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Review of Stress, Linear Strain and Elastic Stress-
Strain Relations 

2.1 Introduction 

In metal forming and machining processes, the work piece is subjected to external 
forces in order to achieve a certain desired shape. Under the action of these forces, 
the work piece undergoes displacements and deformation and develops internal 
forces. A measure of deformation is defined as strain. The intensity of internal 
forces is called as stress. The displacements, strains and stresses in a deformable 
body are interlinked. Additionally, they all depend on the geometry and material of 
the work piece, external forces and supports. Therefore, to estimate the external 
forces required for achieving the desired shape, one needs to determine the 
displacements, strains and stresses in the work piece. This involves solving the 
following set of governing equations : (i) strain-displacement relations, (ii) stress-
strain relations and (iii) equations of motion. 

In this chapter, we develop the governing equations for the case of small 
deformation of linearly elastic materials. While developing these equations, we 
disregard the molecular structure of the material and assume the body to be a 
continuum. This enables us to define the displacements, strains and stresses at 
every point of the body. 

We begin our discussion on governing equations with the concept of stress at a 
point. Then, we carry out the analysis of stress at a point to develop the ideas of 
stress invariants, principal stresses, maximum shear stress, octahedral stresses and 
the hydrostatic and deviatoric parts of stress. These ideas will be used in the next 
chapter to develop the theory of plasticity. Next, we discuss the conditions which 
the principle of balance of linear momentum places on the derivatives of the stress 
components. These conditions lead to equations of motion. The concept of linear 
strain, which is a measure of small deformation, is discussed next. For the linear 
strain, the strain-displacement relations are linear. The linear strain measure is not 
directly useful in the analysis of plastic deformation, but it does provide a 
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qualitative understanding of the deformation in solid bodies. We can draw upon it 
to develop a measure for large deformation which is to be used in the theory of 
plasticity. The analysis of linear strain at a point, similar to the analysis of stress at 
a point, is also carried out to develop the ideas of strain invariants, principal 
strains, maximum shear, volumetric strain and the hydrostatic and deviatoric parts 
of strain. Finally, the stress-strain relations for small deformation of linearly 
elastic materials are developed. Even though these relations are not directly useful 
for analyzing plastic behavior, their development provides a methodology of 
expressing qualitative material behavior into quantitative form. This will be useful 
for developing the plastic stress-strain relations in the next chapter. 

Since the stress and strain at a point are tensor quantities, a simple definition of 
tensors involving transformation of components with respect to two Cartesian 
coordinate systems is provided. Essential elements of tensor algebra and calculus 
needed to develop the governing equations are discussed. For more elaborate 
definitions of tensor and for more details of tensor algebra and calculus, the reader 
is advised to refer to other books. There are quite a few well-written books on these 
topics like those by Jaunzemis [1], Malvern [2], Fung [3], Sokolnikoff [4] etc. 

Both tensor and vector quantities are denoted by bold-face letters. Whether the 
quantity is a tensor or a vector can be understood from the context. Some tensor 
quantities, like the displacement gradient tensor, involve the use of symbol like the 
capital Greek letter delta. Most tensors used in the book are of second order. 
However, for brevity, the adjective “second order” is dropped. Thus, the word 
tensor without any qualifier means second order tensor. Higher order tensors are 
referred by their order. For example, the tensor relating stress and strain tensors in 
the stress-strain relations is of fourth order and is referred as such. The governing 
equations and some intermediate equations are expressed in tensor notation. This is 
done to emphasize the fact that these equations have a form which is independent 
of the coordinate system. However, while doing calculations, one needs a form of 
these equations which depends on the coordinate system being used. Index notation 
and the associated summation convention are useful for writing the component 
form of these equations in a condensed fashion. Since the reader is not expected to 
be familiar with the index notation and summation convention, both are discussed 
at length right in the beginning. Sometimes, for calculation purpose, an array 
notation is useful for writing the component form of these equations. This involves 
knowledge of matrix algebra. It is expected that the reader will have sufficient 
background in the matrix algebra and the associated array notation. Wherever 
possible, the equations are expressed in all the three notations: tensor, index and 
array notations. The calculations are carried out either in index notation or in array 
notation depending on the convenience of the situation. 

The organization of this chapter is as follows. In Section 2.2, we introduce the 
index notation and summation convention. The idea of stress at point is developed 
in Section 2.3. Further, the analysis of stress at a point is also carried out. 
Equations of motion involving the derivatives of stress components are also 
presented in this section. The concept of linear strain tensor and associated strain-
displacement relations are developed in Section 2.4. Additionally, analysis of the 
linear strain tensor and compatibility conditions for the strain components are also 
discussed in Section 2.4. Section 2.5 is devoted to the development of stress-strain 
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relations for small deformation of linearly elastic materials. Finally, the whole 
chapter is summarized in Section 2.6. Worked out examples are provided at the 
end of Sections 2.2–2.5 to elaborate the concepts discussed in that section. 

2.2 Index Notation and Summation Convention  

In modeling of manufacturing processes, we encounter physical quantities in the 
form of scalars, vectors and tensors. (In this book, a tensor means the tensor of 
order two unless stated otherwise). Definition of a tensor is provided in Section 
2.3. In 3-dimensional space, a vector has 3 components and tensor has 9 
components. The index notation can be employed to represent these components as 
well as expressions and equations involving scalars, vectors and tensors. In the 
index notation, the coordinate axes (x,y,z) are labeled as (1,2,3). Thus, to represent 
a velocity vector ( , , )x y zv v v , we use the notation iv , where it is implied that the 
index i takes the values 1, 2 and 3 in a 3-dimensional space. In a 2-dimensional 
space, it will take the values 1 and 2. Similarly, the notation ijI  with the indices i  
and j  is used to represent the following 9 components of an inertia tensor: 

zzzyzxyzyyyxxzxyxx IIIIIIIII ,,,,,,,, . 
Einstein’s summation convention is employed for writing the sum of various 

terms in a condensed form. In this convention, if an index occurs twice in a term, 
then the term represents the sum of all the terms involving all possible values of 
the index. For example, iiba  means 332211 bababa ++  in a 3-dimensional space. 
Similarly, iiI  means 332211 III ++ . The repeated index is called dummy index, 
while the non-repeated index is called free index. Thus, in the term jijbc , i  is a 
free index and j  is a dummy index. Any symbol can be used for a dummy index. 
Therefore, the expression jijbc  can also be written as kik bc . When there are two 
dummy indices, it means the sum over both. Thus in 3-dimensions, it will contain 9 
terms. As an example, the term ijij qp  means 

11 11 12 12 13 13 21 21 22 22 23 23 31 31 32 32 33 33p q p q p q p q p q p q p q p q p q+ + + + + + + + . 
If an index is repeated more than twice, then it is an invalid expression. An 
expression or equation containing no free index represents a scalar expression or 
scalar equation. Similarly, an expression or equation containing one free index 
denotes a vector expression or equation. An expression or equation containing two 
free indices represents a tensor expression or equation. As an example, the term iiI  
represents a scalar, the term jijbc  containing the free index i  represents a vector 

while the term ij jkp q  containing the free indices i  and k  represents a tensor. 
Similarly, the equation 

 i ia b d= , (2.1) 
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represents a scalar equation. Further, the equations 

 ijij tn =σ ,     (free index i , dummy index j ), (2.2) 

 kjikij rqp = ,     (free indices i and j , dummy index k ) (2.3) 

denote vector and tensor equations respectively. In an equation, all the terms 
should have the same number of free indices. Further, the notation for free indices 
should be the same in all the terms.  Thus, the equations  

 jii aI = ,    (no free index on left side) (2.4) 

and 

 klij qp = , (the two free indices have different notation on two sides) (2.5) 

are invalid expressions. 
 
Example 2.1: Expand the following expression:  

 jiji nt σ= . (2.6) 

Solution: This is a vector equation as there is only one free index, namely i , on 
each side of the equation. Dummy index j  on the left side indicates that it is a sum 
of three terms. Expanding this sum, the equation becomes : 

 1 1 2 2 3 3i i i it n n nσ σ σ= + + . (2.7) 

Now, since i  is a free index and takes the values 1, 2 and 3, the above vector 
equation actually represents the following 3 scalar equations: 

 
1 11 1 12 2 13 3

2 21 1 22 2 23 3

3 31 1 32 2 33 3

,
,
.

t n n n
t n n n
t n n n

σ σ σ
σ σ σ
σ σ σ

= + +

= + +

= + +

 (2.8) 

Example 2.2: Write in index notation the following expression: 

 
2 2 2

11 1 22 2 33 3 12 21 1 2 23 32 2 3

31 13 3 1

( ) ( )
( ) .

n n n n n n n n
n n

σ σ σ σ σ σ σ σ
σ σ

= + + + + + +

+ +
 (2.9) 

Solution: Note that there are 9 terms. Therefore, the index notation must involve 
two dummy indices. In order to write the above equation in terms of the dummy 
indices, we rearrange the right side as follows: 
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 11 1 1 12 1 2 13 1 3 21 2 1 22 2 2 23 2 3

31 3 1 32 3 2 33 3 3

( ) ( )

( ).
n n n n n n n n n n n n n

n n n n n n

σ σ σ σ σ σ σ

σ σ σ

= + + + + +

+ + +
 (2.10) 

Note that in each parenthesis, there is a sum over the second index of σ  and the 
index of second n . This sum can be expressed using a dummy index which we 
denote by j . Then,  the above expression becomes: 

 1 1 2 2 3 3n j j j j j jn n n n n nσ σ σ σ= + + . (2.11) 

Now, there is a sum over the first index of σ  and the index of first n . We express 
this sum using another dummy index which we denote by i . Thus, the final 
expression in terms of the index notation can be written as: 

 jiijn nnσσ = . (2.12) 

Note that, as stated earlier, the symbols for the dummy indices can be different 
than i  and j . 

Two symbols often used to simplify and shorten expressions in index notation 
are Kronecker’s delta and permutation symbol. The Kronecker’s delta is defined by  

 
1 if ,

0 if .
ij i j

i j

δ = =

= ≠
 (2.13) 

The permutation symbol is defined by  

( ) ( )
( ) ( )

0  if two or more indices are equal,

 1 if  , ,  are even permutations of 1,2,3 ,

1 if  , ,  are odd permutations of 1,2,3 .

ijk

i j k

i j k

∈ =

= +

= −

       (2.14) 

The δ and ∈ satisfy the following identities: 

, ,i ij j ij jk ik ij jk ika a A Aδ δ δ δ δ= = = ,                                         (2.15) 

( ) ( ) ( )ijk pqr ip jq kr jr kq iq jr kp jp kr ir jp kq jq kpδ δ δ δ δ δ δ δ δ δ δ δ δ δ δ∈ ∈ = − + − + − .

          (2.16) 

Example 2.3:  Expand the following expressions: 

 (a) .i j ijc a b δ=  (2.17) 

 (b) ˆ .ijk j ka b=∈ id i  (2.18) 
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Solution: (a) This is a scalar equation involving two dummy indices i  and j . 
Thus, it involves a sum of 9 terms. First expanding the sum over i , we get the 
following three terms on the left side of Eq. (2.17)  

 1 1 2 2 3 3 .j j j j j jc a b a b a bδ δ δ= + +  (2.19) 

Now, while expanding the sum over j  in each of the three terms, we use Eq. 
(2.13) to substitute the values of δ . Since the value of δ  is zero when its two 
indices are different, we get only one non-zero term in each expansion over j . 
Thus, the final expanded expression becomes 

 1 1 2 2 3 3.c a b a b a b= + +  (2.20) 

Note that the expression on the right side of Eq. (2.20) is the expansion of iiba  
Thus, we get an identity 

 .i j ij i ia b a bδ =  (2.21) 

(b) This is a vector equation involving 3 dummy indices. Therefore, it is a sum of 
27 terms. However, the value of the permutation symbol ∈  is zero when two of its 
indices are equal. Therefore, 21 terms are zero. The expansion with the remaining 
6 non-zero terms is  

 123 2 3 132 3 2 231 3 1 213 1 3

312 1 2 321 2 1

ˆ ˆ ˆ ˆ

ˆ ˆ .

a b a b a b a b

a b a b

=∈ + ∈ + ∈ + ∈

+ ∈ + ∈
1 1 2 2

3 3

d i i i i

i i
 (2.22) 

Now, we use Eq. (2.14) to substitute the values of the permutation symbol. Then, 
we get: 

 2 3 3 2 3 1 1 3 1 2 2 1
ˆ ˆ ˆ( ) ( ) ( ).a b a b a b a b a b a b= − + − + −1 2 3d i i i  (2.23) 

Note that the expression on the right side is the cross product of the vectors a  and 
b . Thus, we can write 

 ˆ .ijk j ka b× =∈ ia b i  (2.24) 

Example 2.4: Determinant of a matrix [ ]A  is defined by 

1det[ ]
6 lmn xyz lx my nzA A A A= ∈ ∈ .     (2.25) 
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There are following constraints on the components of [ ]A . 
(i) The matrix [ ]A  is symmetric, that is, its non-diagonal components satisfy the 
relation: 

.ij jiA A=         (2.26) 

(ii) Further, the sum of the diagonal components is zero. 

0kkA = .        (2.27) 

Using the above constraints, show that the expression for the determinant (Eq. 
2.25) reduces to 

1det[ ]
3 lm mn nlA A A A= .      (2.28) 

Solution: Using the identity (2.16), the determinant of [ ]A  (Eq. 2.25) can be 
expressed in terms ofδ : 

1det[ ] [ ( ) ( )
6

( )] .

lx my nz mz ny ly mz nx mx nz

lz mx ny my nx lx my nz

A

A A A

δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ

= − + −

+ −
  (2.29) 

The above expression can be modified using the identity (2.15) in each of the 6 
terms  

1det[ ] (
6

).

ll mm nn ll mn nm ln ml nm lm ml nn

lm mn nl ln mm nl

A A A A A A A A A A A A A

A A A A A A

= − + −

+ −
  (2.30) 

Further modification in the 2nd, 4th and 6th terms arises because of the symmetry of 
[ ]A  (Eq. 2.26). 

