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Module: 7 Torsion of Prismatic Bars       
 
7.2.1    TORSION OF ELLIPTICAL CROSS-SECTION 

Let the warping function is given by 

Axy=y                                                           (7.15) 

where  A is a constant.  This also satisfies the Laplace equation. The boundary  
condition gives 
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Integrating, we get 

(1+A)x2+(1-A)y2 = constant.  

This is of the form 
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Therefore, the function given by 
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                                                (7.16) 

represents the warping function for an elliptic cylinder with semi-axes a and b under torsion.  
The value of polar moment of inertia J is 

J = ò ò -++ dxdyAyAxyx )( 2222                 (7.17) 
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   = (A+1) ò ò ò ò-+ dxdyyAdxdyx 22 )1(  

J = (A+1)Iy+(1-A)Ix                          (7.18) 

where Ix = 
4

3abp
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Substituting the above values in (7.18), we obtain  
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The shearing stresses are given by 
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Therefore, the resultant shearing stress at any point (x, y) is 
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Determination of Maximum Shear Stress 

To determine where the maximum shear stress occurs, substitute for x2 from 
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or    x2 = a2 (1-y2/b2) 
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and    t = [ ] 2
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Since all terms under the radical (power 1/2) are positive, the maximum shear stress occurs 

when y is maximum, i.e., when y = b.  Thus, maximum shear stress tmax occurs at the ends of 
the minor axis and its value is 

 tmax = 2/124
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Therefore, tmax = 2
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For a = b, this formula coincides with the well-known formula for circular cross-section. 
Knowing the warping function, the displacement w can be easily determined.  

Therefore, w = qy = xy
Gba

abM t
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p
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                          (7.21) 

The contour lines giving w = constant are the hyperbolas shown in the Figure 7.4 having the 
principal axes of the ellipse as asymptotes.  

 
 

 
 
 
 

Figure 7.4 Cross-section of elliptic bar and contour lines of w 

 

7.2.2    PRANDTL’S MEMBRANE ANALOGY 

It becomes evident that for bars with more complicated cross-sectional shapes, more 
analytical solutions are involved and hence become difficult. In such situations, it is 
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desirable to use other techniques – experimental or otherwise. The membrane analogy 
introduced by Prandtl has proved very valuable in this regard.  

Let a thin homogeneous membrane, like a thin rubber sheet be stretched with uniform 
tension fixed at it’s edge which is a given curve (the cross-section of the shaft) in the 
 xy-plane as shown in the figure 7.5.  

 

Figure 7.5 Stretching of a membrane 

When the membrane is subjected to a uniform lateral pressure p, it undergoes a small 
displacement z where z is a function of x and y.  

Consider the equilibrium of an infinitesimal element ABCD of the membrane after 
deformation.  Let F be the uniform tension per unit length of the membrane. The value of the 
initial tension F is large enough to ignore its change when the membrane is blown up by the 
small pressure p. On the face AD, the force acting is F.dy.  This is inclined at an angle b to 

the x-axis.  Also, tan b is the slope of the face AB and is equal to 
x
z
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Similarly, the components of the forces Fdx acting on face AB and CD are 
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But the force p acting upward on the membrane element ABCD is p dxdy, assuming that the 
membrane deflection is small. 

Hence, for equilibrium, 
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Now, if the membrane tension F or the air pressure p is adjusted in such a way that p/F 
becomes numerically equal to 2Gq, then Equation (7.22) of the membrane becomes identical 
to Equation (7.8) of the torsion stress function f.  Further if the membrane height z remains 
zero at the boundary contour of the section, then the height z of the membrane becomes 
numerically equal to the torsion stress function f = 0.  The slopes of the membrane are then 
equal to the shear stresses and these are in a direction perpendicular to that of the slope.  

Further, the twisting moment is numerically equivalent to twice the volume under the 
membrane [Equation (7.14)].  

Table 7.1 Analogy between Torsion and Membrane Problems 

Membrane problem Torsion Problem 
Z f  
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The membrane analogy provides a useful experimental technique.  It also serves  as the basis 
for obtaining approximate analytical solutions for bars of narrow cross-section as well as for 
member of open thin walled section.  
 
 

7.2.3    TORSION OF THIN-WALLED SECTIONS 

Consider a thin-walled tube subjected to torsion. The thickness of the tube may not be 
uniform as shown in the Figure 7.6. 

