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General Elastoplastic Constitutive
Models

In the first three parts of this book we focused on the simplest type of plasticity
model – an isotropic, perfectly elastoplastic material with an associated flow rule.
Such models are sufficiently realistic only under certain conditions and should be
used with caution. Now it is time to introduce more advanced concepts.

20.1 HARDENING

Let us recall that a perfectly (or ideally) elastoplastic material subjected to uniaxial
loading yields at a constant stress. During plastic flow under general multiaxial
loading, the stress state can move along the yield surface, but the surface itself
remains unchanged. However, in reality the microstructure of the material changes
as plastic flow continues, and this results in a change of the properties observable on
the macroscale. Under uniaxial loading, the stress transmitted by a yielding material
can increase or decrease. An increase of the yield stress is referred to as hardening,
and its decrease is called softening. Typically, many materials initially harden and
later soften. For convenience, however, we will sometimes use the term ‘hardening’ in
a broader sense, meaning yield stress changes of any sign, negative hardening being
equivalent to softening.
During hardening (in the broad sense), the elastic domain undergoes a certain

evolution. The elastic domain of a virgin material is bounded by the initial yield
surface, also called the elastic limit envelope. Due to microstructural changes in the
material induced by plastic flow, the elastic domain changes its size or position,
or both. Its boundary at an intermediate state is usually called a loading surface.
Some models work with a maximum possible elastic domain, which is bounded by the
strength envelope (failure surface), representing the largest possible resistance of the
material.

20.1.1 Isotropic Hardening

In order to describe the evolution of the loading surface, we need one or several
new parameters that characterize the effect of hardening. The simplest approach,
introduced by Odqvist (1933a), deals with a one-parameter family of loading surfaces
that are all similar and affine with regard to the origin (Figure 20.1). This is called
isotropic hardening. The loading surfaces can be derived from the same basic form of
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Figure 20.1 Isotropic hardening: a) uniaxial stress-strain diagram, b) evolution of the
yield surface in the biaxial stress plane

the yield function, in which different yield stress values are used. Any yield criterion
originally stated in the form

F (σ)− σ0 = 0 (20.1)

where σ0 is a constant yield stress, can be reformulated as

F (σ)− σY = 0 (20.2)

where σY is a new variable, the current yield stress, initially equal to the material
parameter σ0.
The evolution of the yield stress during plastic flow must be described by

an additional equation, the hardening law. Simple examples of hardening in one
dimension have already been presented in Chapter 1. Hardening laws under uniaxial
monotonic loading can be postulated as an explicit dependence of the yield stress on
the plastic strain,

σY = h(εp11) (20.3)

which is called the strain hardening. Here, εp11 is the plastic part of the normal strain
ε11 in the direction of applied stress σ11. The function h is easily extracted from the
monotonic uniaxial stress-strain curve. Its derivative,

h′(εp11) ≡ H(εp11) (20.4)

is called the plastic modulus. In the simplest case, the hardening law is linear,
σY = σ0 + Hεp11, and the plastic modulus is constant, H(εp11) = H. For a positive
plastic modulus we get true hardening in the sense of an increase of the yield stress;
H = 0 corresponds to perfect plasticity; and forH < 0 the material exhibits softening.
A negative plastic modulus is often called the softening modulus.
In a general multiaxial setting, the plastic strain εp is a second-order tensor,

and the one-dimensional hardening law (20.3) can be extended to this case if we
introduce a scalar measure that reflects the amount of changes in the material
microstructure. The simplest choice might seem to be the norm of the plastic strain
tensor, ‖εp‖ = √

εp : εp, but this variable does not always increase during plastic
flow. The reason is that the plastic strain rate can in general have any direction,
which causes that the norm of εp can decrease even when the plastic flow continues.
Therefore it makes more sense to characterize strain hardening by the cumulative
plastic strain (also called the effective plastic strain or the equivalent plastic strain),
ε̄p, defined by the rate equation

˙̄εp =

√
2
3
‖ε̇p‖ =

√
2
3
ε̇p : ε̇p (20.5)
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This was first proposed, without the scaling factor
√
2/3, by Odqvist (1993a). The

scaling factor is chosen such that, under monotonic uniaxial loading, ˙̄εp would coincide
with the component ε̇p11 of ε̇p, provided that the plastic flow is isochoric (purely
deviatoric), i.e. no plastic change of volume takes place. Definition (20.5) can be
integrated to yield

ε̄p(t) =

√
2
3

∫ t

0

‖ε̇p(τ )‖ dτ (20.6)

where the time-like variable t can be any monotonically increasing parameter
controling the loading process.
An alternative to the strain hardening hypothesis (i.e. to the assumption that the

yield stress depends on the cumulative plastic strain) is the work hardening hypothesis
(Taylor and Quinney, 1931), stating that the yield stress depends on the plastic work,

Wp(t) =
∫ t

0

σ(τ ) : ε̇p(τ ) dτ (20.7)

The choice between strain and work hardening depends on multiaxial experiments. If
only uniaxial test results are available, there is no way to decide which hypothesis is
better. Both are widely used, and even in many multiaxial stress situations they lead
to similar results. For associated J2-plasticity they are completely equivalent (after
an appropriate transformation of the hardening function h).
To cover both cases by a unique description, we will deal with the notion of a

hardening variable, denoted as κ, which can be either the cumulative plastic strain
(for strain hardening) or the plastic work (for work hardening). It is convenient, albeit
not necessary, to scale down the plastic work such that it has the dimension of strain
and that, under uniaxial tension, it corresponds to εp11. This can be achieved by
defining the work hardening variable by the rate equation

κ̇ =
1

h(κ)
σ : ε̇p (20.8)

Equation (20.3) is then written as

σY = h(κ) (20.9)

Note that, during plastic flow under uniaxial tension, σ : ε̇p = σ11ε̇
p
11 = σY ε̇

p
11, and so

(20.8) combined with (20.9) gives κ̇ = ε̇p11. Consequently, the strain hardening variable
and the work hardening variable are identical under uniaxial stress conditions, and
the same hardening function h can then be used for either type of hardening.
Let us now explore the effect of hardening on the elastoplastic stiffness tensor and on

the uniqueness of the model response. Here we deal only with uniqueness in the local
sense, i.e. we check whether the response of a material point to any prescribed strain
evolution is unique. Compared to the perfectly plastic model analyzed in Chapter 15,
we now have two additional variables – the current yield stress, σY , and the hardening
variable, κ. The corresponding additional equations are the two components of the
hardening law – the dependence of the current yield stress on the hardening variable,
and the definition of the hardening variable. Since (20.9) explicitly relates the current
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yield stress to the hardening variable, it is sufficient to introduce only the hardening
variable as a primary unknown. The yield function is reformulated as

f(σ, κ) = F (σ)− h(κ) (20.10)

and its time derivative is

ḟ =
∂F

∂σ
: σ̇ − h′ κ̇ = fσ : σ̇ −Hκ̇ (20.11)

Note that the gradients of f and F with respect to σ are identical, ∂F/∂σ = ∂f/∂σ,
and so we can use for ∂F/∂σ the symbol fσ, introduced in Chapter 15 for the gradient
∂f/∂σ. Of course, fσ depends on the current value of σ, and H may depend on the
current value of κ (if the hardening law is nonlinear) but, for the sake of simplicity,
we do not mark these dependencies explicitly.
Some important criteria, e.g. those due to von Mises, or Drucker and Prager, are

written in their most natural form in terms of an alternative yield stress measure, e.g.
the yield stress in shear, τ0. For hardening materials, such criteria can be written in
the general form

f(σ, κ) = F (σ)− h̄(κ) (20.12)

where

h̄(κ) =
σch0
σ0

h(κ) (20.13)

is the hardening function rescaled by the ratio of the characteristic yield stress, σch0 ,
to the yield stress in uniaxial tension, σ0. For example, a criterion originally written
as F (σ)− τ0 = 0 will be reformulated as F (σ)− h̄(κ) = 0, where h̄(κ) = (τ0/σ0)h(κ).
The time derivative of the yield function is then

ḟ = fσ : σ̇ − H̄κ̇ (20.14)

where

H̄ = h̄′ =
σch0
σ0

h′ =
σch0
σ0

H (20.15)

is the rescaled plastic modulus.
For strain hardening as well as work hardening, the rate of the hardening variable,

κ̇, is proportional to the rate of the plastic multiplier, λ̇, with a proportionality factor
dependent on the current stress. Indeed, using the associated flow rule (15.28), for
strain hardening we obtain

κ̇ =

√
2
3
‖ε̇p‖ =

√
2
3
‖fσ‖λ̇ (20.16)

and for work hardening

κ̇ =
1

h(κ)
σ : ε̇p =

σ : fσ
h(κ)

λ̇ (20.17)

Both cases can be covered by a general relation

κ̇ = kλ̇ (20.18)

where k is a scalar factor;

k =

√
2
3
‖fσ‖ (20.19)
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for strain hardening and

k =
σ : fσ
h(κ)

(20.20)

for work hardening. Recall that if the elastic domain is convex and contains the origin
(the initial stress-free state), then σ : fσ > 0. The factor k is, therefore, always
positive.

Example 20.1: Evaluate the factor k from (20.18) for associated J2-plasticity.

Solution: Hardening J2-plasticity is described by the yield function

f(σ, κ) =
√
J2(σ)− h̄(κ) (20.21)

where h̄(κ) = (τ0/σ0)h(κ) = h(κ)/
√
3. The gradient of the yield function with respect

to the stress tensor is fσ = s/(2
√
J2). For strain hardening we obtain

k =

√
2
3
‖fσ‖ =

1√
6J2

‖s‖ = 1√
6J2

√
2J2 =

1√
3

(20.22)

while for work hardening we have

k =
σ : fσ
h(κ)

=
s : s

2
√
J2h(κ)

=
√
J2

h(κ)
=
h̄(κ)
h(κ)

=
τ0
σ0

=
1√
3

(20.23)

because, during plastic flow,
√
J2 = h̄(κ). We can see that, in this specific case,

the factor k is constant and has the same value for strain hardening as for work
hardening.

In summary, isotropically hardening elastoplasticity is described by the elastic
stress-strain law,

σ = De : (ε − εp) (20.24)

the associated flow rule,
ε̇p = λ̇fσ (20.25)

the evolution law for the hardening variable,

κ̇ = λ̇k (20.26)

and by the loading-unloading conditions,

f ≤ 0, λ̇ ≥ 0, f λ̇ = 0 (20.27)

in which f is a function of σ and κ having the form (20.10), and k is a function of σ
and κ given by (20.19) or (20.20). Our aim is to find the rates σ̇, ε̇p, λ̇ and κ̇ for a
given strain rate ε̇, provided that the current values of all the variables are known.
Following the same line of reasoning as in Chapter 15, we analyze the cases of

plastic loading and of unloading from a plastic state separately. The case of an elastic
process inside the elastic domain is trivial.
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1. During plastic flow, the stress state must remain on the yield surface, and the
consistency condition

ḟ = fσ : σ̇ − H̄κ̇ = 0 (20.28)

must be satisfied. Unlike perfect plasticity, the yield surface does not remain
stationary but evolves as the plastic flow continues. This is reflected by the term
−H̄κ̇ in (20.28). Now we substitute (20.24)–(20.26) into the consistency condition
(20.28) so as to eliminate all the unknowns except λ̇. The first term, fσ : σ̇, can be
handled in exactly the same manner as in Chapter 15; cf. equation (15.40). In the
second term, we simply substitute (20.26) for κ̇. Thus the consistency condition is
transformed into the equation

fσ : De : (ε̇ − λ̇fσ)− H̄kλ̇ = 0 (20.29)

which contains a single unknown, λ̇. The solution

λ̇ =
fσ : De : ε̇

fσ : De : fσ + H̄k
(20.30)

is admissible if the resulting value of λ̇ is nonnegative. Back-substitution into
the flow rule (20.25) and the elastic law (20.24) then leads to the rate form (or
tangential form) of the stress-strain equations,

σ̇ = Dep : ε̇ (20.31)

where
Dep = De −

De : fσ ⊗ fσ : De

fσ : De : fσ + H̄k
(20.32)

is the elastoplastic material stiffness tensor. The only difference compared to
(15.47) is the presence of the term H̄k in the denominator. For H̄ = 0 we recover
formula (15.47) valid for a perfectly elastoplastic material.

