Module 7/Lesson 2

Module: 7 Torsion of Prismatic Bars

7.2.1 TORSIONOF ELLIPTICAL CROSS-SECTION
Let the warping function is given by
v = Axy (7.15)

where A is a constant. This also satisfies the Laplace equation. The boundary
condition gives

dy dx
Ay -y) == —(AX+X)—=0
(AY -Y) o~ (AX+X) o

dy dx
A-1) ——-x(A+1)—=0
or y( )OIS ( +)O|S

. dx dy
e, (A+1)2x —-(A-1)2y—=0
be, (A+Dax =~ (A-1)2y ¢

d 2 2
or E[(AJFDX -(A-1)y°]=0
Integrating, we get
(1+A)x*+(1-A)y? = constant.

This is of the form
2 2

X y_l

2’ b

These two are identical if
a_2 _1-A

b> 1+A

b? —a?

b? +a?

or A=

Therefore, the function given by
b*—-a’
[// =
b* +a?
represents the warping function for an elliptic cylinder with semi-axes a and b under torsion.
The value of polar moment of inertia J is

J= ”(x2 +y? + Ax? — Ay?)dxdy (7.17)

Xy (7.16)
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= (A+1) ” x*dxdy + (1— A)H y2dxdy
J = (A+1)1,+(1-A)l,

3 3
ma’b
where |, =

and I, =

Substituting the above values in (7.18), we obtain

ma’b?
T a?+Db?
But 0= Mo _ M.
Gl, GJ
Therefore, M; = GJ6@
7z_a3b3
=GO ——
a’ +b?
2 2
or 0=ﬂa Jgt;
G nma’b

The shearing stresses are given by
7, =GO (6_1// + XJ
oy

2 2 2 2
:Mta +b (b a +1]x

ma%b® | b?+a’
_2Mx
e
2M
Similarly, 7, = tz
mab

Therefore, the resultant shearing stress at any point (X, V) is

2M
_ 2 2 _ t
T= T, +Ty = b’

Determination of Maximum Shear Stress

lb*x? +a4y2]%

Module 7/Lesson 2

(7.18)

(7.19)

To determine where the maximum shear stress occurs, substitute for x> from

XZ y2
PO

or X =a’(1-y*/b?)
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2M,
ma’b®
Since all terms under the radical (power 1/2) are positive, the maximum shear stress occurs

and 7=

[a2b4 +a%(a? - bz)yz]%

when y is maximum, i.e., when y = b. Thus, maximum shear stress 7., occurs at the ends of
the minor axis and its value is

_ 2M 41.2\1/2
o = @)
Therefore, Ty = Z—ME (7.20)
mab

For a = b, this formula coincides with the well-known formula for circular cross-section.
Knowing the warping function, the displacement w can be easily determined.

M, (b*-a?%)
ma*h’G
The contour lines giving w = constant are the hyperbolas shown in the Figure 7.4 having the

principal axes of the ellipse as asymptotes.

Therefore, w = Oy = (7.21)

. Torque
I Depressed
b (w negative)
!
Elevated
(w positive)
-~

Figure 7.4 Cross-section of elliptic bar and contour lines of w

7.2.2 PRANDTL’S MEMBRANE ANALOGY

It becomes evident that for bars with more complicated cross-sectional shapes, more
analytical solutions are involved and hence become difficult. In such situations, it is
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desirable to use other techniques — experimental or otherwise. The membrane analogy
introduced by Prandtl has proved very valuable in this regard.

Let a thin homogeneous membrane, like a thin rubber sheet be stretched with uniform
tension fixed at it’s edge which is a given curve (the cross-section of the shaft) in the
Xy-plane as shown in the figure 7.5.

D B+AB

7 | |z+§dx

(b)

Figure 7.5 Stretching of a membrane

When the membrane is subjected to a uniform lateral pressure p, it undergoes a small
displacement z where z is a function of X and y.

