
Chapter 3
Stress, Strain, Virtual Power and

Conservation Principles

1 Introduction

Stress and strain are key concepts in the analytical characterization of the mechanical state
of a solid body. While stress represents internal forces per unit area resulting from loads
applied to the body, strain is the resulting relative displacement of points in the body. This
chapter formally introduces the notions of stress and strain tensors and it also shows how
the mechanical equilibrium equations can be obtained directly from the application of the
principle of virtual work. The chapter starts with a review of vectors and tensors.

2 Overview of Vectors and Tensors

Tensors are widely used in engineering analysis to denote physical quantities of interest. This
section reviews basic notions of tensor analysis needed in continuum mechanics.

2.1 Notation

Tensors are important in applications because governing equations which have general va-
lidity with respect to any frame of reference can be constructed by ensuring that every term
in the equation has the same tensor characteristics. Thus tensor characteristic play a role
analogous to that of dimensional analysis. Thus, once a physical quantity has been given
the characteristic of a tensor then the components of the quantity can be transformed from
one coordinate system to another according to the above rules.

In vector and tensor calculus, subscript and superscript index notation is used to denote
collections of variables, for instance, the set x1, x2, ..., xn is denoted by xi, i = 1, 2, ..., n or by
xi, i = 1, 2, ..., n. Likewise, the set y1, y2, ..., yn is denoted as yj, j = 1, 2, ..., n. Note that the
superscript is just an index, not a power. If a power is meant, the quantity will be enclosed
in parenthesis.
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The summation convention is used to simplify the writing of equations consisting of col-
lection of similar looking terms. Whenever a sum involving two identically indexed variables
appears one simply writes a single term using a dummy index and omits the summation
sign. For instance

a1x1 + a2x2 + a3x3 =
3∑

i=1

aixi = aixi

The summation convention also applies to derivatives, specifically, for a function f(x1, x2, x3)
the total differential expressed in terms of the partial derivatives is

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 +

∂f

∂x3
dx3 =

∂f

∂xi
dxi

A concrete example is provided by the unit vector u in three dimensional Euclidean
space in rectangular Cartesian coordinates. In tensor analysis, components are denoted
by indices, so instead of writing x, y, z for the three coordinates in such space one writes
x1, x2, x3 = xi, i = 1, 2, 3.

u = u1e1 + u2e2 + u3e3 = uiei

where ui are the components of u and ei, i = 1, 2, 3 are the unit coordinate vectors (i, j,k in
rectangular Cartesian coordinates, respectively). The magnitude of u, u = |u|, is given by

u =
√
uiui =

√
u2

i = 1

Therefore, the dot product of two vectors a,b can be expressed as

a · b = a1b1 + a2b2 + a3b3 = aibi = δijaibj

The quantity

δij =

{
1 i = j
0 i 6= j

is Kronecker’s delta.
Another example is the differential arc or line element of a curve in space ds, this is

ds =
√
δijdxidxj

where two summations are involved.
Another example is the determinant of a 3 × 3 matrix |aij |, this is given as

|aij | = erstar1as2at3
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where erst is the permutation symbol defined as

erst =




1 when subscripts permute like 1, 2, 3
0 when any two indices coincide
−1 otherwise

The permutation symbol and Kronecker’s delta are related by

eijkerst = δjsδkt − δjtδks

With the above, the vector product of two vectors can be simply expressed as

a × b = eijkajbk

2.2 The Euclidian Metric Tensor

Consider a system of rectangular coordinates x1, x2, x3. Consider also a new system of
coordinates u1, u2, u3. The two systems being related by the expressions

xi = xi(u1, u2, u3)

or

ui = ui(x1, x2, x3)

so that to every triplet (x1, x2, x3) there corresponds a triplet (u1, u2, u3).
In any system of coordinates, coordinate curves in space are generated by varying one

coordinate while holding the other two constant. If the three coordinate curves resulting
from the triplet (u1, u2, u3) are mutually perpendicular at each point P , then the triplet
constitutes a system of orthogonal curvilinear coordinates.