2. During elastic unloading from a plastic state we have λ̇ = 0, and so ε̇p = 0,
σ̇ = De : ε̇, and κ̇ = 0. However, the solution is plastically admissible only if
ḟ ≤ 0. Substituting into (20.14), we obtain

ḟ = fσ : σ̇ − H̄κ̇ = fσ : De : ε̇ (20.33)

Having derived the solutions valid for plastic loading and for unloading from a plastic
state, we can address the issue of uniqueness. The former solution is admissible if the
rate of the plastic multiplier is nonnegative, i.e. if

λ̇ =
fσ : De : ε̇

fσ : De : fσ + H̄k
≥ 0 (20.34)

The latter solution is admissible if the time derivative of the yield function is
nonpositive, i.e. if

ḟ = fσ : De : ε̇ ≤ 0 (20.35)

The denominator in (20.34) depends only on the current state and can be evaluated
independently of the prescribed strain rate. If this denominator is positive, then
condition (20.34) is equivalent with

fσ : De : ε̇ ≥ 0 (20.36)
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and thus is complementary to (20.35). This means that, for any prescribed strain rate,
exactly one of the conditions is satisfied and the solution is unique. Both conditions
are simultaneously satisfied only in the case of neutral loading when fσ : De : ε̇ = 0,
but then both solutions are identical and uniqueness is not violated.
On the other hand, if the denominator in (20.34) is negative, conditions (20.34)

and (20.35) are equivalent and the problem either has two different solutions or no
solution at all, depending on whether the prescribed strain rate satisfies or violates
(20.35). This is clearly an undesirable situation. So we can conclude that the response
to any prescribed strain evolution is unique if

fσ : De : fσ + H̄k > 0 (20.37)

for any state of the material. Note that the first term, fσ : De : fσ, is always positive
due to the positive definiteness of De. The factor k is also always positive. If the
plastic modulus is positive or zero, the condition of uniqueness (20.37) is satisfied for
any possible state of the material. This means that the response of hardening (in the
narrow sense, H̄ > 0) or perfectly plastic (H̄ = 0) materials with an associated flow
is always locally unique, i.e. any prescribed strain history generates a unique response
in terms of stress, plastic strain, etc. However, the condition of uniqueness might be
satisfied by softening materials as well, as is demonstrated by the following example.

Example 20.2: Consider an isotropically hardening or softening von Mises material
with an associated flow rule. Express the condition of uniqueness in terms of the plastic
modulus.

Solution: The yield function for von Mises material is given by

f(σ, κ) =
√
J2(σ)− h̄(κ) (20.38)

According to (20.37), uniqueness is guaranteed if fσ : De : fσ+H̄k > 0. Substituting
the gradient fσ = ∂f/∂σ = s/(2

√
J2) into the first term, we obtain

fσ : De : fσ =
1
4J2

s : De : s =
1
4J2

s : (2Gs) =
G

2J2
s : s = G (20.39)

In Example 20.1 we have shown that, for J2-plasticity, k = 1/
√
3, independently of

the type of hardening hypothesis. The condition of uniqueness thus reads

G+
1√
3
H̄ > 0 (20.40)

i.e., H̄ > −
√
3G. So local uniqueness is preserved even for a softening material

provided that the magnitude of the softening modulus does not exceed a certain
critical value related to the elastic shear modulus. In terms of the standard softening
modulus, H = (σ0/τ0)H̄ =

√
3H̄ , the condition of uniqueness would read H >

−3G.

20.1.2 Linear Kinematic Hardening

So far we have considered only isotropic hardening, characterized by a single
parameter. It appears, however, that more complicated hardening rules are necessary,
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Figure 20.2 Kinematic hardening: a) uniaxial stress-strain diagram, b) evolution of the
yield surface in the biaxial stress plane

especially for the case of unloading and cyclic loading. As an alternative hardening
rule, the current loading surface is assumed not to expand but to move as a rigid body
within the stress space (Figure 20.2(b)); this is known as kinematic hardening. The use
of kinematic hardening is, for example, necessary to model the so-called Bauschinger
effect (Bauschinger, 1881). This effect is often observed in metals subjected to cyclic
loading. Even if the magnitudes of the yield stress in tension and in compression
are initially the same, this is no longer the case when the material is preloaded into
the plastic range and then unloaded. For example, after previous yielding in tension,
yielding in compression may start at a stress level lower than the initial yield stress
(Figure 20.2(a)).
The hardening behavior rule of most materials appears to be a combination of

the isotropic and kinematic type of hardening, sometimes accompanied by a change
of shape of the yield surface (see the discussion of the vertex effect in Section
25.4).
Kinematic hardening leads to a translation of the loading surface, i.e. to a shift of

the origin of the initial yield surface. If the initial yield surface is described by a yield
function of the form

f(σ) = F (σ)− σ0 (20.41)

the shifted surface is obviously described by

f(σ,σb) = F (σ − σb)− σ0 (20.42)

where σb is the so-called back stress that represents the center of the shifted elastic
domain and plays the role of a tensorial hardening variable. Now we need a kinematic
hardening law that governs the evolution of the back stress. Melan (1938b) proposed
a law of the form

σ̇b = H̄K ε̇p (20.43)

according to which the rate of the back stress is proportional to the plastic strain rate.
The proportionality factor H̄K is directly related to the plastic modulus; see Problem
20.5. The linear hardening law (20.43) is often credited to Prager (1955, 1956); we
will call it the Melan–Prager hardening rule. Generalizations are due to Backhaus
(1968), who considered H̄K as a variable dependent on the cumulative plastic strain,
and Lehmann (1972), who replaced it by a tensor H̄K .
Following the usual procedure, we construct the consistency condition

∂f

∂σ
: σ̇ +

∂f

∂σb
: σ̇b = 0 (20.44)
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and then use the elastic stress-strain law, flow rule and hardening law so as to
eliminate all the unknowns except the rate of the plastic multiplier. Denoting again
∂f/∂σ = ∂F/∂σ = fσ, and realizing that ∂f/∂σb = −∂F/∂σ = −fσ, we can write
the resulting equation as

fσ : De : (ε̇ − λ̇fσ)− fσ : fσH̄K λ̇ = 0 (20.45)

from which
λ̇ =

fσ : De : ε̇
fσ : De : fσ + H̄Kfσ : fσ

(20.46)

This result is very similar to that obtained for isotropic hardening, with the only
difference that the term H̄k is replaced by the term H̄Kfσ : fσ; cf. (20.30). It is now
easy to obtain the elastoplastic stiffness tensor

Dep = De −
De : fσ ⊗ fσ : De

fσ : De : fσ + H̄Kfσ : fσ
(20.47)

and the condition of local uniqueness

fσ : De : fσ + H̄Kfσ : fσ > 0 (20.48)

For nonnegative values of the plastic modulus, this condition is always satisfied.
Negative values of H̄K would lead to softening. A model with purely kinematic

softening does not make physical sense but a model with mixed isotropic and
kinematic softening might be useful, e.g. for materials in which tensile loading induces
a degradation of both tensile and compressive strength, but the degradation in tension
is faster than in compression.

Example 20.3: Derive the specific form of the elastoplastic stiffness matrix for
associated J2-plasticity with kinematic hardening according to the Melan–Prager rule.

Solution: Partial differentiation of the yield function f(σ,σb) =
√
J2(σ−σb)

− τ0 with respect to the stress tensor σ at points where f(σ,σb) = 0 gives
fσ = (σ − σb)dev/2τ0, where (σ − σb)dev denotes the deviatoric part of σ − σb.
Realizing that the rate of the back stress is proportional to the rate of plastic
strain, which is purely deviatoric, we conclude that the back stress σb is also purely
deviatoric, and so (σ −σb)dev = s−σb. Substituting this into (20.47) and using the
relations De : (s − σb) = 2G(s − σb) and (s − σb) : (s − σb) = 2J2(s − σb) = 2τ2

0 ,
we obtain

Dep = De −
2G2

τ2
0 (2G+ H̄K)

(s − σb)⊗ (s − σb) (20.49)

Ziegler (1959) proposed a modification of the Melan–Prager kinematic hardening
rule. He observed that if the original equation (20.43) is reduced to a subspace of the
stress space (e.g. to the subspace corresponding to the plane stress), the yield surface
does not always move in the direction of its normal at the current stress point. In
some cases, e.g. for the Tresca condition in the σx–τxy space, the yield surface even
deforms during kinematic hardening according to the Melan–Prager rule. Of course,
the complete yield surface in the nine-dimensional stress space does not deform but,
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as it moves, the shape of its intersection with a given stress subspace can change. This
might be annoying and even confusing.
Ziegler also observed that the von Mises yield surface following the Melan–Prager

rule always moves in the direction of the vector connecting its center with the
current stress point, and that this property holds in any subspace of the stress space.
Therefore, he suggested a modified kinematic hardening law

σ̇b = µ̇(σ − σb) (20.50)

where µ̇ is a new multiplier, to be determined from a suitable additional condition.
Equation (20.50) only defines the direction in which the yield surface moves, but the
rate at which this happens remains unspecified. The consistency condition

fσ : σ̇ − fσ : σ̇b = 0 (20.51)

provides (after the usual substitution from the elastic stress-strain law, flow rule, and
hardening law) only one equation for two unknowns – the plastic multiplier, λ̇, and
the multiplier from the hardening law, µ̇:

fσ : De : (ε̇ − λ̇fσ)− µ̇fσ : (σ − σb) = 0 (20.52)

Note that no parameter playing the role of a plastic modulus has been introduced
yet, and the relationship between the stress rate and the plastic strain rate remains
unspecified. It therefore makes sense to postulate a condition that the projection of
the stress rate onto the direction of the normal to the yield surface is proportional to
the projection of the plastic strain rate. This supplementary condition,

σ̇ : fσ = H̄K ε̇p : fσ (20.53)

is in fact satisfied by the model with Melan–Prager hardening as well, which is verified
by substituting the hardening law (20.43) into the consistency condition (20.51). Thus,
the parameter H̄K has the same meaning as in the Melan–Prager hardening rule.
Again, using the elastic stress-strain law and the flow rule, we obtain an equation

with a single unknown,

fσ : De : (ε̇ − λ̇fσ) = H̄K λ̇fσ : fσ (20.54)

which is easily solved to give

λ̇ =
fσ : De : ε̇

fσ : De : fσ + H̄Kfσ : fσ
(20.55)

Upon substitution into (20.52), we finally obtain

µ̇ = H̄K
fσ : fσ

fσ : (σ − σb)
fσ : De : ε̇

fσ : De : fσ + H̄Kfσ : fσ
(20.56)

Thus, for a prescribed strain rate, the rate of the back stress can be evaluated from
(20.50) with µ̇ given by (20.56).
For the von Mises condition, Ziegler’s rule leads to exactly the same results as the

Melan–Prager rule. However, for other yield conditions the response of the model in
general depends on the specific form of the hardening rule. According to Ziegler’s
rule, the yield surface moves in the direction connecting its current center with the
current stress point, and this remains true in any reduced stress space.
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20.1.3 Mixed Hardening

Mixed hardening models combine isotropic and kinematic hardening, which results
into a modification of the loading surface by simultaneous translation and expansion
(or contraction). It is easy to design a yield function

f(σ,σb, κ) = F (σ − σb)− h̄(κ) (20.57)

that covers functions (20.12) and (20.42) as special cases. Derivation of the
elastoplastic stiffness tensor

Dep = De −
De : fσ ⊗ fσ : De

fσ : De : fσ + H̄Kfσ : fσ + H̄k
(20.58)

is left to the reader as an easy excercise. Generalization of the conditions of local
uniqueness (20.37) and (20.48) is also straightforward.

Example 20.4: Develop an associated J2-plasticity model combining linear
isotropic and linear kinematic hardening.