Consider the equilibrium of an infinitesimal element ABCD of the membrane after
deformation. Let F be the uniform tension per unit length of the membrane. The value of the
initial tension F is large enough to ignore its change when the membrane is blown up by the
small pressure p. On the face AD, the force acting is F.dy. This is inclined at an angle /3 to

. . . 0z
the x-axis. Also, tan S is the slope of the face AB and is equal to 8_ Hence the component
X

0z
of Fdy in z-direction is (— de&}. The force on face BC is also Fdy but is inclined at an

angle (B + Ap) to the x-axis. Its slope is, therefore,

0z 0oz

— 4+ —| — |dx

OX OX\ OX

and the component of the force in the z-direction is

dy g+£(gjdx
OX OX\ ox
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Similarly, the components of the forces Fdx acting on face AB and CD are

-Fdxg and Fdx §+i(§)dy}
oy oy oy oy

Therefore, the resultant force in z-direction due to tension F

B 2 2
=— deﬂ+ Fdy g+a—§dx - Fdxg+ Fdx g+8—§dy
OX | OX  OX oy oy oy

2 2
=F [a—f + 8—fjdxdy
oX® oy

But the force p acting upward on the membrane element ABCD is p dxdy, assuming that the
membrane deflection is small.

Hence, for equilibrium,

0’z 0%z
Fl —+—|=-P
oX® oy
2 2
z z
0z 02 oF (7.22)
ox° oy
Now, if the membrane tension F or the air pressure p is adjusted in such a way that p/F
becomes numerically equal to 2G 0, then Equation (7.22) of the membrane becomes identical
to Equation (7.8) of the torsion stress function ¢. Further if the membrane height z remains
zero at the boundary contour of the section, then the height z of the membrane becomes

numerically equal to the torsion stress function ¢ = 0. The slopes of the membrane are then
equal to the shear stresses and these are in a direction perpendicular to that of the slope.

or

Further, the twisting moment is numerically equivalent to twice the volume under the
membrane [Equation (7.14)].

Table 7.1 Analogy between Torsion and Membrane Problems

Membrane problem Torsion Problem
A ¢
1 G
S
P 20
aa
ox oy
2 (volume M,
beneath membrane)

Applied Elasticity for Engineers T.G.Sitharam & L.GovindaRaju



Module 7/Lesson 2

The membrane analogy provides a useful experimental technique. It also serves as the basis
for obtaining approximate analytical solutions for bars of narrow cross-section as well as for
member of open thin walled section.

7.2.3 TORSION OF THIN-WALLED SECTIONS

Consider a thin-walled tube subjected to torsion. The thickness of the tube may not be
uniform as shown in the Figure 7.6.

P
'
D >
.
Aley)
iil@
N
B >
O w
—— 7
Lo

Figure 7.6 Torsion of thin walled sections

Since the thickness is small and the boundaries are free, the shear stresses will be essentially
parallel to the boundary. Let 7be the magnitude of shear stress and t is the thickness.

Now, consider the equilibrium of an element of length Al as shown in Figure 7.6. The areas
of cut faces AB and CD are t; Al and t, Al respectively. The shear stresses (complementary
shears) are 7; and 7.

For equilibrium in z-direction, we have
'TltlAI + TgtgAIZO
Therefore, 7; t; = © t, = q = constant

Hence the quantity 7 t is constant. This is called the shear flow g, since the equation is
similar to the flow of an incompressible liquid in a tube of varying area.
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Determination of Torque Due to Shear and Rotation

Figure 7.7 Cross section of a thin-walled tube and torque due to shear

Consider the torque of the shear about point O (Figure 7.7).

The force acting on the elementary length dS of the tube = AF = 7t dS =q dS
The moment arm about O is h and hence the torque = AM, = (qdS) h
Therefore, AM, = 2qdA

where dA is the area of the triangle enclosed at O by the base dS.
Hence the total torque is
= X 2qdA+
Therefore, M; = 20A (7.23)

where A is the area enclosed by the centre line of the tube. Equation (7.23) is generally
known as the "Bredt-Batho" formula.