 

Figure 7.6 Torsion of thin walled sections 

Since the thickness is small and the boundaries are free, the shear stresses will be essentially 
parallel to the boundary.  Let t be the magnitude of shear stress and t is the thickness.  

Now, consider the equilibrium of an element of length D l  as shown in Figure 7.6.  The areas 
of cut faces AB and CD are t1 D l  and t2 D l  respectively. The shear stresses (complementary 
shears) are t1 and t2. 

For equilibrium in z-direction, we have  
 -t1 t1 D l  + t2 t2 D l = 0 
Therefore, t1 t1 = t2 t2 = q = constant  

Hence the quantity t t is constant.  This is called the shear flow q, since the equation is 
similar to the flow of an incompressible liquid in a tube of varying area.  
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Determination of Torque Due to Shear and Rotation   

 

 

Figure 7.7 Cross section of a thin-walled tube and torque due to shear 

Consider the torque of the shear about point O (Figure 7.7). 
The force acting on the elementary length dS of the tube = DF = t t dS = q dS 
The moment arm about O is h and hence the torque = DMt = (qdS) h                          
Therefore, DMt = 2qdA 

where dA is the area of the triangle enclosed at  O by the base dS.  

Hence the total torque is 

Mt = S 2qdA+ 

Therefore, Mt = 2qA                                           (7.23) 

where A is the area enclosed by the centre line of the tube.  Equation (7.23) is generally 

known as the "Bredt-Batho" formula. 

To Determine the Twist of the Tube 

In order to determine the twist of the tube, Castigliano's theorem is used. Referring to Figure 
7.7(b), the shear force on the element is t t dS = qdS. Due to shear strain g, the force does 
work equal to DU 

i.e.,   dt )(
2
1
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2
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7.2.4    TORSION OF THIN-WALLED MULTIPLE-CELL CLOSED  
           SECTIONS 

 

Figure 7.8 Torsion of thin-walled multiple cell closed section 

Consider the two-cell section shown in the Figure 7.8.  Let A1 and A2 be the areas of the cells 
1 and 2 respectively.  Consider the equilibrium of an element at the junction as shown in the 
Figure 7.8(b). In the direction of the axis of the tube, we can write 

-t1 t1 lD + t2 t2 lD + t3 t3 lD  = 0 
or    t1 t1 =  t2 t2 +  t3 t3   

i.e., q1 = q2 + q3 

This is again equivalent to a fluid flow dividing itself into two streams.  Now, choose 
moment axis, such as point O as shown in the Figure 7.9.  
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Figure. 7.9 Section of a thin walled multiple cell beam and moment axis 

The shear flow in the web is considered to be made of q1 and –q2, since q3 = q1 - q2. 
Moment about O due to q1 flowing in cell 1 (including web) is 

1t
M = 2q1A1 

Similarly, the moment about O due to q2 flowing in cell 2 (including web) is 

Mt 2  = 2q2 (A2+A1) - 2q2A1 

The second term with the negative sign on the right hand side is the moment due to shear 

flow q2 in the middle web.  

Therefore, The total torque is 

 Mt = Mt 1
 + Mt 2  

Mt = 2q1A1 + 2q2A2                                  (a) 

To Find the Twist (q) 

For continuity, the twist of each cell should be the same.  

We have  

q  = ò t
dS

AG
q

2
 

or       2Gq  = ò t
qdS

A
1
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Let a1  = ò t
dS

 for Cell 1 including the web 

      a2  = ò t
dS

 for Cell 2 including the web  

     a12 = ò t
dS

 for the web only 

Then for Cell 1 

           2Gq = )(
1

21211
1

qaqa
A

-           (b) 

For Cell 2 

2Gq = )(
1

11222
2

qaqa
A

-                    (c) 

Equations (a), (b) and (c) are sufficient to solve for q1, q2 and q. 
 

7.2.5   NUMERICAL EXAMPLES 

Example 7.1 
A hollow aluminum tube of rectangular cross-section shown in Figure below, is 
subjected to a torque of 56,500 m-N along its longitudinal axis.  Determine the shearing 
stresses and the angle of twist.  Assume G = 27.6x109 N/m2.  