Solution: The yield condition is given by√
J2(σ − σb)− h̄(κ) = 0 (20.59)

For convenience, we rewrite it in the equivalent form

f(σ,σb, κ) ≡
1
2
(s − σb) : (s − σb)− h̄2(κ) = 0 (20.60)

The gradient of the yield function (20.60) with respect to the stress tensor is
fσ = s − σb, and so the associated flow rule reads

ε̇p = λ̇(s − σb) (20.61)

Linear isotropic hardening can be described by

h̄(κ) =
τ0
σ0
h(κ) =

√
3
3
(σ0 +HIκ) (20.62)

where HI is the (constant) isotropic plastic modulus, and κ ≡ ε̄p is the cumulative
plastic strain defined by (20.6). Linear kinematic hardening according to the Melan–
Prager rule is characterized by a linear dependence of the back stress on the plastic
strain,

σb = H̄Kεp (20.63)

20.1.4 Nonlinear Kinematic Hardening

Realistic modeling of engineering materials often requires nonlinear hardening laws.
For isotropic hardening, nonlinearity can be easily incorporated through the function
h(κ), but for kinematic hardening this is not so simple. At first, one might think that
it is sufficient to replace the constant H̄K in (20.43) by a function of the cumulative
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plastic strain. However, this would seldom lead to realistic shapes of the stress-strain
diagrams under cyclic loading.
A suitable form of the nonlinear kinematic hardening law was proposed by

Armstrong and Frederick (1966). They enriched the linear Melan–Prager rule (20.43)
by a term proportional to the current back stress multiplied by the norm of the
plastic strain rate. According to the Armstrong–Frederick rule, the evolution of the
back stress is governed by the differential equation

σ̇b = H̄K ε̇p − γ

√
2
3
‖ε̇p‖σb (20.64)

where H̄K and γ are constant material parameters. At the onset of yielding, the
back stress is still zero and (20.64) gives the same response as the linear hardening
law (20.43). As the back stress develops, the additional term becomes activated and
slows down the rate at which the back stress grows (i.e. reduces the tangent plastic
modulus), as long as the loading remains monotonic. Upon a load reversal, the back
stress and its rate have opposite directions (in the sense that their scalar product
is negative) and the additional term increases the plastic modulus. The following
example shows that this interplay between the value of the back stress and its rate
leads to reasonable shapes of the cyclic stress-strain diagrams.

Example 20.5: Plot the uniaxial cyclic stress-strain diagram for an elastoplastic
model with a pressure-independent yield condition, associated flow rule and nonlinear
kinematic hardening of the Armstrong–Frederick type. The material is characterized
by Young’s modulus E = 200 GPa, initial uniaxial yield stress σ0 = 100 MPa, initial
plastic modulus HK = 150 GPa, and parameter γ = 3000.

Solution: A flow rule associated with a pressure-insensitive yield condition results
into purely deviatoric plastic flow. Therefore, the back stress will be a purely deviatoric
tensor. Under uniaxial stress σx, the largest principal deviatoric stress, acting in the
x-direction, is sx = 2

3σx. The corresponding principal value of the back stress will be
conveniently denoted as σbx = 2

3σb, because this notation leads to the uniaxial yield
condition in the form |σx − σb| = σ0.
If εpx denotes the plastic strain in the x-direction, it follows from axial symmetry

and from the condition of plastic incompressibility that the other principal plastic
strains are εpy = εpz = −1

2εpx. The ‘physical’ plastic modulus HK gives the slope
of the curve relating the uniaxial stress σx to the plastic strain εpx. To obtain the
parameter H̄K , it must be multiplied by a factor 2/3; see Problem 20.5. The hardening
law (20.64) written for the normal components in the x-direction and scaled by the
factor 3/2 gives

σ̇b = HK ε̇px − γ|ε̇px|σb (20.65)

During each interval in which the plastic strain rate keeps the same sign, the particular
solution of this differential equation satisfying the initial condition σb(εp0) = σb0 is
given by

σb(εpx) =
HK

γ
sgn ε̇px +

(
σb0 −

HK

γ
sgn ε̇px

)
exp [−γ(εpx − εp0) sgn ε̇px] (20.66)

During plastic flow we have σx−σb = σ0 sgn ε̇px. Substituting σb = σb(εpx) according
to (20.66), we obtain an explicit formula for the stress σx as a function of the plastic
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strain εpx. The total strain is of course obtained by adding the elastic strain σx(εpx)/E
to the plastic strain εpx.
For example, during monotonic tensile loading ( sgn ε̇px = 1) that starts from the

initial virgin state (εp0 = 0, σb0 = 0), we have

σx(εpx) = σ0 + σb(εpx) = σ0 +
HK

γ
[1− exp(−γεpx)] (20.67)

εx(εpx) =
1
E
σx(εpx) + εpx (20.68)

This equations provide a parametric description of the stress-strain diagram plotted by
the solid curve in Figure 20.3(a). For εpx → ∞, the stress asymptotically approaches
a limit value σ0 +HK/γ. This means that the hardening process becomes saturated
and the back stress cannot exceed σb∞ = HK/γ = 50 MPa. This observation helps to
clarify the physical meaning of the parameter γ.
If the loading direction is reversed at plastic strain εp1 and back stress σb1 =

σb∞[1 − exp(−γεp1)], the yielding in compression starts at σx = σb1 − σ0 and the
subsequent evolution of stress is given by

σx(εpx) = −σ0 − σb∞ + (σb1 + σb∞) exp [γ(εpx − εp1)] (20.69)

For εpx → −∞, the stress approaches the asymptotic limit −σ0 − σb∞, which has
the same magnitude as the asymptotic limit that corresponds to monotonic loading
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Figure 20.3 Stress-strain diagrams for a model with Armstrong–Frederick kinematic
hardening: (a) monotonic loading and load reversal, (b) cyclic loading with a zero mean

stress, (c) cyclic loading with a positive mean stress
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from the virgin state; see the dashed curve in Figure 20.3(a). So, even though the
hardening is kinematic and the onset of yielding upon load reversal occurs at a stress
smaller in magnitude than the largest stress previously reached, the memory effect,
after a sufficiently long monotonic yielding, fades away and the stress approaches a
value independent of the previous loading history. This characteristic feature of the
Armstrong–Frederick model can be used to check the suitability of that model for
a particular material. In the general triaxial case, the state of saturated hardening
(which is never reached exactly, only approached asymptotically) is characterized by
a vanishing rate of the back stress. Substituting σ̇b = 0 into (20.64), we obtain

σb =

√
2
3
HK

γ

ε̇p
‖ε̇p‖

(20.70)

from which

‖σb‖ =
√

2
3
HK

γ
=

√
2
3
σb∞ (20.71)

So the parameter σb∞ scaled by
√
2/3 characterizes the maximum distance by which

the center of the yield surface can move in the stress space.
The stress-strain diagrams corresponding to cyclic loading, with stress varying in

the range from −140 MPa to 140 MPa and from −110 MPa to 140 MPa are shown in
Figures 20.3(b),(c). For symmetric stress cycles, the response immediately stabilizes
and the strain history becomes periodic (Figure 20.3(b)). However, for stress cycles
oscillating around a nonzero mean value, the net increment of plastic strain over one
cycle is not zero (Figure 20.3(c)). This phenomenon, indeed observed in experiments,
is called ratchetting. Note that this type of behavior could not be captured by the
linear Melan–Prager hardening rule because a stabilized response ensues from this
rule even if the mean value of stress is nonzero. In reality, of course, the net plastic
strain increment over one cycle does not remain constant, and further refinements of
the basic Armstrong–Frederick rule are needed to take that into account.

20.1.5 General Hardening

All the hardening models discussed so far can be covered by the general yield condition

f(σ,κ) = 0 (20.72)

and the general hardening law
κ̇ = λ̇k(σ,κ) (20.73)

where κ collects the hardening variables and k is a suitable function of the hardening
variables and the stress. This function is in (20.73) multiplied by the plastic multiplier
rate λ̇, to make sure that the response of the model is not affected by any rescaling
of the ‘time’ parameter, i.e. that the model remains rate-independent.
The mixed hardening model from Section 20.1.3 requires a scalar variable controling

the isotropic hardening and a second-order tensor controling the kinematic hardening.
The most straightforward choice would be κ = (σb, κ), where σb is the back stress
and κ is the cumulative plastic strain. However, the thermodynamic formulation of
the model (Chapter 23) is more transparent if all the hardening variables have the
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dimension of strain. Therefore, we introduce a tensorial variable εb = σb/H̄K , and
we set κ = (εb, κ). The yield condition can be written in the form

f(σ, εb, κ) ≡ F (σ − H̄Kεb)− h̄(κ) = 0 (20.74)

The evolution of the hardening variables is defined by the rate equations

ε̇b = λ̇fσ(σ, εb) (20.75)
κ̇= λ̇k(σ, εb, κ) (20.76)

with the initial conditions εb = 0 and κ = 0. With k(σ, εb, κ) defined by (20.19)
or (20.20), equation (20.76) covers the strain hardening and the work hardening
hypotheses. Equation (20.75) has exactly the same form as the associated flow rule
(20.25), and so the rate ε̇b is equal to the plastic strain rate ε̇p.
Even though the values of εp and εb always remain equal, it is useful to consider

them as two different physical quantities. This facilitates the generalization to
nonlinear kinematic hardening. For example, the Armstrong–Frederick hardening rule
(20.64) is obtained if (20.75) is replaced by

ε̇b = λ̇

(
fσ − γ

√
2
3
‖fσ‖ εb

)
(20.77)

To set up the consistency condition, we need to express the rate of the yield function
in terms of the rates σ̇ and κ̇. The notation is greatly simplified by the abstract
operator •, denoting the scalar product of κ̇ with the partial gradient fκ = ∂f/∂κ
(or any other similarly structured object). For instance, if κ = (εb, κ), this operation
must be interpreted as

∂f

∂κ
• κ̇ =

∂f

∂εb
: ε̇b +

∂f

∂κ
κ̇ (20.78)

Using this compact notation, we can write the consistency condition in the convenient
form

ḟ =
∂f

∂σ
: σ̇ +

∂f

∂κ
• κ̇ = fσ : σ̇ + fκ • κ̇ = 0 (20.79)

After the usual substitutions from (20.24), (20.25) and (20.73), we get the formulae
for the plastic multiplier rate,

λ̇ =
fσ : De : ε̇

fσ : De : fσ − fκ • k
(20.80)

and for the elastoplastic stiffness tensor,

Dep = De −
De : fσ ⊗ fσ : De

fσ : De : fσ − fκ • k
(20.81)

Local uniqueness is guaranteed if fσ : De : fσ − fκ • k > 0.