If a differential segment of an arbitrary curve in space is associated with differential
displacements in the coordinates dx1, dx2, dx3 then it can be expressed as The differential
element of arc of a curve in coordinates xi is

ds =
√
δijdxidxj =

√
dxidxi

But

dxi =
∂xi

∂uk

duk

therefore

(ds)2 = dxidxi =
∂xi

∂uk

∂xi

∂um

dukdum = gkmdu
kdum

where the functions

gkm(u1, u2, u3) = gmk(u1, u2, u3) =
∂xi

∂uk

∂xi

∂um

are the components of the Euclidian metric tensor in the coordinate system u1, u2, u3.
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2.3 Scalars, Vectors and Tensors

Scalars, vectors and tensors are mathematical entities that are used in applications to rep-
resent meaningful physical quantities. Consider two systems of coordinates ui and ui∗ which
are related by the coordinate transformation rules described above. Physical quantities of
interest can be represented in any of these two systems. A scalar is an entity consisting of a
single component and is represented in terms of ui by the single component (number) φ and
in terms of ui∗ by φ∗. If the two numbers are one and the same

φ(u1, u2, u3) = φ∗(u1∗, u2∗, u3∗)

A scalar is also considered a tensor of rank or order zero.
If an entity has instead three components in each of the coordinate systems is called a

contravariant vector or contravariant tensor of order one and individual components ξi and
ξi∗ in the two systems are related by

ξi∗(u1∗, u2∗, u3∗) = ξi(u1, u2, u3)
∂ui∗

∂ui

The use of the index as superscript distinguishes contravariant vectors.
Likewise, if an entity has three components in each of the coordinate systems is called a

covariant vector or covariant tensor of rank or order one and individual components ξi and
ξi∗ in the two systems are related by

ξi∗(u1∗, u2∗, u3∗) = ξi(u
1, u2, u3)

∂ui

∂ui∗

The use of the index as subscript distinguishes contravariant vectors. Covariant and con-
travariant components are identical in rectangular Cartesian systems of coordinates but they
are not in curvilinear coordinates. By convention, only the subscript index notation is used
to describe vectors in rectangular Cartesian systems of coordinates.

Now, if an entity has nine components one has tensor of rank or order two. There are
also contravariant T ij and covariant Tij tensors which transform according to

T ij∗(u1∗, u2∗, u3∗) = Tmn(u1, u2, u3)
∂um

∂ui∗
∂un

∂uj∗

and

Tij∗(u1∗, u2∗, u3∗) = Tmn(u1, u2, u3)
∂ui∗

∂um

∂uj∗

∂un

respectively.
Mixed tensor fields of rank two T i

j can also be defined as well as tensors of higher ranks.
Again, in rectangular Cartesian systems of coordinates, there is no distinction between

contravariant and covariant tensors. By convention only the subscript index notation is used
to describe tensors in rectangular Cartesian systems of coordinates.
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The Kronecker delta defined before can be regarded as a component of a rank two tensor
which turns out to be the Euclidian metric tensor (gij, gij , g

i
j), while the permutation symbol

can be regarded as a component of a rank three tensor called the permutation tensor or the
alternator εijk.

It should be noted that given a tensor, others can be generated from it by a process called
contraction which consists of equating and summing a covariant and a contravariant index
of a mixed tensor.

2.4 Algebraic Properties of Second Order Tensors

Recall that tensors, just as vectors can be added (each component of the resulting tensor
is the sum of the corresponding components in the original tensors). They can also be
multiplied according to the rule

Ciklm = AikBlm

Also, tensors are symmetric if Aij = Aji and antisymmetric if Aij = −Aji.
A vectorBi can be obtained from a tensor Tik and an arbitrary vectorAk by multiplication

as follows

Bi = TikAk

The new vector B has generally different magnitude and direction from A. Now, if Bi = λAi,
where λ is a scalar, it is called the characteristic vector of Tik and the directions associated
with it are called the characteristic or principal directions of Tik. The axes determined by
the principal directions are called the principal axes of Tik. The problem of finding the
principal axes of a tensor is called the reduction of Tik to principal axes. The components of
A determining the principal axes of Tik satisfy the system of equations