 
2 2

2

1det[ ] (
6

).

ll mm nn ll mn ln ml nm lm nn

lm mn nl ln mm

A A A A A A A A A A A

A A A A A

= − + −

+ −
  (2.31) 

Next, we use the constraint on the diagonal terms (Eq. 2.27) to simplify the above 
equation. Note that the index k in Eq. (2.27) is a dummy index, and thus, can be 
replaced by any other index. Therefore, 1st, 2nd, 4th and 6th terms become zero. 
Then, Eq. (2.31) becomes: 
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1det[ ] ( )
6 ln ml nm lm mn nlA A A A A A A= + .    (2.32) 

Next, we modify the 1st term using the symmetry of [A]: 

1det[ ] ( )
6 nl lm mn lm mn nlA A A A A A A= + .    (2.33) 

Finally, shuffling the order in the 1st term, we find that both the terms are identical. 
Combining the two terms, we get the desired expression: 

 1 1det[ ] ( )
6 3lm mn nl lm mn nl lm mn nlA A A A A A A A A A= + = .  (2.34) 

Example 2.5: Express the derivative of ijA  with respect to pqA  in index notation. 

Solution: Note that the derivate of ijA  with respect to pqA  is 1 only if both the 
indices p and q are exactly equal to i and j. If any one index is different, then the 
derivative is zero. For example, choose i = 2 and j = 3. Then, if both p = 2 and q = 
3, then the derivative of 23A  with respect to 23A  is one. However, the derivative of 

23A with respect to 3pA  for p = 1,3 or with respect to qA2 for q = 1, 2  is zero. 
Thus, we get 

.ij
ip jq

pq

A
A

δ δ
∂

=
∂

       (2.35) 

The first partial derivative of a component with respect to 
j

x  is indicated by a 

comma followed by j . For example, jiu ,  means /i ju x∂ ∂ , which in turn represents 
9 expressions, because both i  and j  vary from 1 to 3. 
 
Example 2.6: Expand the following expression: 

 , 0.ij jσ =  (2.36) 

Solution: This is a vector equation as there is one free index, namely i . Dummy 
index j  represents a sum over three terms. Further, the comma before j  indicates 
differentiation with respect to jx . Hence, after expanding the sum over j , the 
above vector equation takes the form: 
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 1 2 3

1 2 3
0.i i i

x x x
σ σ σ∂ ∂ ∂

+ + =
∂ ∂ ∂

 (2.37) 

Since i  is a free index and takes the values 1, 2 and 3, the above vector equation 
represents the following 3 scalar equations: 

 

1311 12

1 2 3

2321 22

1 2 3

31 32 33

1 2 3

0,

0,

0.

x x x

x x x

x x x

σσ σ

σσ σ

σ σ σ

∂∂ ∂
+ + =

∂ ∂ ∂

∂∂ ∂
+ + =

∂ ∂ ∂

∂ ∂ ∂
+ + =

∂ ∂ ∂

 (2.38) 

2.3 Stress  

As stated in the introduction, the stresses in a body vary from point to point. In this 
section, we first discuss the concept of stress at a point. Then, we carry out the 
analysis of stress at a point to develop the ideas of stress invariants, principal 
stresses, maximum shear stress, octahedral stresses and the hydrostatic and 
deviatoric parts of stress. Finally, we discuss the equations of motion which 
involve the derivatives of stress components. These equations arise as a 
consequence of the balance of linear momentum.  

2.3.1 Stress at a Point 

In this subsection, we first define the stress vector at a point. Then, the ideas of 
stress tensor and its relation with stress vector are developed. Definition of a tensor 
(or a second order tensor to be precise) is provided involving the transformation of 
components with a change in Cartesian coordinate system. 

2.3.1.1 Stress Vector 
Stress is a measure of the intensity of internal forces generated in a body. In 
general, stresses in a body vary from point to point. To understand the concept of 
stress at a point, consider a body subjected to external forces and supported in a 
suitable fashion, as shown in Figure 2.1. Note that, as soon as the forces are 
applied, the body gets deformed and sometimes displaced if the supports do not 
restrain the rigid body motion of the body. Thus, Figure 2.1 shows the deformed 
configuration. In fact, throughout this section, the configuration considered will be 
the deformed configuration. First, we define the stress vector (on a plane) at point 
P of the body. For this, pass a plane (called as cutting plane) through point P 
having a unit normal n̂ . On each half of the body, there are distributed internal 
forces acting on the cutting plane and exerted by the other half. On the left half, 



44 Modeling of Metal Forming and Machining Processes 

consider a small area AΔ  around point P  of the cutting plane. Let ΔF  be the 
resultant of the distributed internal forces (acting on AΔ ) exerted by the right half. 
Then, the stress vector (or traction) at point P  (on the plane with normal n̂ ) is 
defined as  

 
Figure 2.1. Stress vector at a point on a plane a. Cutting plane passing through point P of 
the deformed configuration; b. Stress vector nt , normal stress component nσ  and shear 

stress component sσ  acting at point P on the cutting plane 

 Lim
0

.n
A AΔ →

=
Δ

Ft Δ  (2.39)            

The component of nt  normal to the plane is called as the normal stress component. 

It is denoted by nσ  and given by 
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 ( ) .n n i inσ = t  (2.40)                              

The component of nt  along the plane is called as the shear stress component. It is 
denoted by sσ  and given by  

 
1/ 22 2( ) .s nσ σ⎡ ⎤= −⎢ ⎥⎣ ⎦nt  (2.41) 

Note that, on the right half, the normal to the cutting plane will be n- ˆ  and the 
stress vector at P will be  - nt as per the Newton’s third law. 

2.3.1.2 State of Stress at a Point, Stress Tensor 
One can pass an infinite number of planes through point P to obtain infinite 
number of stress vectors at point P. The set of stress vectors acting on every plane 
passing through a point describes the state of stress at that point.  

It can be shown that a stress vector on any arbitrary plane can be uniquely 
represented in terms of the stress vectors on three mutually orthogonal planes. To 
show this, we consider x, y and z planes as the three planes, having normal vectors 
along the three Cartesian directions x, y and z respectively. Let the stress vectors on 
x, y and z planes be denoted by xt , yt  and zt  respectively. Further, we denote 
their components along x, y and z directions as follows: 

 kjit x
ˆˆˆ

xzxyxx σσσ ++= , (2.42) 

 kjit y
ˆˆˆ

yzyyyx σσσ ++= , (2.43) 

 kjit z
ˆˆˆ

zzzyzx σσσ ++= , (2.44) 

where ( ˆ ˆ ˆi , j , k ) are the unit vectors along ( , , )x y z  axes. The stress vectors and 
their components are shown in Figure 2.2. To derive the above result, we consider 
a small element at point P  whose shape is that of a tetrahedron. The three sides of 
the tetrahedron are chosen perpendicular to x, y and z axes and the slant face is 
chosen normal to vector n̂ . Then, equilibrium of the tetrahedron in the limit as its 
size goes to zero leads to the following result [1-5]: 

 zyx nnn zyxn tttt ++= , (2.45) 

where xn , yn  and zn  are the components of the normal vector n̂ . This result is 
true for every stress vector at point P no matter what the orientation of the normal 
vector n̂  is. Further, this result remains valid even if the body forces are not zero 
or the body is accelerating. 
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Figure 2.2. Stress vectors and their components on x, y and z planes  a. Stress vector and its 
components on x plane; b. Stress vector and its components on  y plane; c. Stress vector and 
its components on z plane 

Let the components of the stress vector nt  be 

 ( ) ( ) ( )ˆ ˆ ˆ
n n nx y zt t t= + +nt i j k . (2.46) 

Substituting Eqs. (2.42-2.44) and (2.46), we get the component form of Eq. (2.45) 
as follows: 

 
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

z

y

x

zzyzxz

zyyyxy

zxyxxx

zn

yn

xn

n
n
n

)t(
)t(
)t(

σσσ
σσσ
σσσ

.  (2.47) 

In array notation, this can be written as  

 T{ } [ ] { }nt nσ= , (2.48) 



  Review of Stress, Linear Strain and Elastic Stress-Strain Relations 47 

where the matrix [ ]σ  is 

 [ ] .
xx xy xz

yx yy yz

zx zy zz

σ σ σ

σ σ σ σ

σ σ σ

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.49) 

In index notation, it can be expressed as  

 T( ) .n i ij jt nσ=  (2.50) 

Equation (2.47) or (2.48) or (2.50) is called as the Cauchy’s relation. Equations 
(2.45) and (2.47) indicate that the stress at a point can be completely described by 
means of just three stress vectors , andx y zt t t  acting on mutually orthogonal 

planes or by their nine components: , , , , , , , and .xx xy xz yx yy yz zx zy zzσ σ σ σ σ σ σ σ σ   
Thus, the stress at a point is conceptually different than a scalar which has only 
one component or a vector which has three components (in three dimensions). In 
the next paragraph, we shall discuss a characteristic of the stress at a point which 
will indicate that it is a tensor (of order two). 

2.3.1.3 Transformation Relations 
Note that we can represent the stress vector nt  (at a point) as a combination of the 
stress vectors on any three mutually orthogonal planes. These planes can be x′ , y′  
and z′ (Figure 2.3) instead of x, y and z.  Then, following the earlier procedure, the 
stress vector nt  in the component form can be written as 

 
'( )

( ) ,

( )

x x y x z xn x x

n y x y y y z y y

n z x z y z z z z

t n
t n

t n

σ σ σ

σ σ σ

σ σ σ

′ ′ ′ ′ ′′ ′

′ ′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′ ′

⎡ ⎤⎧ ⎫ ⎧ ⎫
⎢ ⎥⎪ ⎪ ⎪ ⎪

= ⎢ ⎥⎨ ⎬ ⎨ ⎬
⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥ ⎩ ⎭⎩ ⎭ ⎣ ⎦

 (2.51) 

or 
 T{ } [ ] { }.nt nσ′ ′ ′=              (2.52) 
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Figure 2.3. Stress vectors and their components on x′ , y ′  and z ′  planes. (Forces acting 

on the body and supports not shown) a. Stress vector and its components on x′  plane; b. 
Stress vector and its components on y ′  plane; c. Stress vector and its components on z ′  
plane 

Obviously, the components of the matrices [ ]σ  and [ ]σ ′  must be related as the 
stress vector nt  (at point P) has a unique magnitude and direction. To get this 
relation, we consider equilibrium of three tetrahedra (at point P) whose three faces 
are perpendicular to x, y and z directions. The fourth face is normal to x′  direction 
for the first tetrahedron, normal to y′  direction for the second tetrahedron and 
normal to z′  direction for the third tetrahedron. Three equilibrium equations for 
each of the three tetrahedra lead to the following result: 

1 1 1 1 2 3

2 2 2 1 2 3

3 3 3 1 2 3

.
x x x y x z xx xy xz

y x y y y z yx yy yz

z x z y z z zx zy zz

m n
m n m m m
m n n n n

σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

A A A A
A
A

        

        (2.53) 
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Here, if ( k,j,i ′′′ ˆˆˆ ) are the unit vectors along ( , , )x y z′ ′ ′ axes, then 1 1 1( , , )m nA  denote 

the direction cosines of i ′ˆ  with respect to ( , , )x y z axes. Similarly, 2 2 2( , , )m nA  

denote the direction cosines of j′ˆ  with respect to ( , , )x y z  axes and 3 3 3( , , )m nA  

denote the direction cosines of k′ˆ  with respect to ( , , )x y z  axes. Define the matrix 
][Q  as  

 
1 1 1

2 2 2

3 3 3

[ ]
m n

Q m n
m n

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A
A
A

. (2.54) 

Then, the relation (2.53) can be written as  

 T[ '] [ ][ ][ ]Q Qσ σ= , (2.55) 

or, in index notation, it can be expressed as 

 T
ij ik kl ljQ Qσ σ′ = . (2.56) 

The result of Eq. (2.53) or (2.55) or (2.56) remains valid even if the body forces are 
not zero or the body is accelerating. 

Any quantity whose components with respect to two Cartesian coordinate 
systems transform according to the relation (2.53) or (2.55) or (2.56) is called as a 
tensor (or tensor of second order). Thus, the stress at a point is a tensor, called as 
stress tensor. We denote it by the symbol σ . It is related to the stress vector on 
plane with normal n̂  by the relation (2.47) or (2.48) or (2.50). In tensor notation, 
this relation can be written as  

 T ˆ=nt σ n . (2.57) 

The relation (2.53) or (2.55) or (2.56) is called as the tensor transformation 
relation. The stress tensor σ  is called the Cauchy stress tensor. In the next chapter, 
we shall discuss other types of stress tensors.  

Thus, there is a difference between a tensor and its matrix. A tensor represents 
a physical quantity which has an existence independent of the coordinate system 
being used. On the other hand, matrix of a tensor contains its components with 
respect to some coordinate system. If the coordinate system is changed, the 
components change giving a different matrix. Matrices with respect to two 
different coordinate systems are related by the tensor transformation relation. 