20.2 DRUCKER’S POSTULATE AND UNIQUENESS

In previous chapters, we have repeatedly encountered the postulate of maximum
plastic dissipation, which is equivalent to the conditions of convexity and normality
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and plays a key role in the derivation of powerful bound theorems of plastic analysis.
Recall that this postulate is not a universally valid physical principle; it characterizes
a certain class of material models with convenient mathematical properties. These
so-called standard materials include many important models used in the engineering
practice.
Another special class of elastoplastic models was defined by Drucker (1952, 1959)

and called by him stable materials. Stability in Drucker’s sense is stronger than
convexity and normality. It permits us to extend the global uniqueness theorem from
Section 16.3 to materials for which the yield surface evolves during the plastic flow,
and showing that the response of a structure is unique not only in terms of stress but
also in terms of strain and displacement.
Drucker’s definition of stable materials can be motivated by the analysis of the work

done in a quasi-cyclic process. Consider an infinitesimal volume of an elastoplastic
material in a state characterized by stress σ∗ and strain ε∗. Suppose that, during
the time interval [0, T ], an ‘external agency’ slowly applies some additional stress
and then removes it. If the material remains elastic, it returns to its initial state.
However, when plastic yielding takes place, the final strain ε(T ) in general differs
from the initial strain ε(0) = ε∗, even if the additional stress is completely removed,
i.e. if σ(T ) = σ(0) = σ∗. This is why such a process is called a stress quasi-
cycle.
Drucker’s stability postulate requires the excessive work (or net work)

∆W =
∫ T

0

[σ(t)− σ∗] : ε̇(t) dt (20.82)

done by the additional stress, to be non-negative in any stress quasi-cycle. The physical
idea behind this requirement is that if ∆W is negative, the ‘external agency’ can gain
energy from the material and use it for further amplification of the disturbances. The
postulate also tacitly assumes that the stress σ∗ remains plastically admissible, at
least if the stress σ(t) stays in some neighborhood of σ∗. This assumption guarantees
that the quasi-cycle can be closed in the stress space.
The strain increments can be decomposed into the elastic and plastic parts, and

this decomposition is transfered to the excessive work,

∆W =
∫ T

0

[σ(t)− σ∗] : ε̇(t) dt (20.83)

=
∫ T

0

[σ(t)− σ∗] : ε̇e(t) dt+
∫ T

0

[σ(t)− σ∗] : ε̇p(t) dt = ∆We +∆Wp

Due to the reversibility of elastic processes, the elastic strain εe(t) = Ce : σ(t) returns
at the end of the cycle to its initial value, and the elastic part of the excessive work
∆We vanishes. This can be formally proven as follows:

∆We =
∫ T

0

[σ(t)− σ∗] : ε̇e(t) dt =
∫ T

0

[σ(t)− σ∗] : Ce : σ̇(t) dt (20.84)

=
∫ T

0

d
dt

[
1
2
σ(t) : Ce : σ(t)− σ∗ : Ce : σ(t)

]
dt

= 1
2σ(T ) : Ce : σ(T )− 1

2σ(0) : Ce : σ(0)− σ∗ : Ce : [σ(T )− σ(0)] = 0
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Consequently, the excessive work can be computed as the work done by the additional
stress on the plastic strain increments;

∆W = ∆Wp =
∫ T

0

[σ(t)− σ∗] : ε̇p(t) dt (20.85)

In the absence of plastic flow, ∆Wp always vanishes, and the stress quasi-cycle is
a true cycle, because both stress and strain return to their initial values. If ∆Wp

is strictly positive in any stress quasi-cycle that is not purely elastic, the material is
called stable in Drucker’s sense. If ∆Wp is always non-negative, but vanishes for some
stress quasi-cycle that involves plastic flow, the material is called neutrally stable in
Drucker’s sense. Both stable and neutrally stable materials are classified as materials
satisfying Drucker’s postulate.
The previous definitions are physically motivated but, for a given material model, it

would be hard to check the sign of ∆Wp in all possible stress quasi-cycles. Fortunately,
there are simpler criteria of stability in Drucker’s sense. Stable materials are those
that satisfy the inequalities

(σ − σ∗) : ε̇p ≥ 0 (20.86)
σ̇ : ε̇p > 0 (20.87)

for any stress σ and stress rate σ̇ generating a nonzero plastic strain rate ε̇p, and for
any plastically admissible stress σ∗.
Condition (20.86) is equivalent to the postulate of maximum plastic dissipation,

which is in turn equivalent to the conditions of convexity and normality. Condition
(20.87) makes sure that the elastic domain during plastic flow expands, at least locally
(i.e. in a neighborhood of the current stress state), so that it is possible to return to
the stress state from which the stress quasi-cycle started. Consequently, (20.87) can be
considered as the definition of hardening (in the narrow sense, meaning the opposite of
softening). In summary, material stability in Drucker’s sense is equivalent to convexity,
normality and hardening. Elastic-perfectly plastic materials satisfying convexity and
normality are only neutrally stable.

Example 20.6: Show that, for elastic-perfectly plastic materials satisfying
convexity and normality, (20.87) turns into an equality.

Solution: For elastic-perfectly plastic materials, the yield function depends only on
the stress, and the rate of its change is

ḟ =
∂f

∂σ
: σ̇ = fσ : σ̇ (20.88)

Substituting the associated flow rule (15.34) into the left-hand side of (20.87) and
using (20.88), we obtain

σ̇ : ε̇p = σ̇ : fσλ̇ = ḟ λ̇ (20.89)

According to the consistency condition (15.36), the product ḟ λ̇ vanishes, and so
σ̇ : ε̇p = 0.
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Example 20.7: Check whether an associated elastoplasticity model with isotropic
hardening satisfies condition (20.87).

Solution: Using the rate form of the elastic stress-strain law (20.24) and the
associated flow rule (20.25), we can write

ε̇p : σ̇ = λ̇fσ : De : (ε̇ − λ̇fσ) = λ̇
(
fσ : De : ε̇ − λ̇fσ : De : fσ

)
(20.90)

During plastic yielding we have λ̇ > 0, and so the sign of σ̇ : ε̇p depends on the
expression in the parentheses on the right-hand side of (20.90). Since fσ : De : fσ is
always positive, condition (20.87) is equivalent to

λ̇ <
fσ : De : ε̇

fσ : De : fσ
(20.91)

We recognize that the expression on the right-hand side of (20.91) corresponds to
the formula for λ̇ valid in perfect elastoplasticity, which confirms the result of the
previous example. For associated elastoplasticity with isotropic hardening, the rate of
the plastic multiplier is given by (20.30), and (20.91) can be rewritten as

fσ : De : ε̇
fσ : De : fσ + H̄k

<
fσ : De : ε̇

fσ : De : fσ
(20.92)

In Section 20.1 we have established condition (20.37), which is necessary for
uniqueness of the model response on the local level of one material point. If it
is violated, the stress rate is not uniquely determined by the strain rate and the
model cannot be used. Therefore, we can restrict attention to the case of a posi-
tive denominator on the left-hand side of (20.92). The numerator is also positive, or
else the assumption of plastic yielding would not be valid. Consequently, (20.92) is
equivalent to

H̄k > 0 (20.93)

Since k is a positive scaling constant, the model satisfies condition (20.87) if and only
if the plastic modulus H̄ is positive. So, Drucker’s definition of hardening is consistent
with the ‘natural’ definition in terms of the plastic modulus.

The result of the previous example can be easily extended to the general class of
hardening models described in Section 20.1.5. The plastic multiplier rate λ̇ is in the
general case given by (20.80), and so (20.93) is replaced by

−fκ • k > 0 (20.94)

Drucker’s postulate has important implications for global uniqueness. For stable
materials, the structural response remains unique not only in terms of stresses but
also in terms of strains and displacements. To show that, let us return to the proof
of the global uniqueness theorem for perfectly plastic materials given in Section 16.3.
The key step was the proof of the lemma asserting that if ∆σ̇ = σ̇A − σ̇B is the
difference between two stress rates and ∆ε̇p = ε̇Ap − ε̇Bp is the difference between the
corresponding plastic strain rates, then ∆σ̇ : ∆ε̇p ≥ 0. Recall that both solutions
labeled by A and B start from the same initial stress state. The derivation of the
lemma was based on the identity

∆σ̇ : ∆ε̇p = ∆σ̇ : fσ∆λ̇ = ∆ḟ ∆λ̇ (20.95)
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For hardening materials, ∆σ̇ : fσ is not equal to ∆ḟ , because the rate of the yield
function involves an additional term due to hardening:

ḟ = fσ : σ̇ + fκ • κ̇ = fσ : σ̇ + fκ • kλ̇ (20.96)

Let us denote H̃ = −fκ • k and rewrite (20.96) as

fσ : σ̇ = ḟ + H̃λ̇ (20.97)

Since fσ and H̃ are the same for both solutions A and B, the difference between
(20.97) written for σA, ḟA, λ̇A and is σB, ḟB , λ̇B

fσ : ∆σ̇ = ∆ḟ + H̃∆λ̇ (20.98)

Consequently, we can write

∆σ̇ : ∆ε̇p = ∆σ̇ : fσ∆λ̇ = ∆ḟ ∆λ̇+ H̃(∆λ̇)2 (20.99)

The product ∆ḟ ∆λ̇ was in Section 16.3 shown to be non-negative. If the material
is stable in Drucker’s sense, it follows from (20.94) that H̃ = −fκ • k is indeed a
positive variable; it can be considered as a generalized hardening modulus. Therefore,
the expression H̃(∆λ̇)2 is positive, unless ∆λ̇ = 0, in which case ∆ε̇p = fσ∆λ̇ = 0.
Consequently, the product ∆σ̇ : ∆ε̇p is always non-negative, and vanishes only if
∆ε̇p = 0. As already mentioned in Section 16.3, the expression ∆σ̇ : Ce : ∆σ̇
is always nonnegative and vanishes only if ∆σ̇ = 0. Combining these results, we
conclude that

∆σ̇ : ∆ε̇ = ∆σ̇ : Ce : ∆σ̇ +∆σ̇ : ∆ε̇p (20.100)

is always non-negative and vanishes only if ∆σ̇ = 0 and ∆ε̇p = 0. Since ∆σ̇ is
self-equilibrated and ∆ε̇ is compatible, we have∫

V

∆σ̇ : ∆ε̇dV = 0 (20.101)

and, due to the non-negativity of the integrand, this is possible only if ∆σ̇ : ∆ε̇ = 0.
For a perfectly plastic material we could conclude only that σ̇A = σ̇B , but for a
hardening material we have also ε̇Ap = ε̇Bp , and from ε̇ = Ce : σ̇ + ε̇p it follows that
ε̇A = ε̇B. The response remains unique in terms of the stress and strain histories.
Uniqueness of the displacement history follows from the uniqueness of the strain
history, provided that the kinematic boundary conditions are sufficient to suppress
rigid-body motions.

20.3 NONASSOCIATED FLOW

From the purely mathematical point of view it would be convenient to use only
associated flow rules. Unfortunately, such rules do not always describe the real physical
processes in a sufficiently realistic manner, especially if the material is pressure-
sensitive. For example, a flow rule associated with the Mohr–Coulomb yield condition
for soils usually overestimates the volumetric part of plastic strain. The source of the
problem can be illustrated by a simple mechanical model of dry Coulomb friction.
Slip on a contact surface between two bodies in Figure 20.4(a) is initiated when

|T | = −µN (20.102)
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Figure 20.4 Coulomb friction model

where T is the tangential component of the contact force, N is the normal contact
force (N < 0), and µ is the static coefficient of friction. The corresponding yield
function can be written as

f(T,N) = |T |+ µN (20.103)

Kinematic variables work-conjugate to forces T and N are the opening (or gap)
uN and the relative slip uT (the normal and tangential component of the relative
displacement between the bodies), shown in Figure 20.4(b). The associated flow rule
would read

u̇T = λ̇
∂f

∂T
= λ̇ sign T (20.104)

u̇N = λ̇
∂f

∂N
= λ̇µ (20.105)

This means that an associated flow should take place with a fixed ratio u̇N/|u̇T | = µ,
i.e. the normal relative displacement would be proportional to the tangential relative
displacement. However, this is at odds with the ‘natural’ assumption that the bodies
remain in contact and only tangential slip takes place as shown in Figure 20.4(c).
A model exhibiting such behavior requires a nonassociated flow rule derived from a
plastic potential

g(T,N) = |T | (20.106)

that differs from the yield function (20.103).
The friction model with a zero gap is the most rudimentary one, based on our

macroscopic ‘everyday experience’. It assumes that the surfaces are ‘rough’ but the
asperities are so small compared to the scale of observation that we still consider
the surfaces as ideal planes that allow sliding in the tangential direction without any
normal displacement. The roughness is reflected only by the frictional resistance that
develops under normal pressure. A closer look at the interface motivates a different
type of model that reflects the asperities directly as deviations from the ideal shape
of the surface. One strongly idealized model of this type is sketched in Figure 20.5(a).
The interface is represented by a zig-zag line consisting of straight segments with
a constant deviation from the ‘macroscopic’ contact line. Locally, on the level of
asperities, we could assume that the contact is frictionless and only forces normal to
the contact segments can be transmitted. Due to the inclination of the segments, the
interface can even transmit (without any slip) a force that is not perpendicular to the
mean contact line, provided that its tangential component is sufficiently small; see
Figure 20.5(b). Slip is initiated when the deviation of the global contact force from
the normal to the mean contact line equals the deviation of the contact segments from
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Figure 20.5 Friction model with asperities

the mean contact line (Figure 20.5(c)), i.e. if

|T |
−N = tanφ (20.107)

