
Chapter 6
Thermoelasticity

1 Introduction

When thermal energy is added to an elastic material it expands. For the simple unidimen-
sional case of a bar of length L, initially at uniform temperature T0 which is then heated
to a nonuniform temperature T and thus grows in length by an amount ∆L, the relative
uni-axial stretching due to thermal expansion is

∆L

L
= ε = α(T − T0)

where ε is the strain and α is the thermal expansion coefficient. For an isotropic cube of side
L the (normal) thermoelastic strains are

εx = εy = εz = α(T − T0)

It is conventional but not necessary to take T0 = 0.
Since the heated region is joined to, and constrained by rigid surroundings, it can not

expand freely but becomes subjected to compressive stresses. At the same time the colder
portion is subjected to the pull exerted by of the adjacent hot portion and it is thus under
tension.

Although Hooke’s law is still applicable, due account must be taken of the additional
stresses created by thermal expansion.

2 Governing Equations of Thermoelasticity for an Isotropic

Solid

The governing equations for the isotropic thermoelastic solid include the equilibrium equa-
tions

∂σij

∂xj

+ Xi = σij,j + Xi = 0
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where i, j = 1, 2, 3, the generalized thermoelastic stress-strain relations

σij = Cijklεkl − βij(T − T0) = λεkkδij + 2Gεij − βδijθ

where θ = T − T0 is the excess temperature distribution, and β = αE/(1 − 2ν) where α is
the thermal expansion coefficient.

Expressed as strain-stress relationships the above are

εij =
1 + ν

E
σij − ν

E
σµµδij + αθδij

The small displacement strain-displacement relations are, as before

εij =
1

2
(ui,j + uj,i)

Finally, the compatibility equations must also be satisfied.
The temperature distribution θ must be determined by solving the energy conservation

equation

dU

dt
= T

∂S

∂t
+

1

ρ
σijVij

where U is the internal energy, S the entropy and

Vij =
1

2
(
∂vi

∂xj
+

∂vj

∂xi
)

is the rate of deformation tensor where vi is the velocity.
One can show that the following from the differential thermal energy balance equation

can be derived from the above

∂H

∂t
+ θβij

∂εij

∂t
= ∇ · (k∇θ) + r

where H is the enthalpy, βij are experimentally determined numerical coefficients and r is
the rate of internal energy generation.

The energy equation above must be solved subject to suitable boundary and initial con-
ditions in order to determine the temperature field θ.

For steady state conditions in a medium of constant conductivity and without internal
heat generation

∇2θ = 0

i.e. solutions to steady state heat conduction problems are harmonic functions.
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In uncoupled, quasi-static thermoelastic theory, the mechanical coupling terms in the
energy and the heat conduction equations are neglected. Therefore, the heat conduction
problem and the thermoelastic deformation problem are handled separately.

By substituting the generalized thermoelastic stress-strain relations and the small dis-
placement strain-displacement relations into the equilibrium equation one obtains the gen-
eralized Navier’s equation

Gui,µµ + (λ + G)uµ,µi + Xi − βθ,i = 0

The three thermomechanical equilibrium equations together with the energy equations
and the six stress-strain relations constitute a set of ten equations for the ten unknowns
ui, τij and θ. One can show this system is complete, yields an unique solution under suitable
boundary conditions and the resulting strain satisfies the compatibility relations.

3 Displacement Potential and Stress Functions

Goodier introduced the displacement potential function φ as

u = ∇φ = ui =
∂φ

∂xi

this, when substituted into the generalized Navier equation and integrated yields

φ,µµ =
1

λ + 2G
(P + βθ)

where P is the potential for the assumed conservative body forces (i.e. X = −∇P ).
The solution of the above is the sum of a particular solution and the complementary

solution of Laplace’s equation (∇2φ = 0).
For plane strain conditions, on a x − y plane in rectangular Cartesian coordinates, com-

bination of the equilibrium equations and the compatibility condition yields

∇2(σxx + σyy) =
β

1 − ν
∇2θ

Introducing the stress function Φ defined by

σxx =
∂2Φ

∂y2
+ βθ

σyy =
∂2Φ

∂x2
+ βθ

σxy = − ∂2Φ

∂x∂y

yields

∇4Φ = − αE

1 − ν
∇2θ
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4 Thermal Stresses in a Thin Plate

Consider an infinitely long plate of very small thickness and width 2c. Let the long direction
be aligned with the x axis and the width with y. Assume that T0 = 0 and that the temper-
ature in the plate is only a function of y, (i.e. θ = T (y)). What would be the thermoelastic
states of strain and stress resulting from this temperature field?

