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8.7 Associated and Non-associated Flow Rules 
 
Recall the Levy-Mises flow rule, Eqn. 8.4.3, 
 

 ij
p

ij sdd λε =                                              (8.7.1) 
 
The plastic multiplier can be determined from the hardening rule.  Given the 
hardening rule one can more generally, instead of the particular flow rule 8.7.1, write 
 

ij
p

ij Gdd λε = ,              (8.7.2) 
 
where ijG  is some function of the stresses and perhaps other quantities, for example 
the hardening parameters.  It is symmetric because the strains are symmetric. 
 
A wide class of material behaviour (perhaps all that one would realistically be 
interested in) can be modelled using the general form 
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p
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λε
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∂

= .    (8.7.3) 

 
Here, g is a scalar function which, when differentiated with respect to the stresses, 
gives the plastic strains.  It is called the plastic potential.  The flow rule 8.7.3 is 
called a non-associated flow rule.   
 
Consider now the sub-class of materials whose plastic potential is the yield function, 

fg = : 
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p
ij

fdd
σ

λε
∂
∂

= .    (8.7.4) 

 
This flow rule is called an associated flow-rule, because the flow rule is associated 
with a particular yield criterion. 
 
 
8.7.1 Associated Flow Rules 
 
The yield surface ( ) 0=ijf σ  is displayed in Fig 8.7.1.  The axes of principal stress 
and principal plastic strain are also shown; the material being isotropic, these are 
taken to be coincident.  The normal to the yield surface is in the direction ijf σ/∂  and 
so the associated flow rule 8.7.4 can be interpreted as saying that the plastic strain 
increment vector is normal to the yield surface, as indicated in the figure.  This is 
called the normality rule.  
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Figure 8.7.1: Yield surface 
 
 
The normality rule has been confirmed by many experiments on metals.  However, it 
is found to be seriously in error for soils and rocks, where, for example, it 
overestimates plastic volume expansion.  For these materials, one must use a non-
associative flow-rule. 
 
Next, the Tresca and Von Mises yield criteria will be discussed.  First note that, to 
make the differentiation easier, the associated flow-rule 8.7.4 can be expressed in 
terms of principal stresses as 
 

i
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= .    (8.7.5) 

 
Tresca 
 
Taking 321 σσσ >> , the Tresca yield criterion is 
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One has 
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so, from 8.7.5, the flow-rule associated with the Tresca criterion is 
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This is the flow-rule of Eqns. 8.4.33.  The plastic strain increment is illustrated in Fig. 
8.7.2 (see Fig. 8.3.9).  All plastic deformation occurs in the 31−  plane.  Note that 
8.7.8 is independent of stress. 
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Figure 8.7.2: The plastic strain increment vector and the Tresca criterion in the 

π-plane (for the associated flow-rule) 
 
 
Von Mises 
 
The Von Mises yield criterion is 02

2 =−= kJf .  With  
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one has 
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This are none other than the Levy-Mises flow rule 8.4.61. 
 
The associative flow-rule is very appealing, connecting as it does the yield surface to 
the flow-rule.  Many attempts have been made over the years to justify this rule, both 
mathematically and physically.  However, it should be noted that the associative flow-
rule is not a law of nature by any means.  It is simply very convenient.  That said, it 

                                                 
1 note that if one were to use the alternative but equivalent expression 02 =−= kJf , one would 

have a 22/1 J  term common to all three principal strain increments, which could be “absorbed” into 
the λd  giving the same flow-rule 8.7.10 
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does agree with experimental observations of many plastically deforming materials, 
particularly metals. 
 
In order to put the notion of associative flow-rules on a sounder footing, one can 
define more clearly the type of material for which the associative flow-rule applies; 
this is tied closely to the notion of stable and unstable materials. 
 
 
8.7.2 Drucker’s Postulate 
 
Stress Cycles 
 
First, consider the one-dimensional loading of a hardening material.  The material 
may have undergone any type of deformation (e.g. elastic or plastic) and is now 
subjected to the stress *σ , point A in Fig. 8.7.3.  An additional load is now applied to 
the material, bringing it to the current yield stress σ  at point B (if *σ  is below the 
yield stress) and then plastically (greatly exaggerated in the figure) through the 
infinitesimal increment σd  to point C.  It is conventional to call these additional 
loads the external agency.  The external agency is then removed, bringing the stress 
back to *σ  and point D.  The material is said to have undergone a stress cycle. 
 