Let ( , , )x y za a a be the components of a vector a  with respect to the coordinate 

system ( , , )x y z . Further, denote the components of a  with respect to the 
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coordinate system ( , , )x y z′ ′ ′ as ( , , )x y za a a′ ′ ′ . Then these two sets of components 
are related by the following transformation law: 

 
1 1 1

2 2 2

3 3 3

x x

y y

z z

a m n a
a m n a

m na a

⎧ ⎫ ⎧ ⎫′ ⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥′ =⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥′ ⎣ ⎦⎩ ⎭ ⎩ ⎭

A
A
A

, (2.58) 

or 

 { } [ ]{ }a Q a′ = , (2.59) 

or, in index notation 

 ij ja Q a′ = . (2.60) 

The relation (2.58) or (2.59) or (2.60) is called as the vector transformation 
relation. The matrix [ ]Q , which appears in vector and tensor transformation 
relations, is called as the transformation matrix. It can be easily verified that [ ]Q  is 
an orthogonal matrix, that is, it satisfies the relation 

 T T
ik kj ik kj ijQ Q Q Q δ= = . (2.61) 

There are two types of orthogonal matrices. The first type represents the rotation of 
the coordinate axes and its determinant is +1. The second type represents the 
reflection of the coordinate axes and its determinant is -1.  It can be shown that the 
matrix T[ ]Q  represents the rotation of the ( , , )x y z coordinate axes to 
( , , )x y z′ ′ ′ axes and therefore it is called as the rotation matrix. Its determinant is 
+1. 

2.3.1.4 Stress Components 
A tensor component is always represented by two subscript indices. In the case of a 
component of the stress tensor, the meaning of the indices is as follows. The first 
index describes the direction of the normal to the plane on which the stress 
component acts while the second index represents the direction of the stress 
component itself. Thus, xyσ  indicates a stress component acting in y -direction on 
x -plane. When both the indices are same, it means the stress component is along 
the normal to the plane on which it acts. It is called as the normal stress 
component. Thus, xxσ , yyσ  and zzσ  are the normal stress components. When the 
two indices are different, it means the direction of the component is within the 
plane. Such a component is called as the shear stress component. Thus, ijσ  where 
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ji ≠  are the shear stress components. We adopt the following sign convention for 
the stress components. We first define positive and negative planes. A plane i  is 
considered positive if the outward normal to it points in the positive i  direction, 
otherwise it is considered as negative. A stress component is considered positive if 
it acts in positive direction on positive plane or in negative direction on negative 
plane. Otherwise, it is considered as negative. Figure 2.4 illustrates positive and 
negative normal and shear stress components. 

 
Figure 2.4. Sign convention for normal and shear stress components a. Small element at 
point  ‘P’ in  the deformed configuration.  Forces on the body and supports are not shown; b. 
Positive and negative  ‘σxx’; c. Positive and negative  ‘σxy’ 

2.3.1.5 Symmetry of Stress Tensor 
By considering the moment equilibrium of a small element (of parallelepiped 
shape) at point P in the limit as the size of the element tends to zero, it can be 
shown that [2] 

 ij jiσ σ= . (2.62) 

Thus, the stress tensor is symmetric. Now, the Cauchy relation (Eq. 2.48 or 2.50) 
may be written as: 

 { } [ ]{ }nt nσ= , (2.63) 

or 

 jijin nt σ=)( . (2.64) 

In tensor notation, it can be expressed as 
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 nσtn ˆ= . (2.65) 

The result of Eq. (2.62) is valid even if the body forces are not zero or the body is 
accelerating. 
 
Example 2.7: Components of the stress tensor σ at point P of the beam of Figure 
2.5, with respect to ),,( zyx coordinate system, are given as: 

 
35 25 0

[ ] 25 15 0
0 0 0

σ
−⎡ ⎤

⎢ ⎥= − −⎢ ⎥
⎢ ⎥⎣ ⎦

 (MPa). (2.66) 

(a) Find the stress vector nt  on the plane whose normal is given by  

 ˆ ˆ ˆˆ (1/ 3)( )= + +n i j k . (2.67) 

Find the normal ( )nσ and shear )( sσ components of nt . 
(b) Find the components of σ with respect to the rotated coordinate system 
( , , )x y z′ ′ ′ . The unit vectors  ˆ ˆ ˆ( )′ ′ ′i , j ,k  along the ( , , )x y z′ ′ ′  axes are given as: 

 

ˆ ˆ ˆ0.6 0.8
ˆ ˆ

ˆ ˆ ˆ0.8 0.6 .

′ = +

′ =

′ = − +

i i k,

j j,

k i k

 (2.68) 

 
Figure 2.5. A cantilever beam subjected to uniformly distributed load on top surface 

Solution: (a) We use the Cauchy’s relation in array form to evaluate the stress 
vector nt . As per Eq. (2.46), we denote its components with respect to 
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( , , )x y z coordinate system by ( )n xt , ( )n yt  and ( )n zt . Further, the given 

components of the unit normal vector n̂  are  

 3/1=== zyx nnn . (2.69) 

Writing the components of nt and n̂  in the array form and using Eq. (2.47), we get  

 

1 10
3 3( ) 35 25 0

1 40( ) 25 15 0
3 30 0 0( ) 1 0
3

n x

n y

n z

t
t

t

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪
⎪ ⎪⎧ ⎫ ⎪ ⎪−⎡ ⎤
⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥= − − = −⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪

⎩ ⎭⎩ ⎭

. (2.70) 

Thus, the stress vector is:  

 10 40ˆ ˆ-
3 3

=nt i j  (MPa). (2.71) 

Then, using Eq. (2.40), we get the normal component of the stress vector: 

 10 1 40 1 1( ) (0) 10
3 3 3 3 3n n i it nσ

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= = + − + = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 (MPa). 

  (2.72) 

Further, using Eq. (2.41), we get the magnitude of the shear component of the 
stress vector: 

 
1/ 22 21/ 22 2 210 40 10 14( ) ( 10)

3 3 3
σ σ

⎡ ⎤⎛ ⎞ ⎛ ⎞−⎡ ⎤ ⎢ ⎥= − = + − − =⎜ ⎟ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
s n nt  (MPa).    

  (2.73) 

(b) To find the components of σ  with respect to ( , , )x y z′ ′ ′  coordinate system, we 
first evaluate the transformation matrix [ ]Q . We get the direction cosines of the 

unit vectors ( k,j,i ′′′ ˆˆˆ ) from Eq. (2.68). Substituting them in Eq. (2.54), we get the 
following expression for [ ]Q : 
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0.6 0 0.8

[ ] 0 1 0
0.8 0 0.6

Q
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

. (2.74) 

Using the tensor transformation relation (Eq. 2.55), we get the following matrix of 
the components of the stress tensor with respect to ( , , )x y z′ ′ ′  coordinate system: 

 

T
0.6 0 0.8 35 25 0 0.6 0 0.8

[ ] [ ][ ][ ] 0 1 0 25 15 0 0 1 0 ,
0.8 0 0.6 0 0 0 0.8 0 0.6

12.6 15 16.8
15 15 20 (MPa).

16.8 20 22.4

Q Qσ σ
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ = = − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

− −⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

                         

  (2.75) 
Equation (2.75) shows that the matrix of σ is symmetric with respect to the 
coordinate system ( , , )x y z′ ′ ′  as well.  

Note that the stress components xzσ , yzσ  and zzσ  are zero at point P of the 
beam (Eq. 2.66). Such a state is called as the state of plane stress (at a point) in 

yx −  plane. When these stress components are zero at every point of the body and 
if, additionally, the remaining stress components xxσ , yyσ  and xyσ  are 
independent of z coordinate, it is called as the state of plane stress (in a body) in 

yx −  plane. It can be shown that the state of stress in the beam of Figure 2.5 is of 
this type. 

2.3.2 Analysis of Stress at a Point 

As stated earlier, in this subsection, we carry out the analysis of stress at a point to 
discuss the concepts of principal stresses and principal directions, principal 
invariants, maximum shear stress, octahedral stresses and the hydrostatic and 
deviatoric parts of stress. 

2.3.2.1 Principal Stresses, Principal Planes and Principal Directions 
There exist at least 3 mutually perpendicular planes (in the deformed 
configuration) such that there are no shear stress components on them i.e., the 
stress vector is normal to these planes. These planes are called as the principal 
planes and normals to these planes are called as the principal directions (of stress). 
The values of the normal stress components are called as the principal stresses.  
We denote the principal stresses as 1σ , 2σ  and 3σ . The unit vectors along the 
principal directions are normally denoted as ˆ1e , ˆ2e  and ˆ3e . We arrange the 
principal stresses as  
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 1 2 3.σ σ σ≥ ≥  (2.76) 

The senses of the unit vectors are so chosen that they always form a right-sided 
system. Thus, 

 ˆ ˆ ˆ. 1.× = +1 2 3e e e  (2.77) 

Since the stress vector on a principal plane i  (i.e., the plane perpendicular to the 
principal direction i ) has only the normal component equal to iσ , the components 
of the stress tensor, with respect to the principal directions as the coordinate 
system, become:  

 
1

2

3

σ 0 0
[ ] 0 σ 0 .

0 0 σ

pσ
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.78) 

It can be easily verified that, at a point, maximum value of the normal stress 
component ( )nσ with respect to the orientation of the normal vector n̂  is 1σ . 
Further, the minimum value is 3σ .  

It can be shown that the principal stresses are the eigen values or principal 
values and the unit vectors along the principal directions are the normalized eigen 
vectors of the stress tensor [2-4]. Before we write the equation which the eigen 
values and eigenvectors of a tensor satisfy, we define a unit tensor. It is denoted by 
the symbol1 . A unit tensor is defined as a tensor whose components with respect 
to every coordinate system are given by the following array: 

 
1 0 0
0 1 0 .
0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.79) 

Thus, in index notation, the components of the unit tensor are represented as ijδ . If 
λ  is an eigen value of the stress tensor σ  and if x  is the corresponding 
eigenvector, λ  and x  satisfy the following equation: 

 ( )[ ] [1] { } {0}.σ xλ− =       (2.80) 

Here, the arrays [ ]σ , [1]  and { }x  contain the components of respectively σ , 1  
and x  with respect to the given coordinate system ( , , )x y z . For x  to be an eigen 
vector of σ , Eq. (2.80) should have a non-trivial solution. For this to happen, the 
determinant of the coefficient matrix ( )[ ] [1]σ λ− must be zero. This condition 
leads to the following cubic equation in λ : 
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 3 2 0,I II IIIσ σ σλ λ λ− − − =  (2.81) 

where 

 iiI σσ = , (2.82) 

 1 ( )
2 ij ij ii jjIIσ σ σ σ σ= − , (2.83) 

 1 2 3ijk i j kIIIσ σ σ σ=∈ .    (2.84) 

Thus, the principal stresses iσ  are found as the roots of the above equation. Once 

iσ  are determined, The unit vectors iê  along the principal directions are found 
from the following equation: 

 ( )[ ] [1] { } {0}i ieσ σ− = ,      (no sum over i ). (2.85) 

where the array }{ ie  contains the components of iê  with respect to the given 
coordinate system ( , , ).x y z    

2.3.2.2 Principal Invariants 
Trace of tensor σ  (denoted by σtr ) is a scalar function of σ  which is defined as  

 iitr σ=σ . (2.86) 

Thus, using Eq. (2.82), we get 

 σtrI =σ .  (2.87) 

Note that, in Eq. (2.86), the scalar function σtr  is evaluated using the components 
of σ  with respect to the given coordinate system ( , , )x y z . Let ijσ ′  be the 
components of σ  in a rotated coordinate system ( , , )x y z′ ′ ′ . If we use the rotated 
coordinate system to evaluate the scalar function σtr , then it would be  

 iitr σ ′=σ .  (2.88) 

Using the tensor transformation relation (2.56), and the orthogonality of [ ]Q  (Eq. 
(2.61)), it can be shown that  

 iiii σσ =′ .  (2.89) 

Thus, Eqs. (2.86), (2.88) and (2.89) show that the value of σtr  is independent of 
the coordinate system. A scalar function of a tensor whose value is independent of 
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the coordinate system is called as an invariant of the tensor. Thus, σI is an 
invariant of the tensor σ . Similarly, it can be shown that σII and σIII are also the 
invariants of the tensor σ . Using the definition of the trace and the symmetry of 
σ , it can be shown that 

 { }2 21 ( ) ( )
2

II tr trσ = −σ σ .  (2.90) 

Further, it can be shown that  

 detIII ,σ = σ   (2.91) 

where detσ  means the determinant of the matrix of σ  in any coordinate system. 
Every other invariant of σ can be expressed in terms of these three invariants 

[1]. Therefore, σI , σII  and σIII  are called as the principal invariants of the 
tensor σ . 

2.3.2.3 Maximum Shear Stress 
It can be shown that, at a point, maximum value of the shear stress component with 
respect to the orientation of the normal vector n̂  is [4] 

 1 3
max

( )
2s

σ σ
σ

−
= .  (2.92) 

Further, the normals to the planes on which maxsσ acts are given by [4] 

 1ˆ ˆ ˆ( )
2

= ± ±1 3n e e .  (2.93) 

This result will be useful when we discuss the yield criteria later. 

2.3.2.4 Octahedral Stresses 
A plane whose normal is equally inclined to the three principal directions is called 
as octahedral plane. Let n̂  be the unit normal to an octahedral plane. Further, let 

in  be its components with respect to the principal directions iê . Since in  are 
equal in magnitude and 

 1,i in n =    (2.94) 

we get 
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 1
3in = ± .  (2.95) 

From Eq. (2.95), we get eight different normal vectors: (1 3 ,1 3 ,1 3) , 

(1 3 ,1 3 , 1 3)− ,………, ( 1 3 , 1 3 , 1 3)− − − . Thus there are eight 
octahedral planes. 