To Determine the Twist of the Tube

In order to determine the twist of the tube, Castigliano's theorem is used. Referring to Figure
7.7(b), the shear force on the element is 7t dS = qdS. Due to shear strain ¥, the force does
work equal to AU

i&,AU=%&w$5

:%&MSWAI
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=%(rtdS).Al.é (since t=Gy)
_ Tt?dsal
- 26t
_g’dsal
- 26t
_g°Al dS
TGt
MZAl dS
8A’G t
Therefore, the total elastic strain energy is
U=z M/ZAl ¢ dS
8A’G Y t
Hence, the twist or the rotation per unit length (Al = 1) is
_~oU _ M, (dS
T oM, 4AGTt
_ 20A (dS
T AAGY

AU =

or

q_gdS (7.24)

or 0= ——
2AGY t
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7.24 TORSION OF THIN-WALLED MULTIPLE-CELL CLOSED
SECTIONS

Figure 7.8 Torsion of thin-walled multiple cell closed section

Consider the two-cell section shown in the Figure 7.8. Let A; and A, be the areas of the cells
1 and 2 respectively. Consider the equilibrium of an element at the junction as shown in the
Figure 7.8(b). In the direction of the axis of the tube, we can write

-nty Al + ot Al + 73 13 Al =0

or nti= nh+ 5t

i.e,01=02+0s

This is again equivalent to a fluid flow dividing itself into two streams. Now, choose
moment axis, such as point O as shown in the Figure 7.9.
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Figure. 7.9 Section of a thin walled multiple cell beam and moment axis

The shear flow in the web is considered to be made of q; and —Q, since gz = J; - J>.
Moment about O due to g, flowing in cell 1 (including web) is
M 4 = 2q1A1

Similarly, the moment about O due to g, flowing in cell 2 (including web) is
Mt2 =20, (Ax+Ay) - 20,A;

The second term with the negative sign on the right hand side is the moment due to shear
flow Qg in the middle web.

Therefore, The total torque is
M, = Mtl + Mt2
Mt = 2q1A1 + 2q2A2 (a)

To Find the Twist (6)
For continuity, the twist of each cell should be the same.

We have
- Qq ¢dS
2AG"- t

or 269=qud—s
AY t

10
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Leta; = §dTS for Cell 1 including the web
a = f{)dTS for Cell 2 including the web

ds
ap = §>T for the web only

Then for Cell 1

1
2GO= E(alql - a12q2) (b)
For Cell 2
1
2GO= E(azqz —a,,0,) (c)

Equations (a), (b) and (c) are sufficient to solve for q, g, and 6.

7.2.5 NUMERICAL EXAMPLES

Example 7.1
A hollow aluminum tube of rectangular cross-section shown in Figure below, is

subjected to a torque of 56,500 m-N along its longitudinal axis. Determine the shearing
stresses and the angle of twist. Assume G = 27.6x10° N/m?,

0.5

—» 1 |e— 0.01
0.012 !
| t,=0.006 |
L t o
Membrane SurfaceI | | :
|
| | | |
I By C 1
| | N A
: : TT T T TpT T T T : : gq=Shear Flow
N . v
A D
All Dimensions in metre
Figure 7.10
11
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Solution: The above figure shows the membrane surface ABCD
Now, the Applied torque =M, = 20A

56,500 = 2¢(0.5x0.25)

56,500 = 0.25q
hence, = 226000 N/m.

Now, the shearing stresses are
q 226000

0= — =18.833x10°N /m?
t, 2
= 42226000 o7 667, 105N /m2
) 0.006
3= 226000 =22.6x10°N /m?
0.01
Now, the angle of twist per unit length is
__q gds
2GAY t
Therefore,
0= 226000 {0.25 N 0.5 (2)+0.25}
2x27.6x10°x0.125| 0.012  0.006 0.01

or 8=0.00696014 rad/m

Example 7.2

Module 7/Lesson 2

The figure below shows a two-cell tubular section as formed by a conventional airfoil
shape, and having one interior web. An external torque of 10,000 Nm is acting in a
clockwise direction. Determine the internal shear flow distribution. The cell areas

are as follows:
A; = 680 cm® A, = 2000 cm?
The peripheral lengths are indicated in Figure
Solution:
as ,. .
For Cell 1, a; = §T( including the web)
67 33
= 4 —
0.06 0.09
therefore, a; = 148.3

12
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For Cell 2,
33 63 48 67
a= + + +
0.09 0.09 0.09 0.08

Therefore, a, = 2409

For web,

dpp = ﬁ =366
0.09

Now, for Cell 1,

1
2Go= E(alql —a;,0,)

1
= @ (1483q1 - 366q2)

Therefore, 2G6 = 2.189q; — 0.54Q,
For Cell 2,

1
2Go= E(azqz - a1zq1)

1
= m(2409q2 —366ql)