TikAk − λAi = (Tik − λδik)Ak = 0

This system has a nontrivial solution only when the determinant

∣∣∣∣∣∣∣
T11 − λ T12 T13

T21 T22 − λ T23

T31 T32 T33 − λ

∣∣∣∣∣∣∣ = λ3 − λ2I1 + λI2 − I3 = 0

where the quantities

I1 = T11 + T22 + T33 = Tii

I2 =

∣∣∣∣∣ T22 T32

T23 T33

∣∣∣∣∣ +

∣∣∣∣∣ T11 T21

T12 T22

∣∣∣∣∣ +

∣∣∣∣∣ T11 T31

T13 T33

∣∣∣∣∣
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and

I3 =

∣∣∣∣∣∣∣
T11 T12 T13

T21 T22 T23

T31 T32 T33

∣∣∣∣∣∣∣
are called the invariants of the tensor Tik.

The equation

λ3 − λ2I1 + λI2 − I3 = (λ− λ1)(λ− λ2)(λ− λ3) = 0

is called the characteristic equation for the determination of the eigenvalues of a tensor.

2.5 Partial Derivatives in Cartesian Coordinates

In Cartesian coordinates, the partial derivatives of any tensor field are the components of an-
other tensor field. Consider two Cartesian systems of coordinates (x1, x2, x3) and (x∗1, x

∗
2, x

∗
3)

related by the rule

x∗i = aijxj + bi

where aij and bi are constants. Let ξi∗(x∗1, x
∗
2, x

∗
3) be a contravariant tensor so that

ξi∗(x∗1, x
∗
2, x

∗
3) = ξi(x1, x2, x3)

∂x∗i
∂xα

then one has the relationship

∂ξi∗

∂x∗j
=
∂ξα

∂xβ

∂xβ

∂x∗j

∂x∗i
∂xα

i.e. the partial derivatives of ξ transform as a rank two tensor in Cartesian coordinates. This
is not the case in curvilinear coordinate systems.

The comma notation is often used to denote partial derivatives. For instance the tensors
φ,i = ∂φ/∂xi, ξi,j = ∂ξi/∂xj and σij,k = ∂σij/∂xk are of rank one, two and three, respectively
assuming that φ, ξi and σij are tensors of ranks zero, one and two, respectively.

Further, the covariant derivative of the covariant vector ξi is defined as

ξi|α =
∂ξi
∂xα

− Γσ
iαξσ

and they are the components of a covariant tensor of rank two. Here, the quantity

Γi
αβ =

1

2
giσ(

∂gαβ

∂xα
+
∂gασ

∂xβ
− ∂gαβ

∂xσ
)

is called the Euclidian Christoffel symbol.
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2.6 Characteristics of Tensor Equations

The key property of tensor fields is that if all the components of a tensor vanish in a given co-
ordinate system, they also vanish in all other systems obtainable from the first by admissible
transformations. As a consequence, a tensor equation established in one coordinate system
will also hold in any other system obtainable from the first by admissible transformations.

For instance, the mass contained inside a given volume V is

M =
∫ ∫ ∫

V
ρ0(x1, x2, x3)dx1dx2dx3 =

∫ ∫ ∫
V
ρ0|∂xi

∂x∗j
|dx∗1dx∗2dx∗3

Also the total volume contained inside a closed surface is

V =
∫ ∫ ∫

V
dx1dx2dx3 =

∫ ∫ ∫
V
|∂xi

∂x∗j
|dx∗1dx∗2dx∗3 =

∫ ∫ ∫
V

√
gdx∗1dx

∗
2dx

∗
3

2.7 Geometric Interpretation of Tensor Components

Recall that the set of unit vectors or base vectors, ir for r = 1, 2, 3 in Euclidean space is a
set of linearly independent vectors such that any vector in the space can be generated from
them by simple linear combination. Consider an infinitesimal vector dr = dxrir = dxri

r

connecting two closely space points in space referred to a Cartesian coordinate system. In a
new and arbitrary coordinate system ui = ui(x1, x2, x3), the same vector is represented as

dr = grdu
r = grdur

where gr = (∂xs/∂ur)is is the covariant base vector and gr is the contravariant base vector.
Moreover,

gi =
∂r

∂ui

so that gi represents the change in the position vector r with ui and points along the tangent
to the coordinate curve.

It can be shown that gr · gs = grs, gr · gs = grs and gr · gs = gr
s = δr

s .
A vector v can then be expressed

v = vrgr = vsg
s

and the contravariant components vr of v are the components in the direction of the covariant
base vectors and vice versa.