Figure 7.10 

0.25

0.5

 t1
       t3

      0.006t2=

      0.006t4=
0.012

         All Dimensions in metre 

         Membrane Surface

         A

         B          C
                  p

                  D

         Shear Flowq=

0.01
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Solution: The above figure shows the membrane surface ABCD 

Now, the Applied torque =Mt = 2qA 

                                    56,500 = 2q(0.5x0.25) 

                                    56,500 = 0.25q 

hence,   q = 226000 N/m. 

Now, the shearing stresses are 

t1 = 26

1

/10833.18
012.0

226000
mN

t
q

´==  

t2 = 26
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/10667.37
006.0
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t
q

´==  

t3 = 26 /106.22
01.0
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mN´=  

Now, the angle of twist per unit length is 

q = ò t
ds
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q

2
 

Therefore, 

 q = úû
ù

êë
é ++

01.0
25.0

)2(
006.0

5.0
012.0
25.0

125.0x10x6.27x2
226000

9
 

or  q = 0.00696014 rad/m 
 
Example 7.2  
The figure below shows a two-cell tubular section as formed by a conventional airfoil 
shape, and having one interior web.  An external torque of 10,000 Nm is acting in a 
clockwise direction.  Determine the internal shear flow distribution.  The cell areas  
are as follows: 

A1 = 680 cm2                  A2 = 2000 cm2  

The peripheral lengths are indicated in Figure  

Solution: 

For Cell 1, a1 = ò (
t

dS
including the web) 

           = 
09.0

33
06.0

67
+   

therefore,   a1 = 148.3 
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For Cell 2,  

a2 = 
08.0

67
09.0

48
09.0

63
09.0

33
+++  

Therefore, a2 = 2409 

For web, 

a12 = 366
09.0

33
=  

Now, for Cell 1,  

2Gq = )(
1

21211
1

qaqa
A
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       = )3661483(
680
1

21 qq -  

Therefore, 2Gq = 2.189q1 – 0.54q2                              (i) 

For Cell 2, 

2Gq = )(
1

11222
2

qaqa
A

-   

       = )3662409(
2000

1
12 qq -  

Therefore, 2Gq = 1.20q2 – 0.18q1                            (ii) 

Equating (i) and (ii), we get 

       2.18 q1 – 0.54q2 = 1.20q2 – 0.18q1 

or    2.36q1 – 1.74q2 = 0 

or    q2 = 1.36q1 

The torque due to shear flows should be equal to the applied torque 

Hence, from Equation (a), 
Mt = 2q1 A1 + 2q2 A2 
10,000´ 100 = 2q1 x 680 + 2q2 x 2000 
                    = 1360q1 + 4000q2 

Substituting for q2, we get 
10000´ 100 = 1360q1 + 4000´ 1.36q1 
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Therefore,    
q1 = 147 N and q2 = 200 N 

Figure 7.11 
 

Example 7.3 
A thin walled steel section shown in figure is subjected to a twisting moment T. 
Calculate the shear stresses in the walls and the angle of twist per unit length of the 
box. 

Figure 7.12 

Solution: Let A1 and 2A  be the areas of the cells (1) and (2) respectively. 
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For Cell (2), 
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Equating (1) and (2), we get, 
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But the torque due to shear flows should be equal to the applied torque. 
i.e., 2211 22 AqAqT +=                    )3(  

Substituting the values of 12 , Aq and 2A  in (3), we get, 
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Now, from equation (1), we have, 
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Example 7.4 
A thin walled box section having dimensions taa ´´2  is to be compared with a solid 
circular section of diameter as shown in the figure. Determine the thickness t so that the 
two sections have: 

(a) Same maximum shear stress for the same torque. 
(b) The same stiffness. 

Figure 7.13 
Solution: (a) For the box section, we have 

aatT

At

qAT

´=
=
=

2...2

...2

2

t
t  
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24
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Now, For solid circular section, we have 
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Where Ip = Polar moment of inertia 
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Equating (a) and (b), we get 
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(b) The stiffness of the box section is given by 

 a. 
2a 

 t a
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The stiffness of the Solid Circular Section is 
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Example 7.5 
A two-cell tube as shown in the figure is subjected to a torque of 10kN-m. Determine 
the Shear Stress in each part and angle of twist per metre length. Take modulus of 
rigidity of the material as 83 kN/mm2. 