Therefore, 2G6 = 1.20q, — 0.18q;
Equating (i) and (ii), we get

2.18 q; — 0.540, = 1.200, — 0.180;
or 2.36q,-1.74¢,=0
or (,=1.36Q;

Module 7/Lesson 2

(i)

(i)

The torque due to shear flows should be equal to the applied torque

Hence, from Equation (a),

M =20, A; + 20, A,

10,000 100 = 2q; x 680 + 2, x 2000
=1360q; + 40000,

Substituting for (,, we get
10000 x 100 = 1360q; + 4000 x 1.36Q;

13
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Therefore,
J:=147Nand g, =200 N

Cell-1

— — — —

O.TOBCm

Figure 7.11

Example 7.3

A thin walled steel section shown in figure is subjected to a twisting moment T.
Calculate the shear stresses in the walls and the angle of twist per unit length of the
box.

g,

1
A

}
12a
! _.t_lL
N |

Figure 7.12

Solution: Let A; and A, be the areas of the cells (1) and (2) respectively.
2

A =R
A=

A, =(2ax2a)=4a?
For Cell (1),

a, =§ dts (Including the web)

7ma+ 2a
a, = "

For Cell (2),
ds
a2 = T

14
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Now,
For Cell (1),

1
2G0 = E(alql - a12q2)

 ra’ t t

2

a
= rtal [(2+7[)q1_2q2]

2
+.2G0 =—"[(x +2)q, - 29, ]
at

For Cell (2),
1
2Go =E(azqz _aqul)

__1[ea  _2a
4’|t ¢ ot ¢

2a
=m[4%—ch]
.-.2G@:i[4q -q,]
2at- - "

Equating (1) and (2), we get,

%[(”JFZ)% _Zqz]zi[ﬂ'q2 —a,]

2at

2 {(na+2a)ql_[§

|

2 1
or =[(z +2)a, - 29, ]==[49, - q,]
T 2

Applied Elasticity for Engineers
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2z +2), - 20,]=[4q, - q,]

T
A7 +2 8

(7[ )Q1__Q2_4q2+q1:0
T T

[—4(7[ * 2)+1}ql —{§+4}q2 =0
T T

[4(n+2)+n}ql _[8+4ﬂ}q2 o

T T

or (47 +8+7)g, = (8+47)q,
g, = S5 +8 q
o Az +8)"
But the torque due to shear flows should be equal to the applied torque.

ie, T =20,A +2q,A, ©)
Substituting the values of g,, A;and A, in (3), we get,

ma? 57 +8 )
T=2 42 4a
ql( 2 J [47”8}%

57 +8 q
Ar +8 )"

1 ={a2(ﬂ2(;i227;+16)} 1

(7[+2)T

T a2 (e? 1127 116)

= ma’q, + 8a2[

Now, from equation (1), we have,

269:%{(7”2\ (z+2)T _2(5ﬂ'+8)a2((ﬂ'+2)-|- )}

a?(r? +12r +16) 47 +8)a%(r? +127+16

(27 +3)T }

2Ga’t(z? +127 +16)

Simplifying, we get the twist as 6 = {

16
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Example 7.4

A thin walled box section having dimensions 2a x axt is to be compared with a solid
circular section of diameter as shown in the figure. Determine the thickness t so that the
two sections have:

(a) Same maximum shear stress for the same torque.
(b) The same stiffness.

le >l
< 2a >

W i > 1

| ] |

Figure 7.13
Solution: (a) For the box section, we have

T =20A
=27tA

T=2zt2axa
T
T=—7
4act
Now, For solid circular section, we have
T =
I p

(a)

r
Where | = Polar moment of inertia

o)
7a

Equating (a) and (b), we get

T2 = 16T3 - 64a%tT = 7a’T
4a‘t nma
=2

64

(b) The stiffness of the box section is given by

17
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_ 9 s
2GA t
Here T =20A 'q—L
T 2A
T a 2a a 2a
0= —+—+—+—
AGA* |t t ot ot
_ 6aT
4GA%t
_ 6aT
4G(2a% 't
6aT
—__ % C
16a*Gt (©)
The stiffness of the Solid Circular Section is
0=t =T =2 (d)
p G @ 7a
32
Equating (c) and (d), we get
6aT 32T
16a‘Gt Gra*
fa_32
16t =«
., bma
© 16x32

=3l
" 4\ 64

18
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A two-cell tube as shown in the figure is subjected to a torque of 10kN-m. Determine
the Shear Stress in each part and angle of twist per metre length. Take modulus of

rigidity of the material as 83 kN/mm?.