Consider two coordinate systems. The associated base vectors are gi,g
i and g∗

i ,g
i∗ .

Then, the transformation laws for a vector are

vi∗ = gi · gmv
m
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and

vj = g∗
i · gjvr

Likewise, in the case of tensors of rank two the transformation laws are

Ars∗ = gr∗ · gmgs∗ · gnA
mn

and

Amn = g∗
r · gmg∗

s · gnAmn∗

3 Analysis of Stress

3.1 Concept of Stress

When external loads are applied to a solid body, forces are transmitted through body’s
interior. Stress is a concept used to represent the mechanical interaction across imaginary
surfaces in the interior of solid bodies.

Consider a closed surface enclosing an interior region of a solid body. The surface can
be characterized by its outward pointing normal vector ν. The material outside the surface
exerts a force F over the adjacent material on the other side of the surface. The stress vector
T is the force per unit area and is defined as

T =
dF

dS

In a rectangular Cartesian system of coordinates T has three components, Ti, i = 1, 2, 3.
Cauchy first pointed out that the force exerted by the material behind the surface on the
material outside the surface is equal in magnitude and opposite in sign.

If the region enclosed by the surface has the shape of a cube and a rectangular Cartesian
system of coordinates is introduced such that the cube faces are normal to the coordinate
axes, there are three components of T on each of the three positive faces of the cube. These
nine numbers are the stresses τij where the subscript i indicates the plane on which the force
acts and the subscript j denotes the direction of action. If i = j one has normal stresses
and if i 6= j one has shearing stresses. With the above, the stress vector components are
expressed as

Ti = νjτji

Because of Cauchy’s idea, the nine components of stress above are necessary and sufficient
to characterize the state of stress in a body.

The stresses can be readily represented on a second (primed) rectangular Cartesian sys-
tem of coordinates according to the following transformation rule

τ ′km = τji
∂x′k
∂xj

∂x′m
∂xi
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3.2 Laws of Motion

As load is applied on a body of volume V , the particles that make up the body are displaced.
For any given particle, its position vector is r and its velocity is v.

The linear momentum of the body is defined as

P =
∫

V
vρdV

and its moment of momentum is defined as

H =
∫

V
r × vρdV

where B is the space occupied by the body.
If the total force applied on the body is FT and the total applied torque is LT the laws

of motion are

dP

dt
= FT

and

dH

dt
= LT

The forces applied on bodies are of two types: body forces and surface forces. Body forces
X act in the interior of the body while surface forces T act on surface elements. Gravity is
a good example of a body force while stress is an example of surface force. Therefore,

F =
∫

V
XdV +

∮
S
TdS

3.3 Equilibrium Equations

The equations of equilibrium are simply the statements that no net force and no moment
act on a body in a state of mechanical equilibrium. They are easily obtained by carrying
out force and moment balances on the cube shaped volume element mentioned above and
then taking the limit as the size goes to zero. The results are

∂τij
∂xj

+Xi = τij,j +Xi = 0

for the force equation, and

τij = τji

for the moment equation.

9



3.4 Principal Stresses

There are always three perpendicular directions at any point inside a loaded body where the
shear stresses vanish. These are called principal directions and the planes normal to them
are the principal planes. The three principal stresses be σ1, σ2, σ3 and are the roots of the
equation

σ3 − I1σ
2 + I2σ + I3 = 0

where I1, I2, I3 are the stress tensor invariants given by

I1 = τii

I2 =
1

2
(τiiτjj − τijτji)

I3 = detτij

At a point in a loaded body, the mean stress σ0 is defined as

σ0 =
1

3
τii

and the stress deviation tensor τ ′ij is defined as

τ ′ij = τij − σ0δij

The invariants of the stress deviation tensor are

J1 = 0

J2 =
1

2
τ ′ijτ

′
ij = 3σ2

0 − I2 =
3

2
τ 2
0

J3 =
1

3
τ ′ijτ

′
jkτ

′
ki = I3 + J2σ0 − σ3

0

where τ0 is the octahedral stress.
A useful graphical representation of the state of stress at a point can be obtained by

drawing the stress Mohr circle.
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4 Analysis of Strain

