^ = dju (o^j - Ofj) = -^ (Oij - a^) (3.54) 

It is worth noting that the plastic strain is not involved in the consistency condi­
tion with Ziegler's hardening. Therefore the plastic strain cannot be derived from 
the consistency condition. However it is normally assumed (Melan, 1938) that a 
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plastic modulus exists so that the plastic strain can be derived from a plastic poten­
tial following the form of equation (3.17) 

dOij do,J 

where Kp is a material constant known as the plastic modulus which can be deter­
mined from the uniaxial compression or tension test. Comparing equation (3.55) 
with equation (3.45) suggests that the plastic modulus plays the same role as the 
material constant c in the case with Prager's hardening rule. 

3.9 HISTORICAL REMARKS 

As rightly pointed out by Koiter (1960), it is often difficult to trace the origin of 
particular ideas in view of the long and often erratic history of the mathematical 
theory of plasticity, in particular with regard to the fundamental stress-strain rela­
tions. No attempt is made here to give a comprehensive review of the initial history 
of the plasticity theory. Rather a brief sketch will be given on the major landmarks 
in the early stage of the development of plastic stress-strain relations. For more de­
tailed discussion, the reader is referred to the reviews given by Hill (1950), Prager 
(1949,1955), Prager and Hodge (1951), Koiter (1960), Kachanov (1974) and Mar­
tin (1975) among others. 

Although the work by Tresca (1864) on the yield criterion of metal is widely 
regarded as the birth of the classical theory of plasticity, fundamental research on 
the failure or yielding of soils had been carried out much earlier by Coulomb (1773) 
and applied by Rankine (1853) to solve earth pressure problems in retaining walls. 
de Saint-Venant (1870) was the first to develop constitutive relations for perfectly 
plastic solids. In particular, the coaxial assumption (i.e., requiring coaxiality of the 
stress tensor and plastic strain tensor) made by de Saint-Venant proved to be a 
foundation for the classical theory of plasticity with regard to stress-strain relations. 
A more realistic yield criterion than Tresca's function for metal was proposed by 
von Mises in 1913. The maximum plastic work principle appears to be first proved 
by von Mises (1928) and Hill (1948) and then supported by Bishop and Hill (1947) 
from the behaviour of a single crystal. The development of stress-strain relations 
for hardening materials in incremental form proceeded very slowly. The first gener­
al stress-strain relations for solids with hardening was achieved by Melan (1938) 
and independently by Prager (1949). To provide a unified theoretical basis for the 
theory of plasticity, Drucker (1952, 1958) proposed a stability postulate, which in­
cludes the principle of maximum plastic work as one of its consequences. Drucker's 
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stability postulate has since been widely used to develop constitutive models for 
a certain class of plastic solids. In addition, Ziegler (1958) proposed a rather differ­
ent approach which attempts to bring the theory of plasticity under the scope of On-
sager's principle for irreversible thermodynamic processes. This last approach has 
received more attention in recent years (e.g. Collins and Houlsby, 1997). 
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