This is the same condition as (20.102) if we identify tanφ with the friction coefficient
µ. The angle φ can be called the friction angle. A remarkable feature of the present
model is that the slip not only has a component parallel to the mean contact
line but also a component normal to it, and their ratio is obviously tanφ = µ;
see Figure 20.5(d). The model therefore obeys the associated flow rule (20.104)–
(20.105).
The two models just described are certainly very schematic but they offer

some insight into the behavior of frictional materials. Note that the model with
geometric asperities would only give an associated flow in a certain range limited
by the size of the asperities. After a sufficiently large relative displacement
the behavior would approach that of the model with only tangential slip. The
situation is also complicated by the fact that real asperities have variable sizes
and shapes, and that they experience some plastic deformation and damage during
sliding.
A number of additional factors should be taken into account when extending the

models of friction on an interface between two blocks to materials that have no
pre-existing internal interfaces. Here, a part of a potential slip plane may already
be slipping and resisting the slip by friction, and the rest of that plane still
retains cohesion. The cohesion is reflected by an additional constant term in the
yield function. If the plastic deformation were exclusively due to slip, the plastic
strain would be purely deviatoric. However, the presence of a relative displacement
component normal to the sliding plane results into plastic changes of volume. The
simple mechanical model of a surface with rigid asperities predicts an increase of
volume during plastic flow. This effect is called dilatancy (occasionally also dilatation
or dilation) and is observed for example in concrete under low confinement, in
overconsolidated clays, or in dense sands. On the other hand, some materials such
as concrete under very high confinement, normally consolidated clays, or loose
sands exhibit a plastic decrease of volume, which is called contractancy (or negative
dilatancy). It is often possible to assume that the flow is associated in the projection
onto the deviatoric plane and only its volumetric part is nonassociated. A suitable
plastic potential can be derived from the yield function by modifying only the term
that reflects pressure sensitivity of the material. For example, from the Drucker–
Prager criterion (15.20) we could derive a plastic potential

g(I1, J2) = αψI1 +
√
J2 (20.108)
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where αψ is the dilatancy coefficient, in general different from the friction coefficient
α that appears in the yield function. For αψ = α we have an associated flow, for
αψ = 0 a purely deviatoric flow, for αψ ∈ (0, α) a nonassociated dilatant flow, and
for αψ < 0 a contractive flow. In (20.108), the constant term −τ0 from the original
yield function has been omitted because it has no effect on the gradient ∂g/∂σ that
determines the direction of plastic flow.
It is not difficult to generalize the formulae for the rate of plastic multiplier and the

elastoplastic stiffness to the case of a nonassociated flow described by the flow rule

ε̇p = λ̇
∂g

∂σ
(20.109)

To simplify the notation, let us denote the gradient of the plastic potential as gσ.
Substituting (20.24), (20.73) and (20.109) into the consistency condition we get

ḟ =
∂f

∂σ
: σ̇ +

∂f

∂κ
• κ̇ = fσ : De : (ε̇ − λ̇gσ) + fκ • kλ̇ = 0 (20.110)

from which
λ̇ =

fσ : De : ε̇
fσ : De : gσ − fκ • k

(20.111)

The elastoplastic stiffness tensor is given by

Dep = De −
De : gσ ⊗ fσ : De

fσ : De : gσ − fκ • k
(20.112)

Example 20.8: Derive the specific expression for the elastoplastic stiffness of a
Drucker–Prager material with isotropic strain hardening and a nonassociated flow
rule derived from the plastic potential (20.108). Discuss local uniqueness.

Solution: Using the chain rule from Appendix D.3, we obtain the gradient of the
Drucker–Prager yield function,

fσ =
∂f

∂σ
=

∂f

∂I1

∂I1
∂σ

+
∂f

∂J2

∂J2

∂σ
= αδ +

1
2
√
J2

s (20.113)

The gradient of the plastic potential,

gσ = αψδ +
1

2
√
J2

s (20.114)

is obtained simply by replacing the friction coefficient α by the dilatancy coefficient
αψ. For isotropic strain hardening we have fκ • k = −H̄k, where

k =

√
2
3
‖gσ‖ =

√
2
3

(
αψδ +

1
2
√
J2

s

)
:
(
αψδ +

1
2
√
J2

s

)
=

√
2α2

ψ +
1
3

(20.115)

because δ : δ = 3, δ : s = 0, and s : s = 2J2. Substituting into the general formula
(20.112) and using the relations De : δ = 3Kδ and De : s = 2Gs, we obtain the
desired expression

Dep = De −
9K2ααψδ ⊗ δ +

3KG√
J2

(αs ⊗ δ + αψδ ⊗ s) +
G

J2
s ⊗ s

9Kααψ +G+ H̄

√
2α2

ψ +
1
3

(20.116)
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An inspection of the denominator reveals that the condition of local uniqueness
9Kααψ+G+H̄k > 0 can be violated even for a non-softening material (H̄ ≥ 0) if the
flow is contractive (αψ < 0). The critical value of αψ for a perfectly plastic material is

αψ,crit = − G

9Kα
= − 1

6α
1− 2ν
1 + ν

(20.117)

Although for plasticity models with an associated flow rule the tangential stiffness
tensor is symmetric, nonsymmetry should characterize a more realistic model. For
two-dimensional behavior, this can be illustrated by a model of frictionally sliding
blocks connected by springs, presented in Bažant and Cedolin (1991, Section 10.7,
Figure 10.22). The nonsymmetry reflecting friction, however, must be of a form that
causes no material instability. Generalizing from Mandel’s (1964a) ingeneous example
of a spring-loaded frictionally-sliding block, Bažant (1980) formulated the sufficient
(albeit not necessary) conditions under which the tangential stiffness tensor can be
nonsymmetric while causing no material instability.
Comparison with the aforementioned spring-block model further reveals that the

modeling of internal friction as an influence of I1 on
√
J2, as done by the Drucker–

Prager criterion, is a gross simplification. It cannot reflect the fact that frictional slip
occurs on one or several preferred planes. It is an advantage of the microplane model
(to be presented in Section 25.2) that it can capture this fact.

20.4 NON-SMOOTH AND MULTI-SURFACE PLASTICITY

Another issue that deserves attention is the treatment of singularities of a yield
surface, e.g. of the corners (edges) of the Tresca hexagon (hexahedral prism). At
such points, the yield surface does not have a uniquely defined normal because the
gradient fσ vanishes or even does not exist. If the flow rule is associated, the direction
of plastic flow is not properly defined. These problems can be handled if the elastic
domain bounded by a non-smooth yield surface is represented as an intersection of
several domains bounded by smooth auxiliary surfaces.

20.4.1 Perfect Plasticity

We start by looking at the simple case of a perfectly elastoplastic material. For
illustration, consider the criterion due to Tresca, with the yield function given by
the product-like expression (15.14). The inequality f(σ) ≤ 0 is not an unambiguous
description of the Tresca hexahedral prism because it also holds at points for which,
for example, σ1−σ2 > 2τ0, σ2−σ3 > 2τ0, and |σ3−σ1| < 2τ0. Therefore it is preferable
not to describe the elastic domain in Figure 20.6 by a single inequality f(σ) < 0 but
by a set of three inequalities

f1(σ)≡ (σ2 − σ3)2 − 4τ2
0 < 0 (20.118)

f2(σ)≡ (σ3 − σ1)2 − 4τ2
0 < 0 (20.119)

f3(σ)≡ (σ1 − σ2)2 − 4τ2
0 < 0 (20.120)

which checks the signs of functions f1, f2 and f3 separately. Plastic flow occurs
if at least one of these functions vanishes. The auxiliary yield surfaces for which
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Figure 20.6 Deviatoric section of the Tresca yield surface: a) plastic flow at a regular
point, b) plastic flow at a vertex

fI = 0 are then called active. If, for example, only surface 1 is active (f1 = 0
while f2 < 0 and f3 < 0, see Figure 20.6(a)), the stress state corresponds to a
regular point of the yield surface, which has a uniquely defined normal determined by
the gradient fσ ≡ ∂f/∂σ = f3f2∂f1/∂σ + f1∂(f2f3)/∂σ = f3f2f1,σ, colinear with
f1,σ ≡ ∂f1/∂σ. However, it can happen that two surfaces are active simultaneously,
e.g. f1 = 0 and f2 = 0 while f3 < 0 (Figure 20.6(b)). Then the stress point is located
at an edge of the hexahedral prism, where the original yield function f has a zero
gradient, but the auxiliary functions f1 and f2 have nonzero gradients f1,σ and f2,σ.
It has already been explained in Section 15.2.1 that the postulate of maximum plastic
dissipation remains valid if the direction of plastic flow is anywhere within the fan
of directions between f1,σ and f2,σ. This fan is formed by vectors that are linear
combinations of f1,σ and f2,σ with non-negative coefficients. The corresponding flow
rule reads

ε̇p = λ̇1f1,σ + λ̇2f2,σ (20.121)

where λ̇1 ≥ 0 and λ̇2 ≥ 0 are the rates of plastic multipliers associated with the
auxiliary surfaces f1 = 0 and f2 = 0. To cover the general situation of yielding at an
arbitrary point of the yield surface, we may write the flow rule as

ε̇p =
N∑
I=1

λ̇If I,σ (20.122)

where N is the number of auxiliary yield surfaces. This is the famous Koiter’s rule
(Koiter, 1953b). A multiplier λ̇I can be nonzero only if the stress point lies on the
corresponding surface fI = 0. This leads us to the generalized loading-unloading
conditions

fI ≤ 0, λ̇I ≥ 0, fI λ̇I = 0, I = 1, 2, . . .N (20.123)

which again correspond to the Karush–Kuhn–Tucker conditions known from
optimization theory (see Section 15.2.4). In fI λ̇I and similar expressions, the
summation convention does not apply because the subscript I does not refer to
tensorial components, but simply labels individual yield surfaces.
If, during a certain time interval, the Ith plastic multiplier is increasing (λ̇I > 0),

the stress point must stay on the Ith auxiliary yield surface, and consequently ḟI = 0.



NON-SMOOTH AND MULTI-SURFACE PLASTICITY 341

We thus obtain N consistency conditions

ḟI λ̇I = 0, I = 1, 2, . . .N (20.124)

which can be exploited while computing the rates of plastic multipliers λ̇I , I =
1, 2, . . .N . Following the standard procedure, we can obtain the rates

ḟI = f I,σ : De :

(
ε̇ −

N∑
J=1

λ̇JfJ,σ

)
, I = 1, 2, . . .N (20.125)

Note that the rate ḟI depends not only on λ̇I but, in general, on all λ̇J , J = 1, 2, . . .N .
If several yield surfaces are active simultaneously, the consistency conditions become
coupled.
Suppose that the yield surfaces are renumbered such that surfaces number

1, 2, . . .M are currently active while M +1,M +2, . . .N are not. The currently active
surfaces are characterized by fI = 0. They can either remain active, in which case
ḟI = 0 and λ̇I > 0, or start unloading, in which case ḟI < 0 and λ̇I = 0. Both
situations are covered by the consistency conditions

ḟI ≤ 0, λ̇I ≥ 0, ḟI λ̇I = 0, I = 1, 2, . . .M (20.126)

which are formally similar to (20.123). The difference is that (1) the values of the
yield functions are replaced by their rates, and (2) conditions (20.123) hold for all the
auxiliary yield surfaces while (20.126) only for the active ones.
It is convenient to introduce column matrices

ḟ = {ḟ1, ḟ2, . . . ḟM}T , λ̇ = {λ̇1, λ̇2, . . . λ̇M}T (20.127)

and rewrite conditions (20.126) as

ḟ ≤ 0, λ̇ ≥ 0, ḟ
T
λ̇ = 0 (20.128)

Note that ḟ
T
λ̇ =

∑
ḟI λ̇I , and so the isolated condition ḟ

T
λ̇ = 0 is not equivalent

to ḟI λ̇I vanishing for all I = 1, 2, . . .M (no sum over M). However, the ensemble of
conditions (20.128) is equivalent to (20.126) because, if all ḟI are nonpositive and all
λ̇I are nonnegative, then each term ḟI λ̇I is nonpositive and the sum of such terms
can vanish only if each individual term vanishes.
According to (20.125), the rate ḟ can be expressed as

ḟ = b − Aλ̇ (20.129)

where b is a column matrix with entries bI = f I,σ : De : ε̇, I = 1, 2, . . .M , and A is
an M ×M matrix with entries

aIJ = f I,σ : De : fJ,σ, I, J = 1, 2 . . .M (20.130)

Note that aij = aji, i.e. matrix A is symmetric. Substituting (20.129) into (20.128)
we obtain the linear complementarity problem (LCP)

Aλ̇ − b ≥ 0, λ̇ ≥ 0, λ̇
T
(Aλ̇ − b) = 0 (20.131)
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Linear complementarity problems have been extensively studied in optimization
theory, because they are closely related to quadratic programming (minimization
of quadratic functions subject to linear constraints). Sophisticated algorithms are
available for the solution of such problems. The following theorem provides a necessary
and sufficient condition of existence and uniqueness. Its proof can be found, for
instance, in Cottle, Pang and Stone (1992).