The answer is obtained using the principle of superposition. First, one must determine
the amount of compressive stress that would have to be applied to keep the plate from
straining altogether in the longitudinal (x) direction.

From the above, the required stress would be

σ′
x = −αET (y)

Since one is interested in the thermal stress in an expanding plate, to the above stress
one must superimpose the stress generated in the plate when a uniformly distributed tensile
force of magnitude

1

2c

∫ y=+c

y=−c
αET (y)dy

is applied at the x → ±∞ boundaries.
Therefore, the actual thermal stress in the plate is

σx =
1

2c

∫ y=+c

y=−c
αET (y)dy − αET (y)

Assume now that T (y) is quadratic in y,

T (y) = Ty=0(1 − y2

c2
)

I.e. the center of the plate is at temperature Ty=0 while the edges y = ±c are at 0. Substi-
tuting this into the expression for σx gives

σx =
2

3
αETy=0 − αETy=0(1 − y2

c2
)

Clearly, the stress is quadratic in y. The maximum compressive stress is at y = 0 and
it is equal to σx,y=0 = −1

3
αETy=0, while the maximum tensile stress is at y = ±c and it is

σx,y=±c = 2
3
αETy=0. The stress is zero at y = ±c/

√
3.

5 Thermal Stress in Disks and Cylinders

Consider a thin disk (radius b) with a hole of radius a at the center. Assume the temperature
in the disk θ = T (r) is only a function of the radial position r measured from the center of
the hole.

4



If plane stress conditions are assumed, mechanical equilibrium requires

dσr

dr
+

σr − σφ

r
= 0

where r and φ are the radial and azimuthal directions, respectively.
The strain-displacement relations are

εr =
du

dr

εφ =
u

r

where u is the radial displacement.
Finally, for linear thermoelastic material the stress-strain relations are

σr =
E

1 − ν2
[(εr + νεφ) − (1 + ν)αT ]

σφ =
E

1 − ν2
[(εφ + νεr) − (1 + ν)αT ]

Combination of the strain-displacement relations with the above and substitution into
the mechanical equilibrium equation yields

d2u

dr2
+

1

r

du

dr
− u

r2
= (1 + ν)α

dT

dr

with the general solution

u = (1 + ν)α
1

r

∫ r

a
Trdr + C1

r

2
+ C2

1

r

where C1, C2 are constants. The associated stresses are

σr = −αE

r2

∫ r

a
Trdr +

E

1 − ν

C1

2
− E

1 + ν

C2

r2

σφ =
αE

r2

∫ r

a
Trdr − αET +

E

1 − ν

C1

2
+

E

1 + ν

C2

r2

Since no radial stresses act at the inner and outer the outer radius of the disk (σr(a) =
σr(b) = 0),

C1 =
2(1 − ν)α

b2 − a2

∫ b

a
Trdr

C2 =
(1 + ν)αa2

b2 − a2

∫ b

a
Trdr
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and the axial strain is

εz = (1 + ν)αT − 2να

b2 − a2

∫ b

a
Trdr

If plane strain conditions are assumed instead (a good approximation in the case of a
tall hollow cylinder with its bases restrained from movement along the axial direction), the
corresponding results are, for the displacement

u =
α

r

1 + ν

1 − ν
[
∫ r

a
Trdr +

(1 − 2ν)r2 + a2

b2 − a2

∫ b

a
Trdr]

and for the associated stresses are

σr =
αE

r2

1

1 − ν
[−

∫ r

a
Trdr +

r2 − a2

b2 − a2

∫ b

a
Trdr]

σφ =
αE

r2

1

1 − ν
[−Tr2 +

∫ r

a
Trdr +

r2 + a2

b2 − a2

∫ b

a
Trdr]

and

σz = αE
1

1 − ν
[−T +

2ν

b2 − a2

∫ b

a
Trdr]

The solution to the case of a tall hollow tube unrestrained from movement in the axial
direction is given by

u =
α

r

1

1 − ν
[(1 + ν)

∫ r

a
Trdr +

(1 − 3ν)r2 + (1 + ν)a2

b2 − a2

∫ b

a
Trdr]

the associated stresses are

σr =
αE

r2

1

1 − ν
[−

∫ r

a
Trdr +

r2 − a2

b2 − a2

∫ b

a
Trdr]