Let nt  be the stress vector on an octahedral plane. Further, let int )(  be its 
components with respect to the principal directions iê . Substituting the 
components of σ  and n̂  with respect to the principal directions (expressions 2.78 
and 2.95) in Eq. (2.64), we get the following expression for int )( : 

 1( )
3n i it σ= ± . (2.96) 

Substituting the expressions (2.95-2.96) for in  and int )(  in Eq. (2.40), we get the 
following expression for the normal stress component (denoted by octσ ) on the 
octahedral planes: 

 1 2 3
1 ( )
3 3oct

Iσσ σ σ σ= + + = . (2.97) 

Similarly, substituting the expressions (2.96-2.97) for int )(  and octσ  in Eq. (2.41), 
we get the following expression for the magnitude of the shear stress component 
on the octahedral planes (denoted by octτ ): 

( ) ( ) ( )
1/ 2 1/ 2

22 2 2 2
1 2 3 1 2 3

1 1 2 3
3 9 9oct I IIσ στ σ σ σ σ σ σ⎡ ⎤ ⎡ ⎤= + + − + + = +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. 

          (2.98)                                    

Note that when the stress tensor at a point has only the deviatoric part, then the 
octahedral planes are free of the normal stress component. The expression for the 
shear stress on the octahedral planes will be useful when we discuss the yield 
criteria in Chapter 3. 

2.3.2.5 Decomposition into the Hydrostatic and Deviatoric Parts  
Every tensor can be decomposed as a sum of a scalar multiple of a unit tensor 1  
and a traceless tensor. Thus, for the stress tensor σ , we can write 
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 1
3

tr '⎛ ⎞= +⎜ ⎟
⎝ ⎠

1σ σ σ ,       ( 0tr ′ =σ ). (2.99) 

In index notation, this can be written as  

 1
3ij kk ij ij'σ σ δ σ⎛ ⎞= +⎜ ⎟

⎝ ⎠
, ( 0)kk'σ = . (2.100) 

Note that, since σ  is a symmetric tensor, σ'  is also a symmetric tensor. The unit 
tensor 1  is of course symmetric. The stress vector corresponding to the first part is 
always normal to the plane and has the same magnitude on every plane, namely 
(1/ 3)trσ . Thus, this part of the stress tensor is similar to the state of stress in water 
at rest, except that whereas (1/ 3)trσ  may be tensile or compressive, the state of 
stress in water is always compressive. Therefore, this part of the stress tensor is 
called as hydrostatic part of σ . The second part is called as the deviatoric part of 
σ  and represents a pure shear state.  

In isotropic  materials, the deformation caused by the hydrostatic part consists 
of only a change in volume (or size) but no change in shape. On the other hand, the 
deformation caused by the deviatoric part consists of no change in volume but only 
the change in shape. We shall see in Chapter 3 that, in an isotropic ductile material, 
yielding is caused only by the deviatoric part of the stress tensor. 

2.3.2.6 Principal Invariants of the Deviatoric Part 
The principal invariants of σ' are denoted by 1J , 2J  and 3J . Like the principal 
invariants of σ  (Eqs. 2.82-2.84, 2.87, 2.90, 2.91), they are defined as  

 1 iiJ tr σ'= =σ' , (2.101) 

 { }2 2
2

1 1( ) ( ) ( )
2 2 ij ij ii jjJ tr tr σ' σ' σ' σ'= − = −σ' σ' , (2.102) 

 3 1 2 3det ijk i j kJ ' ' 'σ σ σ= =∈σ' .  (2.103) 

Since 0tr =σ'  (Eq. 2.99), 1J  has the value zero. Further, 2J  also gets simplified. 
Thus, 

 01 =J ,  (2.104) 

 ( )2
2

1 1
2 2 ij ijJ tr ' 'σ σ= =σ' .  (2.105) 

The expressions for these invariants will be useful while discussing the yield 
criteria of isotropic materials in Chapter 3. 
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Example 2.8: Components of the stress tensor σ  at a point, with respect to the 
( , , )x y z coordinate system, are given as  

 
18 24 0

[ ] 24 32 0
0 0 20

σ
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

 (MPa).  (2.106) 

(a) Find the principal invariants of σ . 
(b) Find the principal stresses iσ  and the unit vectors iê  along the principal 
directions. Arrange iσ  such that 1 2 3σ σ σ≥ ≥ . Further, choose the senses of 

iê  such that ˆ ˆ ˆ 1⋅ × = +1 2 3e e e . 
(c) Find the maximum shear stress maxsσ  and the normals to the planes on 

which maxsσ  acts. Express the normals in terms of the unit vectors ˆ ˆ ˆ( , , )i j k . 

(d) Find the octahedral normal ( )octσ and shear ( )octτ stresses . 
(e) Find the hydrostatic and deviatoric parts of σ . 

 
Solution: (a) Substituting the values of ijσ  from Eq. (2.106) and the values of 

permutation symbol ijk∈  from Eq. (2.14), we get 

 18 32 20 30iiIσ σ= = + − =  (MPa);  (2.107) 

( )22 2 2 2 2

1 ( ),
2
1 (18) 2(24) (32) ( 20) 4(0) (30)(30) 1000 MPa ;
2

ij ij ii jjIIσ σ σ σ σ= −

⎡ ⎤= + + + − + − =⎣ ⎦
 (2.108)                                                     

( )

1 2 3

11 22 33 23 32 12 23 31 21 33 13 21 32 22 31

3

,

( ) ( ) ( ),
18[32 ( 20) 0 0] 24[0 0 24 ( 20)] 0[24 0 32 0],

0 MPa .

IIIσ σ σ σ

σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ

=∈

= − + − + −

= × − − × + × − × − + × − ×

=

ijk i j k

  

 (2.109) 
 (b) Substituting the values of σI , σII  and σIII  from part (a), the cubic equation 
for λ  (Eq. 2.81)  becomes: 

 3 230 1000 0 0λ λ λ− − − = .  (2.110) 
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The roots of this equation are: 0, 20, 50λ = − . Arranging them in decreasing 
order, we get the following values of the principal stresses: 

 1 50σ =  MPa, 2 0σ =  MPa, 3 20σ = − MPa.  (2.111) 

To find the unit vectors iê  along the principal directions, we use Eq. (2.85). Let 
the unit vector along the first principal direction be: 

 1 1 1
ˆ ˆ ˆˆ x y ze e e .= + +1e i j k   (2.112) 

Then for 1=i , Eq. (2.85) becomes: 

 
11 1 12 13 1

21 22 1 23 1

31 32 33 1 1

0
0 .
0

x

y

z

e
e

e

σ σ σ σ
σ σ σ σ
σ σ σ σ

⎧ ⎫−⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢ ⎥− =⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥− ⎩ ⎭⎣ ⎦ ⎩ ⎭

   (2.113) 

Substituting 1 50σ =  and the values of ijσ  from Eq. (2.106) and expanding the 
above equation, we get 

 
1 1 1

1 1 1

1 1 1

(18 50) 24 0 0,

24 (32 50) 0 0,

0 0 ( 20 50) 0.

− + + =

+ − + =

+ + − − =

x y z

x y z

x y z

e e e

e e e

e e e

           (2.114) 

From third equation, we obtain 1 0ze = . Note that the first two equations are 
linearly dependent. Each of them gives 1 1(4 / 3)y xe e= . Since ˆ1e  is a unit vector, 
we have 

 2 2 2
1 1 1 1.x y ze e e+ + =  (2.115) 

Substituting 1 0ze =  and 1 1(4 / 3)y xe e=  in the above equation, we obtain 

1 (3 / 5)xe = ± . Choosing the positive sign, we get the following expression for the 
unit vector along the first principal direction: 

 3 4ˆ ˆˆ
5 5

= +1e i j .  (2.116) 

Similarly, we get the following expressions for the unit vectors along the other two 
principal directions: 
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 4 3ˆ ˆˆ
5 5

= −2e i j ,  (2.117) 

 ˆˆ = −3e k .  (2.118) 

Note that whereas the sense of the second unit vector has been chosen to be 
arbitrary, that of the third one has been selected so as to satisfy the condition 
ˆ ˆ ˆ 1⋅ × = +1 2 3e e e . 

(c) Maximum shear stress is given by Eq. (2.92). Substituting the values of 1σ  and 

3σ  from part (b) in this equation, we get 

 1 3
max

50 ( 20) 35
2 2s

σ σ
σ

− − −
= = =  (MPa).  (2.119a) 

The normals n̂  to the planes on which maxsσ acts are given by Eq. (2.93). 

Substituting the expressions for ˆ1e  and ˆ3e  from part (b) in this equation, we obtain 
the following expressions for n̂ : 

 1 1 3 4ˆ ˆ ˆˆ ˆ ˆ( )
5 52 2

⎛ ⎞= ± ± = ± +⎜ ⎟
⎝ ⎠

1 3 ∓n e e i j k .  (2.119b)  

(d) Octahedral normal )( octσ  and shear )( octτ  stresses are calculated using Eqs. 
(2.97) and (2.98). Substituting the values of σI  and σII from part (a), we get  

 30 10
3 3oct
Iσσ = = =  (MPa),  (2.120a) 

1/ 2 1/ 2
2 22 2 10 78( 3 ) [(30) 3(1000)] (MPa).

9 9 3oct I IIσ στ ⎡ ⎤ ⎧ ⎫= + = + =⎨ ⎬⎢ ⎥⎣ ⎦ ⎩ ⎭
  

 (2.120b) 

(e) As per Eq. (2.100), components of the hydrostatic part are given by 
[(1/ 3) ]kk ijσ δ . Since 30kkσ =  from part (a), the matrix of the hydrostatic part of 
σ becomes  

 
10 0 0
0 10 0
0 0 10

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (MPa).  (2.121) 

Using 30kkσ =  and Eq. (2.100), components of the deviatoric part can be 
expressed as: 
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 10 .ij ij ij'σ σ δ= −    (2.122a) 

Using the values of ijσ  from Eq. (2.106), we get the following expression for the 
matrix of the deviatoric part:  

 ( )
18 24 0 10 0 0 8 24 0

[ ] 24 32 0 0 10 0 24 22 0 MPa .
0 0 20 0 0 10 0 0 30

σ'
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (2.122b)  

In the state of stress given by Eq. (2.106), zzσ  is not zero. Therefore, it is not a 
state of plane stress (at a point) in yx −  plane. However, since the principal stress 

2σ  is zero, it is a state of plane stress (at a point) in the plane perpendicular to ˆ2e . 

2.3.3 Equations of Motion 

Let  

 ˆ ˆ ˆ
x y za a a= + +a i j k  (2.123) 

be the acceleration vector at a point of the deformed configuration. The 
acceleration vector is related to the time derivatives of the displacement vector and 
velocity vector. But, that relation will be discussed later. Further, let 

 ˆ ˆ ˆ
x y zb b b= + +b i j k   (2.124) 

be the body force vector per unit mass acting on the body. We shall denote the 
density in the deformed configuration by the symbol ρ . Note that, in general, u , 
b  and ρ  vary from point to point. Thus, they are functions of the coordinates 
( z,y,x ). 

Now, we apply the principle of balance of linear momentum in x , y  and 
z directions to a small element (of parallelepiped shape) at a point of the deformed 
configuration. In the limit as the size of the element tends to zero, it leads to the 
following three equations of motion: 
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,

,

.

yxxx zx
x x

xy yy zy
y y

yzxz zz
z z

a b
x y z

a b
x y z

a b
x y z

σσ σ
ρ ρ

σ σ σ
ρ ρ

σσ σ
ρ ρ

∂∂ ∂
= + + +

∂ ∂ ∂
∂ ∂ ∂

= + + +
∂ ∂ ∂

∂∂ ∂
= + + +

∂ ∂ ∂

 (2.125) 

When the acceleration vector is zero, we get the equilibrium equations.  
As stated in the introduction, there are 3 sets of equations which govern the 

displacements, strains and stresses in a body. Equations (2.125) represent the first 
set of governing equations. The other two sets will be discussed in the remaining 
sections. 

Divergence of the stress tensor σ  is denoted by σ⋅∇  . It is a vector and 
defined by  

 

ˆ ˆ

ˆ

xy yx yy yzxx xz

zyzx zz

x y z x y z

.
x y z

σ σ σ σσ σ

σσ σ

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂
∇ ⋅ = + + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

∂⎛ ⎞∂ ∂
+ + +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

σ i j

k

  (2.126) 

In index notation, the component i  of σ⋅∇  can be written as 

 ,( ) .i ij jσ∇ ⋅ =σ   (2.127) 

Using the definition of σ⋅∇ , the equations of motion (Eq. 2.125) become 

 Tρ ρ= + ∇ ⋅a b σ .  (2.128) 

In index notation, they can be expressed as 

 ,i i ji ja bρ ρ σ= + .  (2.129) 

But, since σ is a symmetric tensor, the above equations can be written as  

 ,ρ ρ= + ∇ ⋅a b σ   (2.130) 

or  

 , .i i ij ja bρ ρ σ= +   (2.131) 
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Example 2.9: For the beam of Figure 2.5, expressions of the stress components 
with respect to ),,( zyx  coordinate system are: 

 ( )
( )

2

2 3 3

2 2

3 ( ) ,
6

3 2
6
3 ( )
6

0.

zz

yy
zz

xy
zz

xz yz zz

wb x y
I
wbσ = - h y - y + h ,
I
wbσ = - l - x h - y ,
I

σ = σ = σ =

σ = −Axx

 (2.132) 

Here, w  is the uniform stress acting on the top surface of the beam in negative y  
direction and b , A  and h  are the geometric dimensions of the beam (Figure 2.5). 
Further, zzI  is the moment of inertia of the cross-section of the beam about z -
axis. Assuming the body force vector b  to be zero, verify that the above stress 
expressions satisfy the equations of motion (Eq. 2.125). 
 