 
 

Figure 8.7.3: A stress cycle for a hardening material 
 
Consider now a softening material, Fig. 8.7.4.  The external agency first brings the 
material to the current yield stress σ  at point B.  To reach point C, the loads must be 
reduced.  This cannot be achieved with a stress (force) control experiment, since a 
reduction in stress at B will induce elastic unloading towards A.  A strain 
(displacement) control must be used, in which case the stress required to induce the 
(plastic) strain will be seen to drop to σσ d+  ( 0<σd ) at C.  The stress cycle is 
completed by unloading from C to D. 
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Figure 8.7.4: A stress cycle for a softening material 
 
Suppose now that *σσ = , so the material is at point B, on the yield surface, before 
action by the external agency.  It is now not possible for the material to undergo a 
stress cycle, since the stress cannot be increased.  This provides a means of 
distinguishing between strain hardening and softening materials: 
 
 Strain-hardening … Material can always undergo a stress-cycle 
 Strain-softening  … Material cannot always undergo a stress-cycle 
 
 
Drucker’s Postulate 
 
The following statements define a stable material: (these statements are also known 
as Drucker’s postulate): 
 
(1) Positive work is done by the external agency during the application of the loads 
(2) The net work performed by the external agency over a stress cycle is 

nonnegative 
 
By this definition, it is clear that a strain hardening material is stable (and satisfies 
Drucker’s postulates).  For example, considering plastic deformation ( *σσ =  in the 
above), the work done during an increment in stress is εσdd .  The work done by the 
external agency is the area shaded in Fig. 8.7.5a and is clearly positive (note that the 

work referred to here is not the total work, ∫
+ εε

ε
εσ

d
d , but only that part which is done 

by the external agency2).  Similarly, the net work over a stress cycle will be positive. 
 
On the other hand, note that plastic loading of a softening (or perfectly plastic) 
material results in a non-positive work, Fig. 8.7.5b.   
 
 

                                                 
2 the laws of thermodynamics insist that the total work is positive (or zero) in a complete cycle. 
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Figure 8.7.5: Stable (a) and unstable (b) stress-strain curves 
 
The work done (per unit volume) by the additional loads during a stress cycle A-B-C-
D is given by: 
 

( )( )∫
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−=
DCBA

dW εσεσ *             (8.7.11) 

 
This is the shaded work in Fig. 8.7.6.  Writing pe ddd εεε +=  and noting that the 
elastic work is recovered, i.e. the net work due to the elastic strains is zero,  this work 
is due to the plastic strains, 
 

( )( )∫
−

−=
CB

pdW εσεσ *        (8.7.12) 

 
With σd  infinitesimal, this equals 
 

( ) pp dddW εσεσσ 2
1* +−=           (8.7.13) 

 

 
 
Figure 8.7.6: Work W done during a stress cycle of a strain-hardening material 

 
The requirement (2) of a stable material is that this work be non-negative,  
 

  ( ) 02
1* ≥+−= pp dddW εσεσσ                                 (8.7.14) 
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Making σσσ d>>− * , this reads 
 

( ) 0* ≥− pdεσσ                                               (8.7.15) 
 
On the other hand, making *σσ = , it reads 
 

0≥pdd εσ                                                  (8.7.16) 
 
The three dimensional case is illustrated in Fig. 8.7.7, for which one has 
 

( ) 0,0* ≥≥− p
ijij

p
ijijij ddd εσεσσ               (8.7.17) 

  

 
 

Figure 8.7.7: Stresses during a loading/unloading cycle 
 
   
8.7.3 Consequences of the Drucker’s Postulate 
 
The criteria that a material be stable have very interesting consequences. 
 
Normality 
 
In terms of vectors in principal stress (plastic strain increment) space, Fig. 8.7.8, Eqn. 
8.7.17 reads 
 

( ) 0* ≥⋅− pdεσσ                  (8.7.18) 
 
These vectors are shown with the solid lines in Fig. 8.7.8.  Since the dot product is 
non-negative, the angle between the vectors *σσ −  and pdε  (with their starting points 
coincident) must be less than 90o.  This implies that the plastic strain increment vector 
must be normal to the yield surface since, if it were not, an initial stress state *σ  could 
be found for which the angle was greater than 90o (as with the dotted vectors in Fig. 
8.7.8).  Thus a consequence of a material satisfying the stability requirements is that 
the normality rule holds, i.e. the flow rule is associative, Eqn. 8.7.4. 
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Figure 8.7.8: Normality of the plastic strain increment vector 
 
When the yield surface has sharp corners, as with the Tresca criterion, it can be shown 
that the plastic strain increment vector must lie within the cone bounded by the 
normals on either side of the corner, as illustrated in Fig. 8.7.9. 
 