4.1 Concept of Strain

As loads are applied to a body, individual material particles are displaced from their posi-
tions. Let the point coordinates before deformation be ai and xi after it. An infinitesimal
element of arc connecting two adjacent points in the body ds0 distorts to ds. The difference
between the squares of the length elements is given by

ds2 − ds2
0 = 2Eijda

idaj

or

ds2 − ds2
0 = 2eijdx

idxj

where

Eij =
1

2
(gαβ

∂xα

∂ai

∂xβ

∂aj

− aij)

is the Green-St. Venant (or Lagrangian) strain tensor and

eij =
1

2
(gij − aαβ

∂aα

∂xi

∂aβ

∂xj

)

is the Almansi (or Eulerian) strain tensor.
One can show, that the necessary and sufficient condition for rigid body motion is the

vanishing of the strain tensor.
Since the strain tensors are tensors, they exhibit similar properties to those of the stress

tensor. Specifically, one can define strain invariants (the first one, for instance is eii = ∆V/V
and is called the dilatation. Strain deviation tensors can also be defined.

Note that if rectangular Cartesian coordinates are used to describe the deformation gij =
aij = δij. In this case, defining components of the displacement vector u as

ui = xi − ai

yields

Eij =
1

2
[
∂uj

∂ai

+
∂ui

∂aj

+
∂uα

∂ai

∂uα

∂aj

]

and

eij =
1

2
[
∂uj

∂xi

+
∂ui

∂xj

− ∂uα

∂xi

∂uα

∂xj

]
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For the important case of small deformations (i.e. infinitesimal displacements) the prod-
uct terms are negligible and one obtains

eij = εij =
1

2
[
∂uj

∂xi

+
∂ui

∂xj

]

I.e. for the case of small deformations the Lagrangian and Eulerian strains are the same.
Note that if an element of a body is stretched in the x−direction by an amount dx,

ds2 − ds2
0 = 2exx(dx)

2

i.e. exx represents an extension (change of length per unit length). If instead the element
is sheared in the x − y plane, the shear is exy. Therefore eii are called normal strains and
eij are shearing strains (although engineers sometimes use this name for the quantity 2eij).
Furthermore, the quantity

ωij =
1

2
(
∂uj

∂xi

− ∂ui

∂xj

)

is called the rotation.
Deformation is assumed to take place without the formation of cracks or voids or in-

terpenetration of materials particles. This requirement is expressed by the equations of
compatibility. These equations must be fulfilled by the strain components of any admissible
deformation field. They are

eij,kl + ekl,ij − eij,jl − ejl,ik = 0

Although the above represent 81 equations, only six turn out to be essential.
A useful graphical representation of the state of strain at a point can be obtained by

drawing the strain Mohr circle.

5 Virtual Power

Virtual motions are useful concepts in mechanics of material. They are used both in the
analytical formulation of problems and also constitute the foundation of the finite element
methodology. Virtual motions are imaginary movements of material points and the method
of virtual power consists of determining the associated work or power involved. If the virtual
motion of point M is described by the vector v, the associated power is P (v(M)). In this
section we show how the static equilibrium equation is readily obtained by applying the
principle of virtual power.

The virtual motion can be described with reference to the coordinates of the initial
location of point M , M0 (Lagrangian description) or in terms of the current coordinates
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of M (Eulerian description). The total time rate of change of v in Lagrangian variables is
simply γ = dv/dt = ∂v/∂t while in the Eulerian description one has

γ =
dv

dt
=
∂v

∂t
+ v · ∇v =

dvi

dt
=
∂vi

∂t
+ vi,jvj

where ∇v is an important second order tensor, the velocity gradient tensor which can be
expressed as

∇v = Ω + D =
1

2
(vi,j − vj,i) +

1

2
(vi,j + vj,i)

where D = Dij is the rate of deformation tensor and Ω = Ωij is the rate of rotation tensor.
The fundamental laws of dynamics are embodied in the principle of virtual power. Ac-

cording to it, for a body in mechanical equilibrium, for any virtual motion the virtual power
associated with rigid body movement is zero and the virtual power of inertia forces equals
the sum of the virtual powers of all internal and external forces.