Solution: Since the beam is in equilibrium, the acceleration vector is zero. 
Therefore, 

 0.x y za a a= = =   (2.133) 

Further, since the body force vector is given as zero, 

 0.x y zb b b= = =   (2.134) 

Then, the equations of motion (Eq. 2.125) reduce to:  
  

 0=
∂

∂
+

∂

∂
+

∂
∂

zyx
zxyxxx σσσ

, 

 0=
∂

∂
+

∂

∂
+

∂

∂

zyx
zyyyxy σσσ

, 

 
0=

∂
∂

+
∂

∂
+

∂
∂

zyx
zzyzxz σσσ

.  (2.135) 

They are called as the equilibrium equations since the acceleration vector is zero. 
Differentiating the expressions (Eq. 2.132) for ijσ  and substituting the derivatives 
in the first two equilibrium equations, we get  
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 3 [ 2( ) ( )( 2 )] 0 0
6

yxxx zx

zz

wb x y x y
x y z I

σσ σ∂∂ ∂
+ + = − − − − − + =

∂ ∂ ∂
A A , (2.136a) 

 ( ) ( )2 2 2 2( 3)( 1) 3 3 0 0.
6

xy yy zy

zz

wb h y h y
x y z I

σ σ σ∂ ∂ ∂ ⎡ ⎤+ + = − − − − − + =⎢ ⎥⎣ ⎦∂ ∂ ∂
  

(2.136b) 

Because xzσ , yzσ  and zzσ  are zero (Eq. 2.132), the third equilibrium equation is 
identically satisfied. 

2.4 Deformation 

While discussing stresses in a body, we considered only the deformed 
configuration. However, for describing the deformation of a body, one must 
consider both the initial (undeformed) and the deformed configurations of the 
body. Those are shown in Figure 2.6. However, the forces acting on the deformed 
configuration and the supports are not shown as they are not necessary to discuss 
the deformation. For the sake of clarity, overlapping of the undeformed and 
deformed configurations is avoided by assuming the translation of the body to be 
very large as shown in the figure. Deformation in a body varies from point to point. 
Deformation at a point has two aspects. When the body is deformed, a small line 
element 0 0P Q  at a point undergoes a change in its initial length (Figure 2.6). In 
general, this happens for the line elements in all directions at that point. Similarly, 
a pair of line elements 0 0P R  and 0 0P S  undergo a change in their initial angle 
(Figure 2.6). Again, generally, this happens for every pair of line elements at that 
point. Strain at a point is a measure of the deformation at that point. Thus, strain at 
a point consists of the following two infinite sets: 

 A measure of change in linear dimension in every direction at that 
point 

 A measure of change in angular dimension for every pair of directions 
at that point. 

One can choose various measures to define the strain at a point. For example, one 
can choose either the change in length per unit length or the change in square 
length per unit square length or the logarithm of the ratio of new length to the 
initial length as measures of the change in linear dimension. Further, one can 
choose the change in angle, the sine function of the change in angle etc. as the 
measures of the change in angle. For specifying the measure of change in angle, 
usually, the initial angle is chosen to be / 2π  radians. 
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Figure 2.6. Deformation at a point. The length 00QP  changes to PQ  in the deformed 

configuration. The angle 000 RPS  changes to SPR  in the deformed configuration a. 
Undeformed configuration; b. Deformed configuration 

Deformation at a point is related to the displacement of the neighborhood of 
that point. The neighborhood of a point is defined as a set of points in the close 
vicinity of that point.  The displacement consists of three parts: (i) displacement 
due to translation of the neighborhood of that point, (ii) displacement due to 
rotation of the neighborhood of that point and (iii) displacement due to deformation 
of the neighborhood of that point. If we consider only the relative displacement of 
a point with respect to the center of its neighborhood, then it contains the 
displacement only due to rotation and deformation of the neighborhood. We start 
our discussion on linear strain tensor at a point with displacement gradient tensor 
which is a measure of the relative displacement.  

2.4.1 Linear Strain Tensor 

In this section, we first define the displacement gradient tensor at a point. Then, we 
decompose it into the symmetric and antisymmetric parts. It is shown that the 
symmetric part can completely describe the deformation at a point when the 
deformation is small. It is called as the linear strain tensor. The antisymmetric part 
represents the rotation when the rotation is small.  

2.4.1.1 Displacement Gradient Tensor 
Let  

 ˆ ˆ ˆ
x y zu u u= + +u i j k   (2.137) 
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be the displacement vector at point 0P  whose position vector in the initial 
configuration is given by 

 0 0 0
ˆ ˆ ˆx y z= + +0x i j k   (2.138) 

(Figure 2.6). Consider the following array: 

 

0 0 0

0
0 0 0

0 0 0

[ ]

x x x

y y y

z z z

u u u
x y z
u u u

u
x y z
u u u
x y z

∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂

∇ = ⎢ ⎥
∂ ∂ ∂⎢ ⎥

⎢ ⎥∂ ∂ ∂⎢ ⎥
∂ ∂ ∂⎢ ⎥⎣ ⎦

.  (2.139) 

The subscript zero is used with the symbol ∇  to emphasize the fact that the 
derivatives are to be taken with respect to the coordinates in the initial 
configuration. Consider a rotated coordinate system ( , , )x y z′ ′ ′ with unit vectors 

( k,j,i ′′′ ˆˆˆ ) along them (not shown in Figure 2.6). Further, let the components of the 
displacement vector u  and the position vector 0x  along the rotated coordinates be  

 ˆ ˆ ˆ ,x y zu u u′ ′ ′ ′ ′ ′ ′= + +u i j k   (2.140) 

 0 0 0
ˆ ˆ ˆ .x y z′ ′ ′ ′ ′ ′ ′= + +0x i j k   (2.141) 

In ( , , )x y z′ ′ ′  coordinate system, the array of the displacement derivatives can be 
written as 

 

0 0 0

0
0 0 0

0 0 0

[ ]

x x x

y y y

z z z

u u u
x y z
u u u

u
x y z
u u u
x y z

′ ′ ′∂ ∂ ∂⎡ ⎤
⎢ ⎥′ ′ ′∂ ∂ ∂⎢ ⎥
⎢ ⎥′ ′ ′∂ ∂ ∂

′∇ = ⎢ ⎥
′ ′ ′∂ ∂ ∂⎢ ⎥

⎢ ⎥′ ′ ′∂ ∂ ∂⎢ ⎥
′ ′ ′∂ ∂ ∂⎢ ⎥⎣ ⎦

.  (2.142) 

Using the vector transformation relation (Eq. 2.58) for the components of u  and 
0x , and the chain rule for the derivatives, it can be shown that  

 T
0 0[ ] [ ][ ][ ]u Q u Q′∇ = ∇ ,  (2.143) 
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where the matrix [ ]Q  (Eq. 2.54) represents the transformation from ( , , )x y z  
coordinate system to ( , , )x y z′ ′ ′ system. Thus, the components of the array 0[ ]u∇  
are the components of a tensor. It is denoted by ∇0u  and is called as the 
displacement gradient tensor at the point. 

2.4.1.2 Linear Strain Tensor 
Every tensor can be decomposed as a sum of symmetric and antisymmetric parts. 
Thus, 

 ( ) ( )T T1 1( ) ( )
2 2

∇ = ∇ + ∇ + ∇ − ∇0 0 0 0 0u u u u u .  (2.144) 

Here, the first part is symmetric part of the tensor ∇0u  while the second part is the 
antisymmetric part. At a point, define tensor ε  as the symmetric part of 0u∇ : 

 ( )T1 ( )
2

= ∇ + ∇0 0ε u u .  (2.145) 

In matrix notation, this can be written as 

 ( )T
0 0

1[ ] [ ] [ ]
2

u uε = ∇ + ∇  , (2.146) 

while in index notation, it can be expressed as 

 ( ), ,
1
2ij i j j iu uε = +  ,  (2.147) 

where it is understood that the comma indicates the derivatives with respect to the 
coordinates in the initial configuration. 

Assume that the components of the tensor ∇0u  are small compared to 1  
everywhere in the body. In many aerospace, civil and mechanical engineering 
applications, the components of ∇0u  are of the order of 4 610 10− −− . Therefore, 
this assumption is not very restrictive. Let nε  denote the unit extension along the 
direction ˆ0n  at point 0P  of the initial configuration (Figure 2.6), i.e., the change in 
length per unit length at 0P  along the direction ˆ0n . Further, let 1 2n nγ  denote the 
shear associated with the directions ˆ01n  and ˆ02n  at point 0P  of the initial 
configuration (Figure 2.6), i.e., the change in angle between the two perpendicular 
directions ˆ01n  and ˆ02n  at 0P . We denote the arrays of the components of ˆ0n , ˆ01n  
and ˆ02n  with respect to ( , , )x y z  coordinates by 0{ }n , 01{ }n  and 02{ }n . Then, 
under the above assumption, it can be shown that [5] 
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 T
0 0{ } [ ]{ }n n nε ε= ,  (2.148) 

 T
1 2 01 022{ } [ ]{ }n n n nγ ε= .  (2.149) 

Therefore, under the above assumption, if the tensor ε  is given at a point, we can 
find the change in length per unit length along any direction at that point. Further, 
we can find the change in angle between any pair of perpendicular directions at 
that point. Thus, under the above assumption, the tensor ε  can completely describe 
the deformation at a point and, therefore, can be used as a strain tensor. It is called 
as linear or infinitesimal strain tensor. Note that the assumption of the components 
of the tensor ∇0u  being small implies that the components of the tensor ε  are also 
small. Therefore, this assumption is called as the small deformation assumption. 
Thus, ε  can be used as a strain tensor, only when the deformation is small. The 
plastic deformation is often not small. Therefore, to describe the plastic 
deformation, we shall have to look for some other tensor. Such tensors are 
discussed in Chapter 3. 

Note that, by definition (Eq. 2.145), the tensor ε  is symmetric. Therefore, its 
components with respect to ( , , )x y z  coordinate system can be expressed as 

 [ ]
xx xy zx

xy yy yz

zx yz zz

ε ε ε

ε ε ε ε

ε ε ε

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.  (2.150) 

Substituting expressions (2.150) and (2.139) into Eq. (2.146), we get the following 
expressions for the strain components: 

 

0 0 0

0 0

0 0

0 0

, , .

1 ,
2

1 ,
2

1 .
2

yx z
xx yy zz

yx
xy

y z
yz

xz
zx

uu u
x y z

uu
y x

u u
z y

uu
x z

ε ε ε

ε

ε

ε

∂∂ ∂
= = =

∂ ∂ ∂

∂⎛ ⎞∂
= +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

∂⎛ ⎞∂
= +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

⎛ ⎞∂∂
= +⎜ ⎟

∂ ∂⎝ ⎠

 (2.151) 

These are called as the strain-displacement relations. The tensor, array and index 
forms of these equations are given by expressions (2.145-2.147). Note that the 
strain-displacement relations are linear when the deformation is small. For plastic 
deformation, the strain-displacement relations may be non-linear. They are 
discussed in Chapter 3.  
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As stated in the introduction, there are 3 sets of equations which govern the 
displacements, strains and stresses in a body. This is the second set of governing 
equations when the deformation is small. 

By substituting ˆˆ =0n i  in Eq. (2.148), we find that the component 

xxε represents the unit extension (i.e., the change in length per unit length) along 
the direction which was initially along x -axis. Similarly, the components yyε  and 

zzε  denote the unit extensions along the directions which were respectively along 
y  and z  axes in the initial configuration. These three components, which 

represent the deformation in linear dimension along three mutually perpendicular 
directions, are called as normal strain components. By substituting ˆˆ =01n i  and 

ˆˆ =02n j  in Eq. (2.149), we find that the component xyε  represents half the shear 
(i.e., half the change in angle) associated with the directions which were along x  
and y  axes in the initial configuration. Similarly, the component yzε  denotes half 
the shear associated with the directions which were initially along y  and z axes. 
Further, the component zxε  represents half the change in angle between the 
directions which were originally along z  and x  axes. These three components, 
which represent the deformation in angular dimension associated with the same 
three mutually perpendicular directions, are called as shear strain components. 
The sign convention for the strain components is as follows. A normal strain 
component is considered positive if there is elongation in that direction and 
negative if there is compression. A shear strain component is considered positive if 
the angle decreases and negative if the angle increases. Note that the sign 
convention for the shear strain components is different than what you might 
expect. However, it is chosen to ensure that a positive shear stress would cause a 
positive shear strain and vice versa. 

2.4.1.3 Infinitesimal Rotation Tensor 
At a point, define tensor ω  as the antisymmetric part of the displacement gradient 
tensor ∇0u : 

 ( )T1 ( )
2

= ∇ − ∇0 0ω u u . (2.152) 

In matrix notation, this can be written as  

 ( )T
0 0

1[ ] [ ] [ ]
2

u uω = ∇ − ∇ , (2.153) 

whilst in index notation, it can be expressed as 
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 , , ,
1 ( )
2i j i j j iu uω = − ,  (2.154) 

where it is understood that the comma indicates the derivatives with respect to the 
coordinates in the initial configuration. It can be shown that when components of 
the tensor ∇0u  are small compared to 1, the tensor ω  represents rotation of a 
neighborhood of the point. Note that when the components of ∇0u  are small, the 
components of ω  are also small. Thus, ω  represents the rotation only when it is 
small. We call ω  as the infinitesimal rotation tensor. 

The diagonal components of ω , namely xxω , yyω  and zzω  are zero. The 
expressions for the non-diagonal components of ω  are as follows: 

 

 

0 0

0 0

0 0

1 ,
2

1 ,
2

1 .
2

yz
zy yz

x z
xz zx

y x
yx xy

uu
y z

u u
z x

u u
x y

ω ω

ω ω

ω ω

∂⎛ ⎞∂
= − = −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

⎛ ⎞∂ ∂
= − = −⎜ ⎟

∂ ∂⎝ ⎠
∂⎛ ⎞∂

= − = −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

 (2.155) 

The components zyω , xzω  and yxω  represent the angle of rotation respectively 
about x , y  and z axes. They are considered positive if they are counterclockwise 
and negative if clockwise. Since, an antisymmetric tensor has only 3 non-zero 
components, one can always associate a vector with it. The vector which can be 
associated with ω  is given by  

 

0 0 0 0 0 0

0

1ˆ ˆ ˆ ˆ ˆ ˆ ,
2

1 ˆ ,
2

1
2

y yx xz z
zy xz yx

k
ijk
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u uu uu u
y z z x x y

u
x

ω ω ω
⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂∂ ∂

+ + = − + − + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦
∂

= ∈
∂

= ∇ ×0

i

i j k i j k

i

u.

