5.10 Examples

5.10.1 Analysis of effective section under compression

To illustrate the evaluation of reduced section properties of a section under axial compression.

Section: $200 \times 80 \times 25 \times 4.0 \mathrm{~mm}$
Using mid-line dimensions for simplicity. Internal radius of the corners is 1.5 t .

Maitur cimeraion

Exat dizumion

Effective breadth of web (flat element)
$h=B_{2} / B_{1}=60 / 180=0.33$

$$
\begin{aligned}
\mathrm{K}_{1} & =7-\frac{1.8 \mathrm{~h}}{0.15+\mathrm{h}}-1.43 \mathrm{~h}^{3} \\
& =7-\frac{1.8 \times 0.33}{0.15+0.33}-1.43 \times 0.33^{3}
\end{aligned}
$$

$=5.71$ or $4($ minimum $)=5.71$

$$
\begin{aligned}
\mathrm{p}_{\mathrm{cr}} & =185000 \mathrm{~K}_{1}(\mathrm{t} / \mathrm{b})^{2} \\
& =185000 \times 5.71 \times(4 / 180)^{2}=521.7 \mathrm{~N} / \mathrm{mm}^{2} \\
\frac{\mathrm{f}_{\mathrm{cr}}}{\mathrm{p}_{\mathrm{cr}} \mathrm{x} \gamma_{\mathrm{m}}} & =\frac{240}{521.7 \times 1.15}=0.4>0.123
\end{aligned}
$$

$$
\begin{aligned}
\frac{\mathrm{b}_{\text {eff }}}{\mathrm{b}} & =\left[1+14\left\{\sqrt{\mathrm{f}_{\mathrm{cr}} /\left(\mathrm{p}_{\mathrm{cr}} \mathrm{x} \gamma_{\mathrm{m}}\right)^{-}}-0.35\right\}^{4}\right]^{-0.2} \\
& =\left[1+14\{\sqrt{0.4}-0.35\}^{4}\right]^{-0.2}=0.983
\end{aligned}
$$

or $b_{\text {eff }}=0.983 \times 180=176.94 \mathrm{~mm}$
Effective width of flanges (flat element)

$$
\begin{aligned}
& \mathrm{K}_{2}=\mathrm{K}_{1} \mathrm{~h}^{2}\left(\mathrm{t}_{1} / \mathrm{t}_{2}\right)^{2} \\
&=\mathrm{K}_{1} \mathrm{~h}^{2}\left(\mathrm{t}_{1}=\mathrm{t}_{2}\right) \\
&\left.=5.71 \times 0.33^{2}=0.633 \text { or } 4 \text { (minimum }\right)=4 \\
& \mathrm{p}_{\mathrm{cr}}=185000 \times 4 \times(4 / 60)^{2}=3289 \mathrm{~N} / \mathrm{mm}^{2} \\
& \qquad \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{P}_{\mathrm{cr}} \times \gamma_{\mathrm{m}}}=\frac{240}{3289 \times 1.15}=0.063>0.123 \\
& \therefore \quad \frac{\mathrm{~b}_{\text {eff }}}{\mathrm{b}}=1 \quad \mathrm{~b}_{\text {eff }}=60 \mathrm{~mm}
\end{aligned}
$$

Effective width of lips (flat element)
$\mathrm{K}=0.425$ (conservative for unstiffened elements)

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{cr}}=185000 \times 0.425 \times(4 / 15)^{2}=5591 \mathrm{~N} / \mathrm{mm}^{2} \\
& \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{p}_{\mathrm{cr}} \times \gamma_{\mathrm{m}}}=\frac{240}{5591 \times 1.15}=0.04>0.123 \\
& \therefore \quad \frac{\mathrm{~b}_{\text {eff }}}{\mathrm{b}}=1 \quad \mathrm{~b}_{\text {eff }}=15 \mathrm{~mm}
\end{aligned}
$$

Effective section in mid-line dimension
As the corners are fully effective, they may be included into the effective width of the flat elements to establish the effective section.

The calculation for the area of gross section is tabulated below:

	$A_{i}\left(\mathrm{~mm}^{2}\right)$	
Lips	$2 \times 23 \times 4=184$	
Flanges	$2 \times 76 \times 4=608$	
Web	$196 \times 4=784$	
Total		1576

The area of the gross section, $A=1576 \mathrm{~mm}^{2}$
The calculation of the area of the reduced section is tabulated below:

	$A_{i}\left(\mathrm{~mm}^{2}\right)$
Lips	$2 \times 15 \times 4=120$
Corners	$4 \times 45.6=182.4$
Flanges	$2 \times 60 \times 4=480$
Web	$176.94 \times 4=707.8$
Total	

The area of the effective section, $\mathrm{A}_{\text {eff }}=1490.2 \mathrm{~mm}^{2}$
Therefore, the factor defining the effectiveness of the section under compression,

$$
\mathrm{Q}=\frac{\mathrm{A}_{\text {eff }}}{\mathrm{A}}=\frac{1490}{1576}=0.95
$$

The compressive strength of the member $=Q A f_{y} / \gamma_{m}$

$$
\begin{aligned}
& =0.95 \times 1576 \times 240 / 1.15 \\
& =313 \mathrm{kN}
\end{aligned}
$$

5.10.2 Analysis of effective section under bending

To illustrate the evaluation of the effective section modulus of a section in bending.