 
 

Figure 8.7.9: The plastic strain increment vector for sharp corners 
 
 
Convexity 
 
Using the same arguments, one cannot have a yield surface like the one shown in Fig. 
8.7.10.  In other words, the yield surface is convex: the entire elastic region lies to one 
side of the tangent plane to the yield surface3. 
 

 
 

Figure 8.7.10: A non-convex surface 
                                                 
3 note that when the plastic deformation affects the elastic response of the material, it can be shown that 
the stability postulate again ensures normality, but that the convexity does not necessarily hold  
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In summary then, Drucker’s Postulate, which is satisfied by a stable, strain-hardening 
material, implies normality (associative flow rule) and convexity4. 
 
 
8.7.4 The Principle of Maximum Plastic Dissipation 
 
The rate form of Eqn. 8.7.18 is 
 

( ) 0* ≥− p
ijijij εσσ &             (8.7.19) 

 
The quantity p

ijijεσ &  is called the plastic dissipation, and is a measure of the rate at 
which energy is being dissipated as deformation proceeds. 
 
Eqn. 8.7.19 can be written as 
 

p
ijij

p
ijij εσεσ && *≥     or    pp εσεσ && ⋅≥⋅ *                       (8.7.20) 

 
and in this form is known as the principle of maximum plastic dissipation: of all 
possible stress states *

ijσ  (within or on the yield surface), the one which arises is that 
which requires the maximum plastic work. 
 
Although the principle of maximum plastic dissipation was “derived” from Drucker’s 
postulate in the above, it is more general, holding also for the case of perfectly plastic 
and softening materials.  To see this, disregard stress cycles and consider a stress state 

*σ  which is at or below the current (yield) stress σ , and apply a strain 0>εd .  For a 
perfectly plastic material, 0* ≥−σσ  and 0>= pdd εε .  For a softening material, 
again 0* ≥−σσ  and 0<edε , 0>> εε dd p . 
 
It follows that the normality rule and convexity hold also for the perfectly plastic and 
softening materials which satisfy the principle of maximum plastic dissipation. 
 
In summary: 
 

Drucker’s postulate leads to the Principle of maximum plastic dissipation 
For hardening materials 

Principle of maximum plastic dissipation leads to Drucker’s postulate 
For softening materials 

Principle of maximum plastic dissipation does not lead to Drucker’s postulate 
 
Finally, note that, for many materials, hardening and softening, a non-associative flow 
rule is required, as in Eqn. 8.7.3.  Here, the plastic strain increment is no longer 
normal to the yield surface and the principle of maximum plastic dissipation does not 
hold in general.  In this case, when there is hardening, i.e. the stress increment is 
directed out from the yield surface, it is easy to see that one can have 0<p

ijij dd εσ , 
Fig. 8.7.11, contradicting the stability postulate (1),.  With hardening, there is no 

                                                 
4 it also ensures the uniqueness of solution to the boundary value elastoplastic problem 
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obvious instability, and so it could be argued that the use of the term “stability” in 
Drucker’s postulate is inappropriate. 
 

 
 

Figure 8.7.11: plastic strain increment vector not normal to the yield surface; 
non-associated flow-rule 

 
 
8.7.5 Problems 
 
1. Derive the flow-rule associated with the Drucker-Prager yield criterion 

kJIf −+= 21α  
 
2. Derive the flow-rule associated with the Mohr-Coulomb yield criterion, i.e. with 

321 σσσ >> , 

k=
−

2
31 σασ

 

Here, 
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Evaluate the volumetric plastic strain increment, that is 
ppp

p

ddd
V

V
321 εεε ++=

Δ
Δ , 

and hence show that the model predicts dilatancy (expansion). 
 

3. Consider the plastic potential 

kg −
−

=
2

31 σβσ
 

Derive the non-associative flow-rule corresponding to this potential.  Hence show 
that compaction of material can be modelled by choosing an appropriate value of 
β . 
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