 

                                                               (2.156) 
This is consistent with the fact that only small rotation can be expressed as a 
vector. 
 
Example 2.10: For the beam of Figure 2.7, components of the displacement vector 
u  at a point 0 0 0( , , )x y z , with respect to ( , , )x y z  coordinate system, are given as  
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 ( )2 2 3 2
0 0 0 0 0 0 0

1 1 1
2 2 4xu A a y x x y y y z

⎧ ⎫⎛ ⎞= + − − +⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

A , (2.157a) 

 2 2 3 2 2
0 0 0 0 0 0

1 1 1 1 ( )( )
2 2 6 4yu A a x x x x y z⎧ ⎫= + − + − −⎨ ⎬

⎩ ⎭
A A , (2.157b) 

 0 0 0
1 ( )
2zu A x y z⎧ ⎫= −⎨ ⎬

⎩ ⎭
A  , (2.157c) 

where 

 4

4 yF
A

Eaπ
= . (2.157d) 

Here, a , A  and yF  are as shown in Figure 2.7. Further, E  is a material constant 
which is defined in Section 2.5.1  

 
Figure 2.7. A beam of circular cross-section subjected to shear forces and bending moment. 
The point O is fixed against the translation and rotation. Further, since the deformation is 
small, the deformed and undeformed configurations almost overlap 

(a) Find the components of the displacement gradient tensor ∇0u . 
(b) Find the components of the linear strain tensor ε  and the infinitesimal 

rotation tensor ω . 
(c) Evaluate the strain components at point 0P  (Figure 2.7) whose coordinates 

are 0 0 0( , , ) ( / 2, / 2, / 2)x y z a a= A . Further, at 0P , find the unit extension 
along the direction   

        ˆ ˆ ˆˆ (1/ 3)( )= + +0n i j k . (2.158) 

             and the shear associated with the directions: 

       ˆ ˆ ˆ ˆˆ ˆ(1/ 5)(3 - 4 ), (1/ 5)(4 3 )= = +01 02n i j n i j . (2.159) 
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(d) Evaluate the non-diagonal components of ω  at 0P . 

Solution: (a) Differentiating Eqs. (2.157a-2.157c), we get the components of the 
displacement gradient tensor ∇0u : 
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∂
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∂ ⎡ ⎤= −⎢ ⎥∂ ⎣ ⎦
∂ ⎡ ⎤= + − − −⎢ ⎥∂ ⎣ ⎦
∂ ⎡ ⎤= −⎢ ⎥∂ ⎣ ⎦
∂ ⎡ ⎤= − −⎢ ⎥∂ ⎣ ⎦
∂ ⎡ ⎤= −⎢ ⎥∂ ⎣ ⎦
∂

A

A

A

A

A

0 0
0

0 0
0

1 ( ) ,
2

1 ( ) .
2

z

z

u
A x z
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⎡ ⎤= −⎢ ⎥∂ ⎣ ⎦
∂ ⎡ ⎤= −⎢ ⎥∂ ⎣ ⎦

A

A    (2.160) 

(b) Substituting the expressions of the displacement derivatives of part (a) into 
the strain-displacement relations (Eq. 2.151), we get the components of the 
linear strain tensor ε :  
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                                              (2.161)      

Again substituting the expressions of the displacement derivatives of part (a) into 
the rotation-displacement relations (Eq. 2.155), we get the non-diagonal 
components of the infinitesimal rotation tensor ω : 

 

( )

0 0
0 0

0 0

2 2
0 0 0 0

0 0
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2 2

1 0,
2
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∂ ∂⎝ ⎠
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A

 (2.162) 

The diagonal components of ω , namely xxω , yyω  and zzω , are of course zero. 

(c) We obtain values of the strain components at point 0P  by substituting 

0 0 0( , , ) ( / 2, / 2, / 2)x y z a a= A  in the expressions of the strain components 
of part (b). Then, the strain matrix at point 0P  becomes: 

 
2 3

[ ] 3 0
8

0

xx xy zx

xy yy yz

zx yz zz

a a
Aa a

a

ε ε ε

ε ε ε ε

ε ε ε

⎡ ⎤ − −⎡ ⎤⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦⎢ ⎥⎣ ⎦

A
A

A
. (2.163) 

To get the unit extension along the direction ˆ0n  at point 0P , we substitute the 
above equation  along with the components of ˆ0n  (Eq. 2.158) in Eq. (2.148):  



76 Modeling of Metal Forming and Machining Processes 

 

T 2
0 0

1
32 3

1 1 1 1 1{ } [ ]{ } 3 0 .
8 63 3 3 30

1
3

n

a a
Aan n a Aa

a
ε ε

⎧ ⎫
⎪ ⎪
⎪ ⎪− −⎡ ⎤
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  (2.164a) 

To get the shear associated with the directions ˆ01n  and ˆ02n  at point 0P , we 
substitute Eq. (2.163) along with the components of ˆ01n  and ˆ02n  (Eq. 2.159) in 
Eq. (2.149): 
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  (2.164b) 

(d) We obtain values of the non-diagonal rotation components at point 0P , by 
substituting 0 0 0( , , ) ( / 2, / 2, / 2)x y z a a= A  in the rotation-displacement 
equations of part (b). We get  

 

( ) ( )

0 0

2 2 2 2
0 0 0 0

1( ) ,
2 8
0,

1 1(2 ) 3 .
2 2 8

zy

xz

yx

A x z A a

A x x y z A a

ω

ω

ω

= − =

=

⎡ ⎤= − + + = +⎢ ⎥⎣ ⎦

A A

A A

 (2.165) 

For the following values of geometric, force and material parameters: 

 200mm=A , 10mma = , 100NyF = , 5 22 10 N / mmE = × . (2.166a) 

we get 



  Review of Stress, Linear Strain and Elastic Stress-Strain Relations 77 

 8
4

4
6.34 10yF

A
Eaπ

−= = × . (2.166b) 

Then, we obtain  

 2 6 6
1 2

1 11.06 10 , (36 21 ) 47.17 10 rad
6 100n n nAa Aa aε γ− −= = × = − + = − ×A ,      

  (2.167a) 

 ( )5 2 2 411.59 10 rad, 3 9.51 10 rad
8 8zy yx

A a A aω ω− −= = × = + = ×
A A ,       

  (2.167b) 

Thus, for a typical situation, the deformation and rotation are quite small.  

2.4.2 Analysis of Strain at a Point 

As stated earlier, in this section, we carry out the analysis of strain at a point to 
discuss the concepts of principal strains and principal directions, principal 
invariants, maximum shear, volumetric strain and the hydrostatic and deviatoric 
parts of strain. 

2.4.2.1 Principal Strains, Principal Directions and Principal Invariants 
There exist at least 3 mutually perpendicular directions (in the initial configuration) 
such that the shear 1 2( )n nγ associated with these directions is zero. It means these 
directions remain perpendicular in the deformed configuration also. These 
directions are called as the principal directions (of  strain). The unit extensions 
( )nε  along these directions are called as the principal strains. We denote the 
principal strains as 1ε , 2ε  and 3ε  and the unit vectors along the principal 
directions (of strain) as ˆ1e , ˆ2e  and ˆ3e . Recall that the same notation has been used 
for the unit vectors along the principal directions (of stress). However, whether we 
are referring to the principal directions of stress or strain will be clear from the 
context. Further, the principal directions of stress exist in the deformed 
configuration whereas the principal directions of strain exist in the initial 
configuration. We arrange the principal strains as  

 1 2 3ε ε ε≥ ≥ . (2.168) 

The senses of the unit vectors along the principal directions are so chosen that they 
always form a right-sided system. Thus, 

 ˆ ˆ ˆ 1⋅ × = +1 2 3e e e . (2.169) 
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Since the unit extension along a principal direction i  ( 1,2,3)i =  is iε  and the 
shear associated with these principal directions is zero, the components of the 
linear strain tensor, with respect to the principal directions as the coordinate 
system, become  

 
1

2

3

0 0
[ ] 0 0

0 0

p
ε

ε ε
ε

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. (2.170) 

It can be easily verified that, at a point, maximum value of the unit extension ( )nε  
with respect to the orientation of the direction ˆ0n  is 1ε . Further, the minimum 
value is 3ε .  

It can be shown that the principal strains are the eigen values or the principal 
values and the unit vectors along the principal directions are the eigen vectors of 
the linear strain tensor.  The principal strains are determined as the roots of the 
following equation: 

 3 2 0,I II IIIε ε ελ λ λ− − − =  (2.171) 

where 

 ,iiIε ε=  (2.172) 

 1 ( ),
2 ij ij ii jjIIε ε ε ε ε= −  (2.173) 

 1 2 3 .ijk i j kIIIε ε ε ε=∈  (2.174) 

Here, εI , εII  and εIII are the three principal invariants of the linear strain tensor. 
After finding the principal strains, the unit vectors iê  along the principal directions 
are found from an equation similar to Eq. (2.85)  

 ( )[ ] [1] { } {0}i ieε ε− =  (no sum over i ). (2.175) 

2.4.2.2 Maximum Shear 
It can be shown that, at a point, maximum value of the shear 1 2( )n nγ  with respect 
to the orientation of the directions ˆ01n  and ˆ02n  is  

 1 2 1 3max .n nγ ε ε= −  (2.176) 

Further, the directions associated with the maximum shear are given by  
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 1 1ˆ ˆ ˆ ˆ ˆ ˆ( ), ( )
2 2

= ± + = ± −01 1 3 02 1 3n e e n e e .       (2.177) 

2.4.2.3 Volumetric Strain, Decomposition into the Hydrostatic and Deviatoric 
Parts  
The change in volume per unit volume of a small element around a point is called 
as the volumetric strain and is denoted by vε . It can be shown that when the 
deformation is small (i.e., when the components of the tensor ∇0u  are small 
compared to 1), vε  is given by [2,4] 

 .v iitrε ε= =ε  (2.178) 

Similar to the decomposition of the stress tensor σ  (Eq. 2.99), the linear strain 
tensor ε  also can be decomposed as   

 ( )1 0
3

tr tr⎛ ⎞ ′ ′= + =⎜ ⎟
⎝ ⎠

1ε ε ε , ε . (2.179) 

In index notation, this can be written as  

 1 , ( 0).
3ij kk ij ij iiε ε δ ε ε⎛ ⎞ ′ ′= + =⎜ ⎟

⎝ ⎠
 (2.180) 

Note that, since ε  is a symmetric tensor, ε′ is also a symmetric tensor. The first 
part of Eqs. (2.179-2.180) is called as the hydrostatic part of ε  while the second 
part is called as the deviatoric part of ε . Since, εtr  is volumetric strain, the 
hydrostatic part of ε  represents a deformation in which there is only change in 
volume (or size) but no change in shape. Such a deformation is called as dilatation. 
Since ε′tr  is zero, the deviatoric part of ε  represents a deformation in which there 
is no change in volume but only change in shape. Such a deformation is called as 
distortion.  

 As stated earlier, in isotropic materials, the hydrostatic part of stress tensor 
causes only dilation type of deformation while the deviatoric part causes only the 
distortion type of deformation. The yielding consists of only the distortion type of 
deformation. Therefore, as we shall see in Chapter 3, in isotropic ductile materials 
yielding is caused only by the deviatoric part of stress tensor. 
 
Example 2.11: Components of the linear strain tensor ε  at a point with respect to 
the ( , , )x y z coordinate system are given by 
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        4
0 2 2

[ ] 2 0 2 10
2 2 0

ε −
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. (2.181) 

(a) Find the principal invariants of ε . 
(b) Find the principal strains iε  and the unit vectors iê  along the principal 

directions. Arrange iε  such that 1 2 3ε ε ε≥ ≥ . Further, choose the senses of 

iê  such that ˆ ˆ ˆ 1⋅ × = +1 2 3e e e . 
(c) Find the maximum shear 1 2( )n nγ  and the directions ˆ01n  and ˆ02n  

associated with maximum shear. 
(d) Using the tensor transformation relation, find the components of ε  with 

respect to the principal directions as the coordinate system. 