2.5

«— 150

I =
l«—— 100—>] /

All dimensions in mm

Figure 7.14

Solution: For Cell 1
Area of the Cell = A;= 150 x100 = 15000mm?

a, =§ dts (including web)
150 100 150 100
= + + +
5 5 25 5
=130
For Cell 2
Area of the cell = A, = %xlSOx (125)* - (75)°
= 7500mm?

-, =§ dts (including web)

150 125 125
= + +
25 25 25
-.a, =160
For the web,
150
alz = E = 60
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For Cell (1)
1
2G0 = E(alql - a12C12)

1
5.2G0 =——(130qg, — 60
15000 (130q, - 60d,) (a)

For Cell (2)
1
2G0 = E(azqz - a1zq1)

1
=ﬁ(160q2 ~60q,) (b)

Equating (a) and (b), we get
1 1
———(130q, — 60g,) = ——1(160q, — 60
TE00g (L300 —600,) == (160g, —60q;)
Solving, @, =1.52q, (c)

Now, the torque due to shear flows should be equal to the applied torque.

ie, M, =2q,A +2q,A,

10x10° = 2q,(15000) + 24, (7500) (d)
Substituting (c) in (d), we get

10x10° = 2x15000(1.52q, ) + 20, (7500)

-0, =165.02N
-0, =1.52x165.02 = 250.83N

Shear flow in the web = q, = (q, — g, ) = (250.83 -165.02)
~.q, =85.81IN

fr =L o 2083 g 1o 2
t 5

q, 165.02

L,

e =% 88l o N mm?
3 25

[

T, =

=66.01N / mm?

Now, the twist 8 is computed by substituting the values of q; and g2 in equation (a)

20
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ie, 2GO =L[130x250.83x60x165.02]
15000
_ 1 X 22706.7 =1.824 x10 °radians/ mmlength
15000 83x1000

or 6 =1.04 degrees/m length

Example 7.6
A tubular section having three cells as shown in the figure is subjected to a torque of
113 kN-m. Determine the shear stresses developed in the walls of the section.

«—— 254 —><€«—— 254 —>
!
/ d. 10.8 a3 T
/ \,e) d, 0s | U6 |
AN 2 - 08 (3 g
0.6 1.3 1.0 l
qvl\
d, 0,
All dimensions in mm

Figure 7.15

Solution: Let (,,0,,0,,0,,0s,0s be the shear flows in the various walls of the tube as
shown in the figure. A, A,,and A, be the areas of the three cells.

SA = %(127)2 = 25322mm?®

A, = 254 x 254 = 64516mm’
A, =64516mm*
Now, From the figure,
0:1=02+ 04
02=0s+0s
0s=0Qs
orq, =7t =7,t, + 7,1,
0, =7,t, =750 + 755
s = 75t; = 7l

Where 7,,7,,75,7,,7s andz, are the Shear Stresses in the various walls of the tube.

1)

Now, The applied torque is

21
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Mt = 2A1Q1 + 2A2q2 + 2A3q3
= Z(Alrltl + AT, + Asfsta)

Module 7/Lesson 2

ie., 113x10° = 2[(253227, x 0.8)+ (645167, x 0.8)+ (64516 x 0.8)]

-7, +3.397(c, +7,)=3718

)

Now, considering the rotations of the cellsand S,,S,,S,,S,,S; and S as the length of cell

walls,

We have,

7,5, +71,5S, =2GOA
-7,5,+27,S, + 7.5, = 2GOA,
— 7.5, + 27,5, + 7,5, = 2GOA,
Here S, = (7 x127)=398mm
S,=5;=5,=S5, =5, =254mm
.. (3) can be written as

3987, + 2548, = 25322G0
— 2547, +2x 254x 1, + 2547, = 64516G0
2547, +2x 254 x 7, + 2547, = 64516G0

Now, Solving (1), (2) and (4) we get
t, = 40.4N / mm?

7, =55.2N /mm?

t, = 48.9N /mm?

t, =-12.7N /mm?

7, = 36.6N /mm?
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