Theorem 20.1
The LCP (20.131) has exactly one solution λ̇ for any vector b if and only if all the
principal minors of matrix A are positive.

Recall that the principal minors of an M ×M matrix are the determinants of all
submatrices constructed by selecting a set I ⊂ {1, 2, . . .M} and deleting all the rows
and columns whose number is contained in I. For symmetric matrices, positivity of
all the principal minors is equivalent to the positive definiteness of the matrix, i.e. to
the condition that

xTAx > 0 ∀x �= 0 (20.132)

For general matrices, positivity of all the principal minors is equivalent to the so called
P-positivity, i.e. to the condition

∀x �= 0 ∃ i ∈ {1, 2, . . .M} : xi(Ax)i > 0 (no sum over i) (20.133)

Here, xi is the ith component of vector x, and (Ax)i is the ith component of
vector Ax. Condition (20.133) means that there is no nonzero vector x for which
multiplication by A would reverse the signs of all its nonzero components.
Theorem 20.1 facilitates the checks of uniqueness for plasticity models with multiple

yield surfaces. Let us now apply the theorem to our plasticity model with a composite
yield surface. Matrix A given by (20.130) is symmetric, and it is positive definite if

xTAx=
M∑

I,J=1

xIaIJxJ =
M∑

I,J=1

xIf I,σ : De : fJ,σxJ

=

(
M∑
I=1

xIf I,σ

)
: De :

(
M∑
J=1

xJfJ,σ

)
> 0 ∀x �= 0 (20.134)

The final expression in (20.134) has the form f : De : f where

f =
M∑
I=1

xIf I,σ (20.135)

Since De is a positive definite tensor, we have f : De : f > 0 whenever f �= 0. So
the positive definiteness of A can be proven if the sum in (20.135) is nonzero for any
set of coefficients xI , I = 1, 2, . . .M , that are not simultaneously zero. This condition
means that the gradients f I,σ, I = 1, 2, . . .M , must be linearly independent. We have
derived the following theorem:



NON-SMOOTH AND MULTI-SURFACE PLASTICITY 343

Theorem 20.2
Consider associated perfect plasticity with a composite yield surface described by a set
of auxiliary surfaces. If, at any singular point, the normals to all those auxiliary yield
functions that intersect at that point are linearly independent, then the model gives
a unique response (in terms of stress and plastic strain evolution) to any prescribed
strain evolution.

The condition of linear independence limits the number of yield surfaces that may
intersect at the same point. In three spatial dimensions, the normals belong to the six-
dimensional space of symmetric second-order tensors, and so the maximum admissible
number of simultaneously active surfaces is six. For plane stress, this number reduces
to three.
If at most one yield surface is active, the problem reduces to the standard one, and

the solution is given by (15.40). Let us now explore the case of two initially active
yield surfaces.

Example 20.9: Set up and solve the linear complementarity problem describing
associated plastic flow at an edge of the Tresca hexahedral prism, assuming that the
material is perfectly elastoplastic.

Solution: The elastic domain corresponding to the Tresca criterion is described by
(20.118)–(20.120). At most, two surfaces can be active simultaneously. Without any
loss of generality, let us assume that the stress point is at the edge characterized by

σ2 − σ3 = 2τ0 (20.136)
σ1 − σ3 = 2τ0 (20.137)

and so surfaces 1 and 2 are active; see Figure 20.6(b). Differentiating the yield function
f1(σ) defined in (20.118), we obtain

∂f1

∂σ
=

3∑
I=1

∂f1

∂σI

∂σI
∂σ

= 2(σ2 − σ3)
(
∂σ2

∂σ
− ∂σ3

∂σ

)
(20.138)

According to formula (D.61) derived in Appendix D, we have

∂σ2

∂σ
= n2 ⊗ n2 and

∂σ3

∂σ
= n3 ⊗ n3 (20.139)

where n2 and n3 are unit vectors in the principal directions associated with principal
stresses σ2 and σ3, respectively. The gradient of f1 is thus given by

f1,σ = 2(σ2 − σ3)(n2 ⊗ n2 − n3 ⊗ n3) (20.140)

and a similar expression

f2,σ = 2(σ1 − σ3)(n1 ⊗ n1 − n3 ⊗ n3) (20.141)

can be derived for the gradient of f2.
Evaluating the entries of matrix A, we have to deal with terms of the type

(nI ⊗ nI) : De : (nJ ⊗ nJ ). Such expressions are scalars, i.e. they are invariant
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with respect to the choice of the coordinate system, and they can be conveniently
evaluated in the principal stress coordinates. For the isotropic elastic stiffness tensor
De we obtain

(n2 ⊗ n2) : De : (n1 ⊗ n1) =De
2211 = K − 2

3
G (20.142)

(n3 ⊗ n3) : De : (n3 ⊗ n3) =De
3333 = K +

4
3
G (20.143)

Now it is easy to evaluate

a11 = f1,σ : De : f1,σ = 4(σ2 − σ3)2(De
2222 +De

3333 −De
2233 −De

3322)

= 16G(σ2 − σ3)2 (20.144)
a12 = f1,σ : De : f2,σ = 4(σ2 − σ3)(σ1 − σ3)(De

2211 +De
3333 −De

2233 −De
3311)

= 8G(σ2 − σ3)(σ1 − σ3) (20.145)
a22 = f2,σ : De : f2,σ = 4(σ1 − σ3)2(De

1111 +De
3333 −De

1133 −De
3311)

= 16G(σ1 − σ3)2 (20.146)

Making use of (20.136) and (20.137), we finally obtain

A = 32Gτ2
0

[
2 1
1 2

]
(20.147)

This matrix is positive definite, and so the problem has a unique solution for any
prescribed strain rate.
The first component of the column matrix b is given by

b1 = f1,σ : De : ε̇ = 2(σ2 − σ3)(n2 ⊗ n2 − n3 ⊗ n3) : De : (ε̇V δ + ė)
= 4τ0(n2 ⊗ n2 − n3 ⊗ n3) : (3Kε̇V δ + 2Gė) (20.148)

Realizing that (n2⊗n2) : δ = n2 ·δ ·n2 = n2 ·n2 = 1, (n2⊗n2) : ė = n2 · ė ·n2 = ė22,
etc., we can simplify (20.148) to b1 = 8Gτ0(ė22 − ė33). Here, ė22 and ė33 are the
components of the deviatoric strain rate expressed in the principal stress coordinates.
Evaluating b2 in an analogous way, we finally obtain

b = 8Gτ0

{
ė22 − ė33
ė11 − ė33

}
(20.149)

The linear complementarity problem (20.131) is now fully specified, and we can
analyze its solutions. Three basic situations can be distinguished:

1. Both surfaces remain active, i.e. the stress point remains at the edge of the yield
surface. In this case, λ̇1 and λ̇2 can be solved from the set of linear equations
Aλ̇ = b with A and b given by (20.147) and (20.149), respectively. The solution

λ̇ =
1

12τ0

{
2ė22 − ė11 − ė33
2ė11 − ė22 − ė33

}
(20.150)

is admissible if both λ̇1 and λ̇2 are non-negative, i.e. if

2ė22 − ė11 − ė33 ≥ 0 (20.151)
2ė11 − ė22 − ė33 ≥ 0 (20.152)
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2. (a) Only one surface remains active, say surface 1. In this case, the stress point
leaves the edge and moves to the regular part of the yield surface on which
f1 = 0. The rate λ̇2 vanishes, and λ̇1 is computed from a11λ̇1 = b1. The
solution

λ̇ =
1
8τ0

{
ė22 − ė33

0

}
(20.153)

is admissible if λ̇1 ≥ 0 and a21λ̇1 − b2 ≥ 0, which is equivalent to

ė22 − ė33 ≥ 0 (20.154)
2ė11 − ė22 − ė33 ≤ 0 (20.155)

(b) A complementary situation arises when only surface 2 remains active. The
admissibility conditions for this solution are

2ė22 − ė11 − ė33 ≤ 0 (20.156)
ė11 − ė33 ≥ 0 (20.157)

3. No surface remains active, i.e. the stress point moves to the elastic domain and
no plastic flow takes place. Both rates λ̇1 and λ̇2 are zero. The solution λ̇ = 0 is
admissible if Aλ̇ − b = −b ≥ 0, i.e. if

ė22 − ė33 ≤ 0 (20.158)
ė11 − ė33 ≤ 0 (20.159)

Comparing the admissibility conditions for the previous solutions, we realize that they
decompose the strain rate space into four sectors with disjoint interiors. This confirms
that the response to any prescribed strain rate is unique, as was expected owing to
the positive definiteness of matrix A.
The results have a clear geometrical interpretation. The four sectors are plotted in

the deviatoric section of the principal stress space in Figure 20.7. Note that, in the
present case, the solution depends only on the deviatoric part of the strain rate, ė.
This is natural since the yield criterion is pressure-insensitive and, if an associated
flow rule is used, the volumetric response is purely elastic and completely decomposed
from the deviatoric response. Moreover, only the normal components of ė with respect

σ
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Figure 20.7 Plastic flow at a corner of Tresca yield surface
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to the principal stress coordinates have an effect on the solution. These components
are linked by the condition ė11+ė22+ė33 = 0, and so only two of them are independent
and the presentation in the two-dimensional deviatoric plane covers all the possible
situations. The deviatoric part of the elastic stress rate is colinear with the deviatoric
part of the strain rate because the elastic law has the simple form ṡ = 2Gė. We
can, therefore, interpret the vectors (starting from the corner of the yield surface in
Figure 20.7) alternatively as representing the strain rates or the stress rates.
Now we can discuss the four types of solutions. In case (1), the strain rate (and

also the elastic stress rate) points to the sector between the normals to the straight
segments of the yield surface. It is therefore possible to express the strain rate as
a linear combination of the normal vectors with nonnegative coefficients. The total
strain rate is equal to the plastic strain rate and the elastic strain rate vanishes.
Consequently, the stress rate must also vanish and the stress point remains at the
corner. In case (3), the elastic stress rate points to the interior of the elastic domain
and is identical to the actual stress rate. No plastic flow takes place and the process
is fully elastic. Finally, in case (2), the strain rate points to one of the remaining two
sectors. Its orthogonal projection on the yield surface is located either on the segment
where f1 = 0 or on that where f2 = 0. The projection on the yield surface represents
the elastic part of the strain rate and the component normal to the yield surface is the
plastic part. The stress point moves from the corner along one or the other straight
segment of the yield surface.