Solution: (a) Substituting the values of ijε  from Eq. (2.181) and the values of ijk∈  
from Eq. (2.14) in the expressions (2.172-2.174), we get 

 4(0 0 0) 10 0iiIε ε −= = + + × = , (2.182a) 

 2 2 8 81 1( ) 3(0) 6(2) (0)(0) 10 12 10
2 2ij ij ii jjIIε ε ε ε ε − −⎡ ⎤= − = + − × = ×⎣ ⎦ ,  

  (2.182b) 

 

1 2 3

11 22 33 23 32 12 23 31 21 33 13 21 32 22 31

12

,

( ) ( ) ( )
0(0 0 2 2) 2(2 2 2 0) 2(2 2 0 2)

16 10 .

ijk i j kIIIε ε ε ε

ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

−

=∈

= − + − + −

= × − × + × − × + × − ×

= ×

    

  
  (2.182c) 

(b) Substituting the values of εI , εII  and εIII  from part (a), the cubic 
equation for λ (Eq. 2.171) becomes  

 3 2 8 120 12 10 16 10 0λ λ λ− −− − × − × = . (2.183) 

The roots of this equation are: 4 4 44 10 , 2 10 , 2 10λ − − −= × − × − × . Thus, we have a 
double eigen value. Arranging the roots in decreasing order, we get the following 
values of the principal strains: 

 4 4 4
2 34 10 , 2 10 , 2 10ε ε ε− − −= × = − × = − ×1 , (2.184) 
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To find the unit vectors iê  along the principal directions, we follow the procedure 

of Example 2.8(b). Thus, corresponding to the first eigen value 4
1 4 10ε −= × , we 

get the following expression for the first unit vector:  

 1 ˆ ˆ ˆˆ ( )
3

= + +1e i j k . (2.185a) 

While finding the eigenvector corresponding to the eigen value 4
2 2 10ε −= − × , it is 

observed that only one scalar equation out of the three equations (Eq. 2.175) 
satisfied by the components of ˆ2e  is linearly independent. This means the 
eigenvector has no unique direction. In fact, it can be shown that every vector in 
the plane perpendicular to ˆ1e  is an eigenvector of 4

2 2 10ε −= − × . This happens 
because it is a double eigen value. Therefore, we choose any pair of orthonormal 
vectors (i.e., any two unit vectors perpendicular to each other) in the plane 
perpendicular to ˆ1e  as the vectors ˆ2e  and ˆ3e . We make the following choice: 

 1 ˆ ˆˆ ( )
2

= −2e i j , (2.185b) 

 1 ˆ ˆ ˆˆ ( 2 )
6

= + −3e i j k . (2.185c) 

 

Figure 2.8. Conical surface on which the directions 01n̂  and 02n̂  associated with maximum 

shear lie when the second and third principal stresses are equal. The vector 1ê represents the 
first principal direction 
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 (c) Maximum shear is given by Eq. (2.176). Substituting the values of 1ε  and 3ε  
from part (b) in this equation, we get  

 4 4
1 2 1 3max

[4 ( 2)] 10 6 10n nγ ε ε − −= − = − − × = × . (2.186) 

The directions ˆ01n  and ˆ02n  associated with 1 2 maxn nγ  are given by Eq. (2.177). 

So we can obtain them by substituting the expressions for ˆ1e   and ˆ3e  from part (b) 
into this equation. However, the vector ˆ3e  has no unique direction. As stated 
earlier, it can have any direction in the plane perpendicular to ˆ1e . (Eq. 2.185c is 
just one such direction). Therefore, the directions ˆ01n  and ˆ02n  associated with 

1 2 maxn nγ  are also not unique.  Expression (2.177) shows that whereas ˆ01n  (with 

+  sign) makes an angle of 045  with both ˆ1e   and ˆ3e  directions, ˆ02n  (with +  

sign) makes an angle of  045  with ˆ1e  direction but 0135  with ˆ3e  direction. Thus, 
the directions ˆ01n  and ˆ02n  lie on the surface of a cone whose axis is along ˆ1e  and 

semi-cone angle is 045  (Figure 2.8). 
 (d) To find the components of ε  with respect to the principal directions, we first 
evaluate the transformation matrix [ ]Q . For that purpose, we substitute the 
direction cosines of the principal directions as given by Eqs. (2.185a-2.185c) into 
the expression (Eq. 2.54) for [ ]Q . Thus, we get 

 

1 1 1
3 3 3

1 1[ ] 0
2 2

1 1 2
6 6 6

Q

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= −⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎣ ⎦

. (2.187) 

Using the tensor transformation relation (Eq. 2.55), we get the following matrix of 
the components of the strain tensor with respect to the principal directions: 
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T

4

4

[ ] [ ][ ][ ] ,

1 1 1 1 1 1
3 3 3 3 2 60 2 2

1 1 1 1 10 2 0 2 10 ,
2 2 3 2 62 2 0

1 1 2 1 20
6 6 6 3 6

4 0 0
0 2 0 10 .
0 0 2

p Q Qε ε

−

−

=

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= − × −⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎢ ⎥

− −⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦
⎡ ⎤
⎢ ⎥= − ×⎢ ⎥
⎢ ⎥−⎣ ⎦

 

  (2.188) 

Note that if we choose any other pair of orthonormal vectors (in the plane 
perpendicular to ˆ1e ) as the second and third principal directions, then also the 

tensor transformation relations will lead to the same expression for  [ ]pε . 
 
Example 2.12:  Components of the linear strain tensor ε  at point O  of the thin 
plate of Figure 2.9, with respect to ( , , )x y z coordinate system, are given as: 

 0
1 0 0

[ ] 0 1 0
0 0 2

E

ν
σ

ε ν
ν

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

. (2.189) 

Here, 0σ  is the maximum value of the parabolically varying tensile stresses acting 
on the edges of the plate (Figure 2.9). Further, E  and ν  are the material constants  
which are defined in Section 2.5.1.  
(a) Find the volumetric strain vε  at point O . 
(b) Find the hydrostatic and deviatoric parts of ε  at point O . 
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Figure 2.9. A thin square plate subjected to in-plane stresses. Since the deformation is 
small, the initial and deformed configurations almost overlap. 

Solution: (a) Using the values of ijε  from Eq. (2.189), we get  

 0 0[(1 ) (1 ) ( 2 )] 2(1 2 )ii E E
σ σ

ε ν ν ν ν= − + − + − = − . (2.190) 

Substituting this expression into Eq. (2.178) for the volumetric strain, we get 

 0 2(1 2 )v ii E
σ

ε ε ν= = − . (2.191) 

(b) As per Eq. (2.180), components of the hydrostatic part are given by 

[(1/ 3) ]kk ijε δ . Since 0 2(1 2 )kk E
σ

ε ν= −  from part (a), the matrix of the hydrostatic 

part of ε becomes: 

 0

2 (1 2 ) 0 0
3

20 (1 2 ) 0
3

20 0 (1 2 )
3

E

ν

σ
ν

ν

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

. (2.192) 

Using 0 2(1 2 )kk E
σ

ε ν= −  and Eq. (2.180), components of the deviatoric part can 

be expressed as: 
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 0 2 (1 2 )
3ij ij ijE

σ
ε ε ν δ′ = − − .  (2.193) 

Using the values of ijε  from Eq. (2.189), we get the following expression for the 
matrix of the deviatoric part:  

 

0 0

0

2 (1 2 ) 0 0
31 0 0

2[ ] 0 1 0 0 (1 2 ) 0 ,
3

0 0 2 20 0 (1 2 )
3

1 0 0
3

10 0 .
3

2(1 )0 0
3

E E

E

ν
ν

σ σ
ε ν ν

ν
ν

ν

σ ν

ν

⎡ ⎤−⎢ ⎥
−⎡ ⎤ ⎢ ⎥

⎢ ⎥ ⎢ ⎥′ = − − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦

⎢ ⎥−
⎢ ⎥⎣ ⎦

+⎡ ⎤
⎢ ⎥
⎢ ⎥

+⎢ ⎥= ⎢ ⎥
⎢ ⎥+⎢ ⎥−
⎢ ⎥⎣ ⎦

         (2.194)    

2.4.3 Compatibility Conditions 

Suppose the linear strain tensor at a point is known as a function of initial 
coordinates 0 0 0( , , )x y z  of the point and we wish to find the displacement vector 
u  at that point by integrating the strain-displacement relations (Eqs. 2.151). Then, 
we have six scalar equations to solve but only three scalar unknowns to be 
determined. These unknowns are the components ( , , )x y zu u u  of the displacement 
vector. Is it possible to get a single-valued solution in this case? The necessary 
condition to get the single-valued displacements, in this case, is that the strain 
components should satisfy the following constraints [2, 3, 4]:  
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 (2.195) 

These conditions are called as the strain compatibility conditions or integrability 
conditions. 

While finding three unknowns from six equations, it would seem that only three 
constraints are needed. But, we have six conditions. However, it can be shown that 
only three out of the six compatibility conditions are independent [2].  

It can be shown that conditions (Eq. 2.195) are also sufficient for getting the 
single-valued displacements, but only for simply-connected regions [2, 3, 4]. For 
multiply-connected regions, additional compatibility conditions are required. 
Further, when the conditions (Eq. 2.195) are satisfied in a simply-connected 
region, only the non-rigid part of the displacement vector becomes single-valued. 
Uniqueness of the rigid part of the displacement vector depends on the 
displacement boundary conditions of the problem. 
 
Example 2.13: Components of the linear strain tensor ε  at a point 0 0 0( , , )x y z , 
with respect to ( , , )x y z  coordinate system, are given as 

 

( )
( )

2 2
0 0

2 2
0 0

0 0

,

,

,

0,

xx

yy

xy

xz yz zz

a x y

b x y

cx y

ε

ε

ε

ε ε ε

= +

= +

=

= = =

 (2.196) 

where a , b  and c are constants. Check whether this state of strain is compatible. 
 
Solution: Note that the strain components xzε , yzε  and zzε  are zero. Further, the 

components xxε , yyε  and xyε  are independent of 0z . Therefore, the last 5 
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compatibility conditions (Eq. 2.195) are identically satisfied. Substituting the 
expressions (Eq. 2.196) for xxε , yyε  and xyε  in the first compatibility condition, 
we get  

 
2 22

1 2 2
0 00 0

2 2 2 2yy xyxxE a b c
x yy x

ε εε ∂ ∂∂
≡ + − = + −

∂ ∂∂ ∂
. (2.197) 

Therefore, the given state of strain is compatible if  

 cba =+ . (2.198) 

Note that when the strain components xzε , yzε  and zzε  are zero at a point, the 
state of deformation is called as the state of plane strain (at a point) in yx −  
plane. When these strain components are zero at every point of the body and if, 
additionally, the remaining strain components xxε , yyε  and xyε  are independent 

of 0z , it is called as the state of plane strain (in a body) in yx −  plane. It is seen 
that the state of strain described by Eq. (2.196) is of this type. 

2.5 Material Behavior  

Relations which characterize various responses (like mechanical, thermal, 
electrical etc.) of a material are called as the constitutive equations. It is these 
relations which differentiate one material from another. These relations are based 
on experimental observation. 

In this section, we shall consider only mechanical response. It is possible that a 
mechanical response may be caused by non-mechanical stimuli like a change in 
temperature or an application of electromagnetic field. But, we shall consider only 
purely mechanical response, that is, a mechanical response caused by a mechanical 
stimulus. Constitutive equation for such a response is usually expressed as a 
relation between the applied forces and the resulting deformation. In order to 
eliminate effects of the shape and size of the body and the nature and point of 
application of the loading, normally the constitutive equation is formulated for a 
material particle rather than for the whole body. For a purely mechanical response, 
such an equation is expressed as a relation between the stress and a measure of 
deformation (strain) and/or a measure of rate of deformation (strain rate).  

There are various types of mechanical responses. The basic responses are : (i) 
elastic response, (ii) plastic response and (iii) viscous response. Sometimes, the 
response consists of a combination of the basic responses. Further, a material may 
exhibit different types of responses over different ranges of deformation. For 
example, metals behave elastically at small deformation but exhibit plastic 
behavior at a large deformation. As a result, it is quite difficult to express the 
complete mechanical behavior of a material over the entire range of deformation 
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through just one single equation. Therefore, we simplify the constitutive equation 
by restricting ourselves to only small deformation. As stated earlier, metals behave 
elastically at small deformation. Therefore, in this section, we shall develop 
constitutive equation for elastic behavior of metals at small deformation. In elastic 
response, the stress depends on the instantaneous value of strain. Further, this 
relation is one-to-one. It means, if the external forces acting on the body are 
removed (i.e., if the stress is reduced to the value zero), the strain will also attain 
the value zero, thereby bringing the body to the original undeformed configuration. 

2.5.1 Elastic Stress-Strain Relations for Small Deformation  

For small deformation, the linear strain tensor ε  can be used as a measure of the 
deformation. Therefore, for small deformation, the constitutive equation becomes a 
relation between σ  and ε .  

2.5.1.1 One Dimensional Experimental Observations 
As stated earlier, constitutive equations are based on experimental observation. 
Therefore, let us first see what the experimental observations are about the relation 
between σ  and ε . The simplest experiment is the tension test. In tension test, a 
rod of uniform cross-section is subjected to an (axial) tensile force xF  as shown in 
Figure 2.10. The geometry and loading are such that, it is reasonable to assume that 
the state of stress is one-dimensional and homogeneous in the region away from 
the ends. That is, the only non-zero stress component is xxσ  and it is constant. 
Further, the state of strain also can be assumed to be homogeneous in the region 
away from the ends. But, the number of non-zero strain components is not one. 
Only the shear strain components can be assumed to be zero. Thus, there are three 
non-zero strain components, namely xxε , yyε  and zzε  and all are constant. 

 
Figure 2.10. Rod subjected to axial tensile forces. The dashed lines indicate the undeformed 
configuration 

For the rod of Figure 2.10, we define the following 
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 0
0

xF
A

σ = , (2.199) 

 
0

e Δ
=
A
A

, (2.200) 

where, 0A  is the initial area of the cross-section of the rod, 0A  is the initial length 
of the rod and AΔ  is the change in length corresponding to the (axial) tensile force 

xF . Note that, when the deformation is small (i.e., when the area 0A  does not 
change much), 0σ  is almost equal to xxσ  component of the stress tensor. 
However, when the change in area is large, 0σ  does not represent the true stress.  

 
Figure 2.11. Variation of engineering stress with engineering strain for a ductile material in 
tension test 

Therefore, we call 0σ  as engineering or nominal stress. Again, when the 
deformation is small (i.e., when the change in length Δ A  is small), e  is equal to 

xu ∂∂  and thus represents xxε  component of the linear or infinitesimal strain 

tensor. But, when the change in length is large, xxε  or xu ∂∂  does not become 
equal to e . Therefore, we call e as the engineering strain.  