 
All dimensions in mm 

Figure 7.14 

Solution: For Cell 1 
Area of the Cell = A1= 215000100150 mm=´  

t
ds

a ò=1  (including web) 

      

130
5

100
5.2
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5

100
5
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=

+++=
 

For Cell 2 

Area of the cell = ( ) ( )22
2 75125150

2
1

-´´=A  

                                   = 7500mm2 

t
ds
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150
++=  

 1602 =\a  

For the web, 

60
5.2

150
12 ==a  

15
0 

100

125

1255

2.5

2.5

2.5q1

 q2

 Mt
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For Cell (1) 

( )21211
1

1
2 qaqa

A
G -=q  

( )21 60130
15000

1
2 qqG -=\ q                  )(a  

For Cell (2) 

( )11222
2

1
2 qaqa

A
G -=q  

( )12 60160
7500

1
qq -=                   )(b  

Equating (a) and (b), we get 

( )1221 60160
7500

1
)60130(

15000
1

qqqq -=-  

Solving, 21 52.1 qq =                     )(c  

Now, the torque due to shear flows should be equal to the applied torque. 

i.e.,  2211 22 AqAqM t +=  

)7500(2)15000(21010 21
6 qq +=´                  )(d  

Substituting (c) in (d), we get 

)7500(2)52.1(1500021010 22
6 qq +´=´  

Nq 02.1652 =\  

Nq 83.25002.16552.11 =´=\  

Shear flow in the web = ( ) ( )02.16583.250213 -=-= qqq  

                                      Nq 81.853 =\  

2

1

1
1 /17.50

5
83.250

mmN
t
q

===\t  

2

2

2
2 /01.66

5.2
02.165

mmN
t
q

===t  

2

3

3
3 /32.34

5.2
81.85

mmN
t
q

===t  

Now, the twist q  is computed by substituting the values of q1 and q2 in equation (a) 
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i.e.,  [ ]02.1656083.250130
15000

1
2 ´´´=qG  

lengthmmradians /10824.1
100083

7.22706
15000

1 5-´=
´

´=\q  

04.1=qor degrees/m length 
 
Example 7.6 
A tubular section having three cells as shown in the figure is subjected to a torque of 
113 kN-m. Determine the shear stresses developed in the walls of the section. 

All dimensions in mm 

Figure 7.15 

Solution: Let 654321 ,,,,, qqqqqq  be the shear flows in the various walls of the tube as 

shown in the figure. 321 ,, AandAA  be the areas of the three cells. 

( ) 22
1 25322127

2
mmA ==\

p
 

2
2 64516254254 mmA =´=  

2
3 64516mmA =  

Now, From the figure, 
q1 = q2 + q4 

q2 = q3 + q5 

q3 = q6  
or 4422111 tttq ttt +==  

66333

5533222

ttq

tttq

tt
ttt

==
+==

                                                              (1) 

Where 654321 ,,,, tttttt and  are the Shear Stresses in the various walls of the tube. 

Now, The applied torque is 

254 254

254

q1

 q6

 q3

 q3

  q4

 q2

 q2

(1) (2) (3)

0.8

0.8

1.3 1.0

127

0.6

q5
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( )333222111

332211

2

222

tAtAtA

qAqAqAM t

ttt ++=
++=

 

i.e., ( ) ( ) ( )[ ]8.0645168.0645168.025322210113 21
6 ´+´+´=´ tt  

( ) 3718397.3 321 =++\ ttt                     (2) 

Now, considering the rotations of the cells and 654321 ,,,, SandSSSSS  as the length of cell 

walls, 

We have, 

3663355

2552244

14411

22

22

2

AGSSS

AGSSS

AGSS

qttt
qttt

qtt

=++-
=++-

=+
                                       (3) 

Here ( ) mmS 3981271 =´= p  

mmSSSSS 25465432 =====  

\(3) can be written as 

qttt
qttt

qt

G

G

GS

645162542542254

645162542542254

25322254398

632

522

41

=+´´+-
=+´´+-

=+
                    (4) 

Now, Solving (1), (2) and (4) we get 

2
1 /4.40 mmN=t  

2
2 /2.55 mmN=t  

2
3 /9.48 mmN=t  

2
4 /7.12 mmN-=t  

2
6 /6.36 mmN=t  

 
 