20.4.2 Hardening Plasticity

The next challenge is an extension of the previous results to hardening plasticity.
A crucial point to note is that, during hardening, two cases can occur: (1) either
the auxiliary surfaces expand or move simultaneously, driven by the same hardening
variables; or (2) each of the surfaces is associated with its own hardening variables
that only grow if the surface is active. The former case corresponds to plasticity
theory with a single non-smooth surface, in which the auxiliary surfaces only describe
individual smooth portions of the basic surface. An example is Tresca or Mohr–
Coulomb plasticity with isotropic hardening or softening. The latter case is referred
to as multi-surface plasticity, or plasticity theory with multiple yield conditions. Here,
each surface represents a different mechanism of plastic flow, independent of the others
and controled by its own internal variables (though couplings can be introduced, too).
This class of models includes plasticity-based microplane models (Carol and Bažant,
1997). Another example is a model based on a combination of the Drucker–Prager
yield surface (representing failure under predominantly compressive stresses) with
the Rankine surface (representing tensile cracking), recently proposed for concrete by
Feenstra and de Borst (1996).
Multiple yield surfaces are also used to model nonlinear kinematic hardening by a

set of nested surfaces, each of which only exhibits linear hardening (Iwan, 1967; Mróz,
1967, 1969). However, this is a somewhat different problem because the individual
surfaces do not intersect each other, and all the active surfaces have a common tangent
at the current stress point.
Let us start with the non-smooth single-surface plasticity, only for convenience

described by a set of auxiliary functions

fI(σ, κ) = FI(σ)− h̄(κ), I = 1, 2, . . .N (20.160)
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The time derivatives of these functions are

ḟI(σ, κ) =
∂FI
∂σ

: σ̇ − dh̄
dκ

κ̇ = f I,σ : σ̇ − H̄κ̇, I = 1, 2, . . .N (20.161)

We will need an expression for the rate of the hardening parameter, κ̇, in terms of the
plastic multiplier rates, λ̇I (I = 1, 2, . . .N), that appear in the associated flow rule
(20.122). If we decided to use the strain hardening model, the rate of the hardening
parameter

κ̇ =

√
2
3
ε̇p : ε̇p =

√√√√2
3

N∑
I,J=1

λ̇I λ̇Jf I,σ : fJ,σ (20.162)

would be given by an expression that is nonlinear in terms of the plastic multiplier
rates. This would certainly complicate the solution procedure. A more convenient
choice is the work hardening hypothesis analogous to (20.8), which leads to a linear
expression

κ̇ =
σ : ε̇p
h(κ)

=
N∑
I=1

σ : f I,σ
h(κ)

λ̇I =
N∑
I=1

kI λ̇I (20.163)

where kI = σ : f I,σ/h(κ).
Substituting (20.122), (20.163) and the elastic stress-strain law into (20.161), we

obtain

ḟI = f I,σ : De :

(
ε̇ −

M∑
J=1

fJ,σλ̇J

)
− H̄

M∑
J=1

kJ λ̇J (20.164)

= f I,σ : De : ε̇ −
M∑
J=1

(f I,σ : De : fJ,σ + H̄kJ )λ̇J , I = 1, 2, . . .M

We took into account only the active surfaces 1, 2, . . .M because λ̇I = 0 for
I =M + 1,M + 2, . . .N .
The consistency conditions (20.128) again lead to a linear complementarity problem

of the form (20.131) but this time with matrix A having components aIJ = f I,σ : De :
fJ,σ + H̄kJ which could be nonsymmetric. However, for Tresca, and Mohr–Coloumb
yield criteria, the product σ : fJ,σ is the same for all the active surfaces J , and so all
coefficients KJ (J = 1, 2, . . .M) have the same value and symmetry preserved. The
postulate of maximum plastic dissipation extended to hardening materials naturally
leads to a modified form of the hardening law, κ̇ =

∑
λ̇I , for which the matrix A is

always symmetric; see Simo and Hughes (1998) and Problem 23.9.
Let us shift attention tomulti-surface plasticity. Each yield surface now represents a

specific failure mechanism, and the evolution of the surface is controled by a hardening
variable associated only with this mechanism. For the sake of simplicity, we only
consider isotropic hardening of each individual loading surface. However, note that as
each surface evolves at its own pace, the resulting change of the composite surface is
not isotropic. The individual loading surfaces are described by

fI(σ, κI) ≡ FI(σ)− h̄I(κI) = 0, I = 1, 2, . . .N (20.165)

where the hardening functions h̄I (I = 1, 2, . . .N) are in general different. We can start
from the assumption that the inactive surfaces remain stationary, i.e. they exhibit
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neither hardening nor softening. Consequently, the hardening variable associated with
an inactive surface should remain constant. It is therefore natural to relate the rate
of hardening variable associated with a certain surface only to the part of the plastic
strain rate (or of the plastic work rate) due to yielding on that surface. This leads us
to the evolution equation for the hardening variables,

κ̇I = ‖λ̇If I,σ‖ = λ̇I‖f I,σ‖ ≡ λ̇IkI(σ), I = 1, 2, . . .N (20.166)

for strain hardening, and

κ̇I =
1

h̄(κI)
σ : λ̇If I,σ = λ̇I

σ : f I,σ
h̄(κI)

≡ λ̇IkI(σ, κI), I = 1, 2, . . .N (20.167)

for work hardening. Evaluating the time derivatives of the yield functions,

ḟI = f I,σ : σ̇ − dh̄I
dκI

κ̇I = f I,σ : De : ε̇−
M∑
J=1

(f I,σ : De : fJ,σ)λ̇J − H̄IkI λ̇I (20.168)

we find that the coefficients of matrix A from (20.129) are now given by

aIJ = f I,σ : De : fJ,σ + H̄IkIδIJ , I, J = 1, 2, . . .M (20.169)

where δIJ is Kronecker delta but no summation over repeated subscripts is implied.
Again, we only took into account the active surfaces 1, 2, . . .M because λ̇I = 0 for
I = M + 1,M + 2, . . .N . Now the matrix A is again symmetric and, compared to
the case of perfect plasticity with aIJ given by (20.130), only the diagonal terms are
modified. For an arbitrary vector x we have

xTAx=
M∑

I,J=1

xIf I,σ : De : fJ,σxJ +
M∑
I=1

H̄IkIx
2
I

=

(
M∑
I=1

xIf I,σ

)
: De :

(
M∑
I=1

xIf I,σ

)
+

M∑
I=1

H̄IkIx
2
I (20.170)

If all the plastic moduli H̄i are positive, matrix A with components given by (20.169)
is positive definite even for linearly dependent gradients f I,σ, and the corresponding
linear complementarity problem (20.131) has a unique solution. With zero or negative
plastic moduli, uniqueness might be lost.

Example 20.10: Find the condition of local uniqueness for a model combining the
Drucker–Prager criterion with the Rankine criterion. Assume that the evolution of
each yield surface is described by a work hardening law with no interaction between
the two hardening mechanisms.

Solution: The given model uses two yield functions1

f1(σ, κ1) = αI1(σ) +
√
J2(σ)− h̄1(κ1) (20.171)

1 Strictly speaking, the Rankine surface is also a composite surface, because it has singularities at
points where two or three principal stresses are equal. Our aim here is to illustrate the methodology,
and so we focus on the intersection of the Drucker–Prager surface with the Rankine surface (at a
regular point of the Rankine surface), and we leave a detailed analysis of other possible singular
points to the reader as an exercise; see Problem 20.8.
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f2(σ, κ2) = σ1(σ)− h̄2(κ2) (20.172)

Their gradients with respect to the stress tensor are easily computed as

f1,σ = α
∂I1
∂σ

+
1

2
√
J2

∂J2

∂σ
= αδ +

1
2
√
J2

s (20.173)

f2,σ =
∂σ1

∂σ
= n1 ⊗ n1 (20.174)

where n1 is a unit vector in the direction of maximum principal stress. Now we
evaluate

De : f1,σ = 3Kαδ +
G√
J2

s (20.175)

De : f2,σ =De : (n1 ⊗ n1) (20.176)

f1,σ : De : f1,σ = 9Kα2 +G (20.177)

f2,σ : De : f1,σ = 3Kα(n1 ⊗ n1) : δ +
G√
J2

(n1 ⊗ n1) : s = 3Kα+
Gs1√
J2

(20.178)

f2,σ : De : f2,σ = (n1 ⊗ n1) : De : (n1 ⊗ n1) = De
1111 = K +

4
3
G (20.179)

σ : f1,σ = αI1 +
1

2
√
J2

2J2 = αI1 +
√
J2 (20.180)

σ : f2,σ =σ : (n1 ⊗ n1) = σ1 (20.181)

where s1 is the maximum principal deviatoric stress. If surface 1 is active, we have
αI1 +

√
J2 − h̄1 = 0, and so

k1 =
σ : f1,σ

h̄1
=
αI1 +

√
J2

h̄1
= 1 (20.182)

A similar result, k2 = 1, is obtained also for surface 2. We can see that, in the present
case, the hardening variables κI are identical with the plastic multipliers λI .
The existence and uniqueness of the solution is guaranteed if all the principal minors

of the matrix

A=
[
f1,σ : De : f1,σ + H̄1k1 f1,σ : De : f2,σ

f2,σ : De : f1,σ f2,σ : De : f2,σ + H̄2k2

]

=
[
9Kα2 +G+ H̄1 3Kα+Gs1/

√
J2

3Kα+Gs1/
√
J2 K + 4G/3 + H̄2

]
(20.183)

are positive. The principal minors of a 2× 2 matrix are the diagonal coefficients and
the determinant. This leads to three inequalities

9Kα2 +G+ H̄1 > 0 (20.184)
K + 4

3G+ H̄2 > 0 (20.185)

(9Kα2 +G+ H̄1)(K + 4
3G+ H̄2)>

(
3Kα+

Gs1√
J2

)2

(20.186)

The first two conditions set a lower bound on H̄1 and H̄2, respectively. They
correspond to the yield modes in which only one of the surfaces remains active. For
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given material parameters, the bounds can easily be evaluated. The last condition is
quadratic and contains both H̄1 and H̄2. It corresponds to the mode in which both
surfaces evolve simultaneously. In addition to material parameters, the right-hand
side contains also the first principal deviatoric stress, s1, and the second deviatoric
invariant, J2. To guarantee uniqueness for all possible situations, we have to consider
the most unfavorable case, in which the ratio s1/

√
J2 is maximized (because then the

right-hand side of (20.186) has the largest possible value and the resulting restriction
on H̄1 and H̄2 is the most severe). Fortunately, the task of maximizing s1/

√
J2 is easy

if we use the Haigh–Westergaard coordinates. According to (D.71) in Appendix D,
we have s1 =

√
2/3 ρ cos θ, where ρ =

√
2J2, and so s1/

√
J2 =

√
4/3 cos θ attains the

largest possible value for θ = 0, in which case s1/
√
J2 =

√
4/3. Condition (20.186)

can now be written exclusively in terms of material parameters;

(
9Kα2 +G+ H̄1

)(
K +

4
3
G+ H̄2

)
>

(
3Kα+

2G√
3

)2

(20.187)

In the (H̄1, H̄2)-plane, the boundary of the region in which (20.187) holds is a
hyperbola centered at H̄1 = −(9Kα2 +G) and H̄2 = −(K + 4G/3).
For illustration we plot conditions (20.184), (20.185) and (20.187) in the plane of

the plastic moduli normalized by Young’s modulus, with a specific choice of Poisson’s
ratio, ν = 0.2, and the friction coefficient, α = 0.21 (these values are representative
of concrete). Figure 20.8 indicates that the third condition, which takes into account
simultaneous yielding, reduces the region of admissible plastic moduli as compared
to the case in which each yield surface is considered separately. For example, if
we consider only the Rankine surface, the plastic modulus H̄2 must be larger than
−1.111E. If we combine the Rankine criterion with softening and the Drucker–Prager
criterion with perfect plasticity (H̄1 = 0), the critical value of the softening modulus
H̄2 becomes −0.027E. Additional restrictions could be obtained by analyzing the
edges and the vertex of the Rankine surface (i.e. the cases for which two or three
principal stresses are equal); see Problem 20.8.
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Figure 20.8 Restrictions on plastic moduli for the model combining the Rankine and
Drucker–Prager surfaces
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20.5 ANISOTROPIC YIELD CRITERIA

Some materials (e.g. oriented fiber-matrix composites or wood) have a strongly
anisotropic structure, which must be reflected not only by the elastic moduli, but
also by the yield condition. The description of the material is no longer invariant with
respect to arbitrary rotations of the coordinate system, and so the yield criterion
should be expressed in terms of the stress components with respect to a certain
(fixed) coordinate system rather than in terms of the invariants of the stress tensor.