Figure 2.11 shows the variation of 0σ  with e  upto fracture for a typical metal 
(mild steel). The figure shows that 0σ  varies linearly with e  when the 
deformation is small. But, for small deformation, 0σ  is same as xxσ  and e is equal 
to xxε . Therefore, for small deformation, xxσ  varies linearly with xxε . 

It should be noted that the stress-strain relations need not be linear for all elastic 
materials. For a material like rubber, which is elastic in nature, the stress-strain 
relations are non-linear. 
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2.5.1.2 Generalization to Three Dimensional Case 
One can generalize the one-dimensional experimental observation of Figure 2.11 
(for small deformation) as follows. For small deformation, one can assume that 
each stress component depends linearly on all the components of the linear strain 
tensor. Thus,  

 

xx xxxx xx xxxy xy xxxz xz xxyx yx xxzz zz

xy xyxx xx xyxy xy xyxz xz xyyx yx xyzz zz

σ = C ε +C ε +C ε +C ε +..............+C ε ,

σ = C ε +C ε +C ε +C ε +..............+C ε ,

........................................................................

zz zzxx xx zzxy xy zzxz xz zzyx yx zzzz z

..............................,
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σ = C ε +C ε +C ε +C ε +..................+C ε .z

  

  (2.201) 

The stress-strain relations given by Eq. (2.201) have 81 material constants. These 
constants characterize the elastic response of the metal at small deformation. These 
constants need to be determined by experiments.  

In index notation, Eq. (2.201) can be written as 

 klijklij C εσ = . (2.202) 

Note that, ijklC  are the components of a fourth order tensor C  which is called as 
the Elasticity tensor. In three dimensions, a fourth order tensor has  34 = 81 
components. 

2.5.1.3. Restrictions on Elasticity Tensor C 
One can reduce the number of constants in the stress-strain relation as follows. 
Since, ijσ  and klε  are symmetric tensors, that is, 

 ,ij ji kl lkσ σ ε ε= = ,      (2.203) 

the components ijklC  must satisfy the following relations: 

 ,ijkl jikl ijkl ijlkC C C C= = .    (2.204) 

These relations imply that the tensor C  has only 36 independent components.  
Further simplification can be achieved by using conservative nature of the 

internal forces generated by elastic response. For a certain class of elastic 
materials, work done by the internal forces, during deformation, is path-
independent. As a result, the work of deformation (per unit volume) during an 
infinitesimal deformation can be expressed as an exact differential of a scalar 
quantity which has the dimensions of energy per unit volume (called as the strain 
energy density). The work of deformation (per unit volume) during an infinitesimal 
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deformation is ijklijklijij dCd εεεσ = . For this expression to be an exact differential, 
the tensor C  must be symmetric in the first two and the last two indices: 

 .ijkl klijC C=  (2.205) 

Equations (2.204-2.205) imply that the tensor C  has only 21 independent 
components. 

For isotropic materials, the number of independent components of C  can be 
reduced further. For isotropic material, the response of the material is same in 
every direction. Mathematically it means, the constants in the stress-strain relations 
remain invariant with a change in the coordinate system. Equation (2.202) 
represents the stress-strain relations in ( , , )x y z  coordination system. Let ijσ ′  and 

klε ′  represent respectively the stress and strain components in ( , , )x y z′ ′ ′  coordinate 
system. Then, for isotropic materials, the stress-strain relations in ( , , )x y z′ ′ ′  
coordinate system can be written as  

  klijklij C εσ ′=′ . (2.206) 

Note that, since the material is isotropic, the constants ijklC  appearing in the stress-
strain relations are same both in ( , , )x y z  and ( , , )x y z′ ′ ′  coordinate systems. Note 
that, since σ  is a second order tensor, its components ijσ ′  and mnσ  with respect to 
two coordinate systems are related by the tensor transformation relation (Eq. 2.56). 
Rewriting this relation with the change of indices, we get 

 T
ij im mn njQ Qσ σ′ = , (2.207) 

where the matrix [ ]Q (Eq. 2.54) represents the transformation from ( , , )x y z  
coordinate system to ( , , )x y z′ ′ ′ system. Since ε  is also a second order tensor, its 

components klε ′  and pqε  are also related by a similar relation: 

 T
kl kp pq qlQ Qε ε′ = . (2.208) 

Substituting the relations (2.207-2.208) in Eq. (2.206) and using the orthogonality 
of  matrix [ ]Q  (Eq. 2.61), we get  

 ( )T T
mn mi jn ijkl kp ql pqQ Q C Q Qσ ε= . (2.209) 

In changed indices, Eq. (2.202) can be rewritten as 
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 .mn mnpq pqCσ ε=  (2.210)  

Comparing Eqs. (2.209) and (2.210), we get the following restriction on the 
components of C  due to isotropy: 

 mnpq im jn ijkl kp lqC Q Q C Q Q= . (2.211) 

Equation (2.211) must hold for all rotations of a coordinate system, i.e. for all 
orthogonal matrices whose determinant is 1+ .  

Equations (2.204) and (2.211) imply that the six components 1122C , 1133C , 

2211C , 2233C , 3311C  and 3322C  are equal. Further, these equations imply that the 
twelve components 1212C , 1221C , 2112C , 2121C , 2323C , 2332C , 3223C , 3232C , 

3131C , 3113C , 1331C  and 1313C  are also equal but their value is different than the 
value of the first set of components. Additionally, these equations imply that the 
three components 1111C , 2222C  and 3333C  are also equal and their value is related 
to the values of the first and second sets of components. If the value of the first set 
is λ  and that of the second set is μ , then the value of the third set is 2λ μ+ . 
Thus, we have the following relations between the 21 components of the tensor C : 

 

1122 1133 2211 2233 3311 3322

1212 1221 2112 2121 2323 2332 3223 3232

3131 3113 1331 1313

1111 2222 3333

,

,
2 .

C C C C C C
C C C C C C C C

C C C C
C C C

λ

μ
λ μ

= = = = = =

= = = = = = =

= = = = =

= = = +

 (2.212) 

Finally, these equations imply that the remaining 60 components of the tensor C  
are zero. Thus, for isotropic materials, there are only 2 independent components of 
the tensor C [2,4].  

2.5.1.4 Stress-Strain Relations for Isotropic Materials 
Substituting the values of 21 components of C  from expressions (2.212) in Eq. 
(2.202) and setting the remaining components of C  to zero, the stress-strain 
relations for isotropic materials become: 

 2ij kk ij ijσ λε δ με= + . (2.213) 

In tensor notation, they can be expressed as 

 ( ) 2trλ μ= +1σ ε ε . (2.214) 

Further, in component forms, they can be written as 
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2 .
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= + + +

= + + +

= + + +

=

=

=

 (2.215) 

Expressions for the remaining three shear stress components are not needed 
because of the symmetry of the stress tensor. The constants λ  and μ  are called as 
the Lame’s constants.  

As stated in the introduction, there are 3 sets of equations which govern the 
displacements, strains and stresses in a body. This is the third set of governing 
equations when the deformation is small and the material is linearly elastic. 

Sometimes, we need inverse relations. That is, we need expressions for the 
strain components in terms of the stress components. They can be obtained by 
inverting Eq. (2.215). When we do that, we get the following relations: 
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1 ( ) (1 ) ,

1 ( ) (1 ) ,

(1 ) ,

(1 ) ,
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xx xx yy zz xx
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ε ν σ σ σ ν σ
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νε σ

νε σ
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⎡ ⎤= − + + + +⎣ ⎦
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+
=

+
=

+
=

 (2.216) 

where 

 (3 2 ) , .
2( )

E μ λ μ λν
λ μ λ μ

+
= =

+ +
 (2.217) 

In index notation, Eq. (2.216) can be expressed as 

 1 (1 )ij kk ij ijE
ε νσ δ ν σ⎡ ⎤= − + +⎣ ⎦ , (2.218) 

and, in tensor notation, it can be written as 
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 1 [ ( ) (1 ) ]tr
E

ν ν= − + +1ε σ σ . (2.219) 

It can be shown that the constant E  is the slope of the straight portion of the one-
dimensional stress-strain curve (Figure 2.11): 

 .xx

xx
E

σ
ε

=  (2.220) 

It is called as the Young’s modulus. Further, the constant ν  can be shown to be 
negative of the ratio of the transverse normal strain to the axial or longitudinal 
normal strain in tension test. Thus, 

 
xx

zz

xx

yy

ε
ε

ε
ε

ν −=−= . (2.221)  

It is called as the Poisson’s ratio. Equations (2.215) or (2.216) are called as the 
generalized Hooke’s law. 

Elimination of λ  from two parts of Eq. (2.217) gives the following expression 
for μ : 

 
2(1 )

Eμ
ν

=
+

. (2.222) 

Similarly, elimination of μ  from two parts of Eq. (2.217) gives the following 
expression for λ : 

 
(1 )(1 2 )

Eνλ
ν ν

=
+ −

. (2.223) 

2.5.1.5 Alternate Form of Stress-Strain Relations for Isotropic Materials 
If we substitute the decompositions of stress and strain tensors (Eqs. 2.100 and 
2.180) in the stress-strain relations (Eq. 2.213) and equate the hydrostatic and 
deviatoric parts on each side, we get the following relations: 

 1 1(3 2 ) ,
3 3kk kkσ λ μ ε⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (2.224) 

 ' 2 .ij ijσ με ′=  (2.225) 

In tensor notation, they become: 
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 1 1(3 2 )
3 3

tr trλ μ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

σ ε . (2.226) 

 ' 2μ ′= εσ . (2.227) 

This is the third form of the stress-strain relations. It relates the hydrostatic and 
deviatoric parts of stress and strain tensors separately. This is possible only in 
isotropic materials. Equation (2.226) is a scalar equation. Because of the symmetry 
of 'σ  and ε′ , the tensor equation (2.227) represents 6 scalar equations. So, it 
appears that this form of the stress-strain relations consists of 7 scalar relations. 
However, it is not so. Because of the constraints 0tr =σ'  (Eq. 2.99) and 0tr ′ =ε  
(Eq. 2.179), only 5 out of 6 equations from the set (2.227) are independent. 

Equation (2.225) or (2.227) shows that, in isotropic materials, the elastic 
constant μ  relates the deviatoric parts of stress and strain tensors. Therefore, it is 
called as the shear modulus. These equations imply that, in isotropic materials, the 
change in shape (without change in volume) is caused only by the deviatoric part 
of stress tensor. It also means, in isotropic materials, the hydrostatic part of stress 
tensor causes only the change in volume (without change in shape). 

Besides the 4 elastic constants λ , μ , E  and ν , there is one more elastic 
constant that is often used. It is called as the bulk modulus and is denoted by K . It 
is defined as the ratio of the hydrostatic part of stress to the volumetric strain. In 
small deformation, the volumetric strain is given by lltr ε=ε  (Eq. 2.178). Thus, for 
small deformation, K  is defined as 

 
(1/ 3) (1/ 3)kk

ll

trK
tr

σ
ε

= =
σ

ε
. (2.228) 

This shows that, when the deformation is small, the bulk modulus K  relates the 
hydrostatic parts of stress and strain tensors. Combining Eqs. (2.224) and (2.228) 
we get the following expression for the bulk modulus in terms of λ  and μ : 

 (3 2 )
3

K λ μ+
= . (2.229) 

By taking the trace of Eq. (2.219) and using the expression (2.228) for K , we get 

  
3(1 2 )

EK
ν

=
−

. (2.230) 

Using the sign conventions for stress and strain components described in 
Sections 2.3.1.4 and 2.4.1.2, experimental observations in real materials show that 
the signs of E , ν , μ , λ  and K  are all positive. Equation (2.230) shows that for 
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compressible materials (finite K ), ν  has to be less that (1/2). For incompressible 
materials ( ∞→K ), ν  must be (1/2). 
 
Example 2.14: Using the stress-strain relations (Eq. 2.215), find the expressions 
for the stress components corresponding to the strain expressions of Example 2.10 
(Eq. 2.161). 

Solution: Using the strain expressions of Example 2.10 (Eq. 2.161), we get 

 0 0
1 1( ) 1 0
2 2xx yy zz A x yε ε ε ⎡ ⎤+ + = − − − =⎢ ⎥⎣ ⎦

A . (2.231) 

Note that Eq. (2.231) implies that the volumetric strain vε  is zero. This is 
expected, since the material is incompressible. Further, it implies that the 
hydrostatic part of the strain tensor is zero. Thus, the whole strain tensor is 
identical to its deviatoric part.  

Substituting the strain expressions of Example 2.10 (Eq. 2.161) along with Eq. 
(2.231) in the stress-strain relations (Eq. 2.215), we get  
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 (2.232) 

2.6 Summary 

In this chapter, first, the index notation and the associated summation convention 
which have been used throughout the book have been explained. Then, the 
equations which govern the displacements, strains and stresses in a deformable 
body have been developed for the case of small deformation of linearly elastic 
materials. These equations have been developed in the following stages. First, the 
concept of stress at a point has been discussed. Since the stress at a point is a tensor 
(a second order tensor to be precise), a simple definition of tensor has been 
provided. The analysis of stress at a point has been carried out to provide a 
background material for developing the theory of plasticity in Chapter 3. The 
equations of motion which the stress components satisfy have also been discussed. 
Next, the linear strain tensor at a point, which is a measure of small deformation, 
has been developed. The associated strain-displacement relations have been 
presented. The linear strain tensor is not applicable for the analysis of plastic 
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deformation. However, it does provide an insight into the deformation of solids 
which would be useful while developing a measure of plastic deformation in the 
next chapter. Analysis of the linear strain at a point has also been carried out 
similar to the analysis of stress at a point. Finally, the stress-strain relations, for the 
case of small deformation of linearly elastic solids, have been developed. These 
relations provide an introduction to the material behavior and therefore, provide a 
useful foundation for developing the plastic stress-strain relations of Chapter 3. 
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