Consider a material body of volume V and surface S which is subjected to a body force
density Xi. Further, let the internal stress field be τij and the surface density of cohesive
forces Ti. The principle of virtual power is expressed as

−
∫

V
τijDijdV +

∫
V
XividV +

∮
S
TividS =

∫
V
γiviρdV

Since Ti = τijnj, integration by parts yields

∫
V
(τij,j +Xi − ργi)vidV = 0

Since the integrand must vanish, for the special but important case of zero inertia forces one
obtains the static equilibrium equation

τij,j +Xi = 0

As mentioned before, analysis is simpler if the assumption of small displacements and
strains can be used. If this is not the case, finite deformation theory must be used to describe
the geometry of the deformation.

6 Conservation Principles

Conservation principles are balance statements for physical quantities the amounts of which
are conserved in physical processes. Conservation principles are valid regardless the material
constitution of the medium in which they apply, therefore, they have a universal charac-
ter. Mathematical expressions for these conservation principles in the form of differential
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equations are readily obtained by performing balances of the conserved quantities over dif-
ferential volume elements and then taking the limit as the volume shrinks down to zero. In
the thermomechanics of solids and fluids the conservation principles most frequently invoked
are:

The principle of mass conservation, or equation of continuity, i.e.

Dρ

Dt
+ ρ

∂vj

∂xj
= 0

where ρ is the local density (mass per unit volume), vj is the local velocity, xj are the local
Eulerian coordinates and

D

Dt
=

∂

∂t
+ ρvj

∂

∂xj

is the material or substantial derivative.
The principle of conservation of linear momentum, or equation of motion, i.e.

ρ
Dvi

Dt
=
∂σij

∂xj
+Xi

where σij is the stress tensor and Xi is the body force vector. Note this become the standard
equilibrium equation under static conditions (i.e. vi = 0).

The principle of balance of angular momentum, or stress tensor symmetry equation, i.e.

σij = σji

The principle of conservation of energy, or first law of thermodynamics, i.e.

ρ
Du

Dt
= − ∂qi

∂xi
+ r + σij

∂vi

∂xj

where u is the specific internal energy per unit mass, qi is the heat flux vector, r is the
distributed rate of internal energy generation and the last term on the right hand side
represents the rate of irreversible degradation of mechanical to thermal energy.

The principle of entropy production or second law of thermodynamics, i.e.

ρ
Dη

Dt
= −∂(qi/T )

∂xi
+ ρ

Dηint

Dt

where η is the specific entropy per unit mass, qi/T is the entropy flux vector (with T being
the absolute temperature) and ηint is the internal entropy production per unit mass. The
last term above equals zero for reversible processes, is greater than zero for irreversible ones
and there are no processes in nature for which it is negative. Because of the nature of this
last term, the entropy equation is not directly useful in the determination of the various
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fields but rather acts as a constraint condition that must be fulfilled by all solutions of the
other conservation equations.

All the above balance equations can be represented by a single expression by introducing
the generic conserved quantity ψ, its internal supply per unit mass s and the influx of ψ
per unit area −jini where ni is the normal vector. With the above, the generic conservation
equation becomes

ρ
Dψ

Dt
= ρs− ∂ji

∂xi

In the case of a single component system, the equations of continuity, motion and energy
constitute a set of five scalar equations involving the unknowns, velocity (three components),
temperature, density, stress (six components), energy, heat flux (three components) and
entropy; a total of sixteen unknowns. Clearly, the balance equations of thermomechanics
constitute a severely underdetermined system and additional equations are required in order
to be able to produce well posed problems that can be solved by standard mathematical
methods.

The additional equations that must be incorporated in order to solve actual technical
problems consist of mathematical descriptions of individual material response or behavior.
Such equations are called constitutive equations. These equations, in contrast with the con-
servation principles, do not have a universal character but rather describe in detail individual
material behavior. Fortunately, constitutive equations are available for whole groups of ma-
terial behavior, namely, elastic, viscoelastic, plastic, creep and viscoplastic and others. In
formulating problems in solid mechanics one then proceeds by identifying the appropriate
constitutive equations to use, then combines these equations with the balance equations,
applies boundary conditions and proceeds to solve the resulting system of equations using
analytical or more commonly, numerical solution techniques such as finite element methods.
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