20.5.1 Hill Criterion

We will restrict our attention to orthotropic materials, i.e. to materials with
three mutually orthogonal planes of symmetry. It is natural to relate the material
description to the axes of orthotropy x1, x2 and x3, defined as the intersections of the
planes of symmetry. The stress components with respect to the axes of orthotropy
are denoted as σ11, σ12, etc. The orthotropic yield condition(

σ22 − σ33

k11

)2

+
(
σ33 − σ11

k22

)2

+
(
σ11 − σ22

k33

)2

+
(
σ23

k23

)2

+
(
σ31

k31

)2

+
(
σ12

k12

)2

− 1 = 0 (20.188)

came first, proposed by Hill (1947). It is a straightforward generalization of the
von Mises condition; cf. expression (D.40) for the invariant J2. As for the von Mises
condition, Hill’s condition is insensitive to volumetric stress and possesses tension-
compression symmetry.
The six material parameters k11, k22, k33, k12, k23 and k31 can be related to the

yield stresses in tension and compression along the three axes of orthotropy, σ0
11, σ

0
22

and σ0
33, and to the yield stresses in shear in the three planes of symmetry, τ0

12, τ0
23

and τ0
31. For uniaxial tension along axis x1,(

σ0
11

k22

)2

+
(
σ0

11

k33

)2

= 1 (20.189)

and two similar conditions can be obtained by cyclic permutation of the subscripts.
Solving for the material parameters, we identify

k11 =
√
2
(

1
(σ0

22)2
+

1
(σ0

33)2
− 1

(σ0
11)2

)−1/2

(20.190)

and analogous expressions can be written for k22 and k33.
For pure shear in the plane x1–x2 we get(

τ0
12

k12

)2

= 1 (20.191)

from which
k12 = τ0

12 (20.192)

and similar relations k23 = τ0
23 and k31 = τ0

31 hold for the other two planes of
symmetry. If the material is isotropic, we have σ0

11 = σ0
22 = σ0

33 =
√
3τ0 and

τ0
12 = τ0

23 = τ0
31 = τ0. The reader can verify that (20.188) is then equivalent to

the von Mises yield condition.
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20.5.2 Hoffman Criterion

The Hill criterion does not allow modeling of materials with different values of the
yield stress in tension and in compression. Hoffman (1967) added a linear combination
of the normal stresses σ11, σ22 and σ33, to make the yield surface nonsymmetric with
respect to the origin. To facilitate parameter identification, we write the Hoffman
criterion in the form(

σ22 − σ33 − c22 + c33
k11

)2

+
(
σ33 − σ11 − c33 + c11

k22

)2

+
(
σ11 − σ22 − c11 + c22

k33

)2

+
(
σ23

k23

)2

+
(
σ31

k31

)2

+
(
σ12

k12

)2

− 1 = 0 (20.193)

so that the new parameters c11, c22, and c33 correspond to the shifted center of the
yield surface. They can be easily identified as

c11 =
σ0+

11 − σ0−
11

2
, c22 =

σ0+
22 − σ0−

22

2
, c33 =

σ0+
33 − σ0−

33

2
(20.194)

where σ0+
11 is the tensile yield stress in direction 1, −σ0−

11 < 0 is the compressive yield
stress in direction 1, etc. Equations of the type (20.190) and (20.192) remain valid if
we replace σ0

11 by (σ0+
11 + σ0−

11 )/2, etc.

20.5.3 Tsai–Wu Criterion

The most general quadratic yield condition was proposed by Tsai and Wu (1971).
They defined the yield function by

f(σ) = f : σ + σ : F : σ − 1 (20.195)

where f is a symmetric second-order tensor and F is a fourth-order tensor with both
major and minor symmetry. In engineering notation, f can be represented by a column
matrix with six coefficients and F by a symmetric 6× 6 matrix with 21 independent
coefficients (for a general anisotropic material). If the material is orthotropic, the
number of independent material parameters can be reduced because the yield function
must be invariant with respect to reflections about the axes of symmetry. For example,
after reflection about the plane (x1, x2), σ23 and σ31 change sign but σ12 does not,
and so the coefficients multiplying the products σ23σ12 and σ31σ12 must vanish. By
similar arguments we arrive at the Tsai–Wu criterion for orthotropic materials,



f1

f2

f3



T 

σ11

σ22

σ33


+




σ11

σ22

σ33

σ23

σ31

σ12




T 


F11 F12 F13 0 0 0
F12 F22 F23 0 0 0
F13 F23 F33 0 0 0
0 0 0 F44 0 0
0 0 0 0 F55 0
0 0 0 0 0 F66







σ11

σ22

σ33

σ23

σ31

σ12




= 1 (20.196)

This criterion contains 12 material parameters.
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The Tsai–Wu criterion can be reduced to the Hoffman and Hill criteria. In other
words, conditions (20.193) and (20.188) can be written in the form (20.196), with
some internal dependencies among the material parameters. Verification of this fact
is left to the reader as an exercise.

20.5.4 Comparison

In summary, we have three orthotropic yield criteria with an increasing level of
complexity. They are due to Hill, Hoffman, and Tsai and Wu, and they use
(respectively) 6, 9 and 12 parameters. Hill’s criterion is insensitive to the volumetric
stress and gives the same yield stresses in uniaxial tension and compression. Hoffman’s
criterion allows for different behaviors in tension and in compression, but is still
insensitive to the volumetric part of the stress tensor. The Tsai–Wu criterion is the
most general quadratic yield condition, and appears to be the most rational one.
Unfortunately, it requires the determination of 12 material parameters, which is often
impossible due to the scarcity of experimental data. In its most general form (20.195),
this criterion is applicable to materials with general anisotropy, but the number of
parameters then increases to 27.

Example 20.11: Reduce the orthotropic yield conditions to a plane-stress situation
(in one of the planes of material symmetry) and present them graphically. Discuss
the differences.

Solution: Let us start from the simplest case. Hill’s criterion (20.188) reduces under
plane-stress conditions to(

σ22

k11

)2

+
(
σ11

k22

)2

+
(
σ11 − σ22

k33

)2

+
(
σ12

k12

)2

− 1 = 0 (20.197)

This equation describes an ellipsoid in the (σ11, σ22, σ12)-space. The ellipsoid has its
center at the origin and one of its principal axes coincides with the axis σ12. The
intersection with the plane (σ11, σ22) is an ellipse with principal axes in a general
position. The criterion (20.197) has four parameters. Parameter k12 has the meaning
of the yield stress in shear. Formula (20.190) for parameter k11 and analogous formulae
for k22 and k33 contain the yield stress for tension and compression in the out-of-plane
direction x3. This does not appear to be logical from the physical point of view. For
identifying the parameters to be used in the criterion for plane stress, it is more
reasonable to ignore the test results in the out-of-plane direction and supplement
the tensile yield stresses in directions x1 and x2 by a yield stress corresponding to
another loading path, e.g. by the yield stress σ0

et corresponding to equibiaxial tension
with σ11 = σ22. Substituting this into (20.197) we obtain the relation(

σ0
et

k11

)2

+
(
σ0
et

k22

)2

= 1 (20.198)

and so the parameters k11, k22 and k33 can be evaluated from formulae analogous to
(20.190), with σ0

33 replaced by σ0
et.

Hoffman’s criterion (20.193) reduces under plane-stress conditions to(
σ22 − c22

k11

)2

+
(
σ11 − c11

k22

)2

+
(
σ11 − σ22 − c11 + c22

k33

)2

+
(
σ12

k12

)2

−1 = 0 (20.199)
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This is still an ellipsoid in the space (σ11, σ22, σ12) with one principal axis parallel to
σ12 but its center is now shifted to the point (c11, c22, 0). The criterion contains six
material parameters. Instead of using the formulae that depend on the yield stresses
in the out-of-plane direction, it would again be more appropriate to identify the
parameters from six experiments performed under plane stress. Parameter k12 is equal
to the yield stress in shear, and the remaining parameters can be related to the four
yield stresses in tension and in compression along axes x1 and x2, supplemented by
one additional yield stress, e.g. that obtained under equibiaxial tension.
The Tsai–Wu criterion (20.196) reduced to a plane-stress situation reads

F11σ
2
11 + 2F12σ11σ22 + F22σ

2
22 + F66σ

2
12 + f1σ11 + f2σ22 − 1 = 0 (20.200)

Note also that it also involves six materials parameters, the same as the reduced
Hoffman criterion. If F11F22 > F 2

12 and F66 > 0, (20.200) describes an ellipsoid
and the elastic domain is convex. In this case, criteria (20.200) and (20.199) are fully
equivalent. The only difference is that they are expressed in terms of different material
parameters.

PROBLEMS

Problem 20.1: Show that, for a purely deviatoric flow under monotonic uniaxial
loading, the rate of cumulative plastic strain ˙̄εp defined by (20.5) is equal to the usual
plastic strain rate ε̇p11.

Problem 20.2: Plot the uniaxial stress-strain curve that would correspond to linear
work hardening, defined by a hardening law of the form σY = σ0 + cWp, where c is a
constant and Wp is the plastic work (20.7). Is the stress-strain curve linear?

Problem 20.3: Consider a strain-hardening or strain-softening Rankine material
with an associated flow rule. Derive the condition of uniqueness in terms of the plastic
modulus.

Problem 20.4∗: Consider an elastoplastic material with linear strain softening
subjected to uniaxial tension. Combining the basic equations ε = εe + εp, εe = σ/E,
and ε̇p = σ̇/H, show that the rate form of the stress-strain law reads

σ̇ =
EH

E +H
ε̇ (20.201)

The uniqueness of response of the model is preserved only if E+H > 0. This condition
is more restrictive than condition (20.40) derived in Example 20.2. Explain why.

Problem 20.5: Consider a material with isochoric plastic flow and with purely
kinematic hardening. Find the relation between the Melan–Prager hardening
parameter, H̄k, and the plastic modulus, H, defined as the proportionality factor
between the stress rate and the plastic strain rate under uniaxial tension.

Problem 20.6: Figure 20.3(b) shows the evolution of the von Mises yield surface
during kinematic hardening under uniaxial stress. The center of the ellipse moves
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along the axis σ1, but the flow direction has a nonzero component ε̇2. Is this in
contradiction with the Melan–Prager kinematic hardening rule?

Problem 20.7∗: Consider an elastic domain with a non-smooth boundary,
described by fI(σ) < 0 (I = 1, 2), and a nonassociated flow rule ε̇ = λ̇gσ with a
smooth plastic potential. (a) Formulate the consistency condition(s). (b) Find the
expression for the rate of plastic multiplier in a situation in which f1 = 0 and f2 = 0.
(c) Discuss the local uniqueness of the model.

Problem 20.8: For the composite yield surface combining the Rankine and
Drucker–Prager conditions, explore singular points that were not considered in
Example 20.10. Set up the conditions of local uniqueness and plot them in the plane
of plastic moduli.

Problem 20.9: Explore the singular points of the composite yield surface combining
the Rankine and Drucker–Prager conditions for plane stress problems. Set up the
conditions of local uniqueness and plot them in the plane of plastic moduli. Make a
comparison to the three-dimensional case.

Problem 20.10: In the proof of the global uniqueness theorem for perfectly plastic
materials given in Section 16.3 it was tacitly assumed that the yield surface is smooth.
Show that the theorem remains valid for yield surfaces with corners.

Problem 20.11: Write the Hill criterion (20.188) in the form of the Tsai–Wu
criterion (20.196). What are the internal dependencies among the 12 Tsai–Wu
parameters?

Problem 20.12: Write the Hoffman criterion (20.193) in the form of the Tsai–
Wu criterion (20.196). What are the internal dependencies among the 12 Tsai–Wu
parameters?

Problem 20.13: An orthotropic material is called transversely isotropic if its
properties are invariant with respect to arbitrary rotations about one axis of
orthotropy, say x1. Write the Tsai–Wu criterion with a reduced number of independent
parameters, suitable for transversely isotropic materials.