σφ =
αE

r2

1

1 − ν
[−Tr2 +

∫ r

a
Trdr +

r2 + a2

b2 − a2

∫ b

a
Trdr]

and

σz =
αE

1 − ν
[−T +

2

b2 − a2

∫ b

a
Trdr]

and the longitudinal strain is

εz =
2α

b2 − a2

∫ b

a
Trdr

6



Specifically, for a thin disk with radial steady state temperature distribution

T (r) = Tb − (Tb − Ta)
ln(b/r)

ln(b/a)

where Ta = T (a), Tb = T (b). the stresses are

σr =
1

2
αE(Tb − Ta)[

1 − (a/r)2

1 − (a/b)2
− ln(r/a)

ln(b/a)
]

σφ =
1

2
αE(Tb − Ta)[

1 + (a/r)2

1 − (a/b)2
− 1 + ln(r/a)

ln(b/a)
]

with σz = 0. The corresponding stresses for the long hollow cylinder are obtained dividing
the above by 1 − ν. but in this case with

σz =
αE(Tb − Ta)

2(1 − ν)
[

2

1 − (a/b)2
− 1 + 2 ln(r/a)

ln(b/a)
]

Consider finally the specific example of quenching a long free cylinder, initially at a
uniform temperature T (r) = T0 by maintaining its surface temperature at zero (T (r = b) =
0). The solution of the homogeneous linear transient 1D heat conduction problem is (see for
example ”Conduction of Heat in Solids”, 2nd ed, by Carslaw and Jaeger, Clarendon, Oxford,
1959, p. 199):

T (r) = T0

∞∑
n=1

2

βnJ1(βn)
J0(βn

r

b
)e(−κ

β2
n

b2
t)

where κ is the thermal diffusivity, J0 and J1 are the Bessel functions of first kind, of orders
zero and one, respectively and βn are the eigenvalues of the problem, which are the roots of

J0(βn) = 0

Substituting the expression for T (r) into the stress equations one obtains

σr(r) =
2αET0

1 − ν

∞∑
n=1

[
1

β2
n

− 1

β2
n

b

r

J1(βn(r/b))

J1(βn)
]e(−κ

β2
n

b2
t)

σφ(r) =
2αET0

1 − ν

∞∑
n=1

[
1

β2
n

+
1

β2
n

b

r

J1(βn(r/b))

J1(βn)
− J0(βn(r/b))

βnJ1(βn)
]e(−κ

β2
n

b2
t)

and

σz(r) =
2αET0

1 − ν

∞∑
n=1

[
2

β2
n

− J0(βn(r/b))

βnJ1(βn)
]e(−κ

β2
n

b2
t)
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If one is interested only in the maximum value of the stresses (which occur when t ≈ 0
at the surface), the results are

σr(b) = 0

σθ = σz =
αET0

1 − ν

I.e. the surface of the cylinder is under circumferential (hoop) and axial tensions of equal
magnitudes. The (cold) surface layers of the cylinder want to contract but are prevented
from doing so by the (still hot) core. If instead of quenching, a cold cylinder is heated, the
initial stress state at the surface is compressive.

6 Thermal Stresses in a Sphere

Consider a sphere of radius b in which the temperature is only function of r. The differential
mechanical equilibrium equation is

dσr

dr
+

2

r
(σr − σt) = 0

where σr and σt are, respectively, the radial and tangential stress.
The stress-strain relations are:

εr = αT +
1

E
(σr − 2νσt)

and

εt = αT +
1

E
[σt − ν(σr + σt)]

Finally, the displacement-strain relationships are

εr =
du

dr

and

εt =
u

r

The solution in this case is

u(r) =
1 + ν

1 − ν
α

1

r2

∫ r

0
Tr′2dr′

8



σr(r) =
2αE

1 − ν
[
1

b3

∫ b

0
Tr2dr − 1

r3

∫ r

0
Tr′2dr′]

and

σt(r) =
αE

1 − ν
[
2

b3

∫ b

0
Tr2dr +

1

r3

∫ r

0
Tr′2dr′ − T ]

If T (r) is known, stresses are readily computed.
For instance, if a cold solid sphere, initially at T0, is heated by maintaining its surface

at temperature T1, the maximum compressive stress (occurring at the surface at the very
beginning of the process) is

σr(b) = σt(b) = −αE(T1 − T0)

1 − ν
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