We use section: $220 \times 65 \times 2.0 \mathrm{~mm}$ Z28 Generic lipped Channel (from "Building Design using Cold Formed Steel Sections", Worked Examples to BS 5950: Part 5, SCI PUBLICATION P125)

Only the compression flange is subject to local buckling.
Using mid-line dimensions for simplicity. Internal radius of the corners is 1.5 t .

Thickness of steel (ignoring galvanizing), $\mathrm{t}=2-0.04=1.96 \mathrm{~mm}$
Internal radius of the corners $=1.5 \times 2=3 \mathrm{~mm}$
Limiting stress for stiffened web in bending

$$
\mathrm{p}_{0}=\left\{1.13-0.0019 \frac{\mathrm{D}}{\mathrm{t}} \sqrt{\frac{\mathrm{f}_{\mathrm{y}}}{280}}\right\} \mathrm{p}_{\mathrm{y}}
$$

and $p_{y}=280 / 1.15=243.5 \mathrm{~N} / \mathrm{mm}^{2}$

$$
\mathrm{p}_{0}=\left\{1.13-0.0019 \times \frac{220}{1.96} \sqrt{\frac{280}{280}}\right\} \frac{280}{1.15}
$$

$=223.2 \mathrm{~N} / \mathrm{mm}^{2}$
Which is equal to the maximum stress in the compression flange, i.e.,
$\mathrm{f}_{\mathrm{c}}=223.2 \mathrm{~N} / \mathrm{mm}^{2}$
Effective width of compression flange
$h=B_{2} / B_{1}=210.08 / 55.08=3.8$

$$
\begin{aligned}
\mathrm{K}_{1} & =5.4-\frac{1.4 \mathrm{~h}}{0.6+\mathrm{h}}-0.02 \mathrm{~h}^{3} \\
& =5.4-\frac{1.4 \times 3.8}{0.6+3.8}-0.02 \times 3.8^{3} \quad=3.08 \text { or } 4(\text { minimum })=4
\end{aligned}
$$

$$
\mathrm{p}_{\text {cr }}=185000 \times 4 \times\left(\frac{1.96}{55.08}\right)^{2}=937 \mathrm{~N} / \mathrm{mm}^{2}
$$

$$
\frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{p}_{\text {cr }}}=\frac{223.2}{937}=0.24>0.123
$$

$$
\frac{\mathrm{b}_{\text {eff }}}{\mathrm{b}}=\left[1+14\left\{\sqrt{\mathrm{f}_{\mathrm{c}} / \mathrm{p}_{\mathrm{cr}}}-0.35\right\}^{4}\right]^{-0.2}
$$

$$
=\left[1+14\{\sqrt{0.24}-0.35\}^{4}\right]^{-0.2}=0.998
$$

$b_{\text {eff }}=0.99 \times 55=54.5$
Effective section in mid-line dimension:
The equivalent length of the corners is $2.0 \times 2.0=4 \mathrm{~mm}$
The effective width of the compression flange $=54.5+2 \times 4=62.5$
The calculation of the effective section modulus is tabulated as below:

Elements	A_{i} $\left(\mathrm{~mm}^{2}\right)$	y_{i} $(\mathrm{~mm})$	A_{i} $\left(\mathrm{~mm}^{3}\right)$	y_{i}	$I_{g}+$ $\left(\mathrm{mm}^{4}\right)$
Top lip	27.44	102	2799	$448+285498$	
Compression flange	122.5	109	13352.5	$39.2+1455422.5$	
Web	427.3	0	0	$A_{i}{ }^{2}$	
Tension flange	123.5	-109	-13459.3	$39.5+1467064$	
Bottom lip	27.4	-102	-2799	$448+285498$	
Total	728.2		-106.8	5186628.4	

The vertical shift of the neutral axis is

$$
\overline{\mathrm{y}}=\frac{-106.8}{728.2}=-0.15 \mathrm{~mm}
$$

The second moment of area of the effective section is

$$
\begin{aligned}
\mathrm{I}_{\mathrm{xr}} & =\left(5186628.4+728.2 \times 0.15^{2}\right) \times 10^{-4} \\
& =518.7 \mathrm{~cm}^{4} \text { at } \mathrm{p}_{0}=223.2 \mathrm{~N} / \mathrm{mm}^{2} \\
\text { or } & =518.7 \times \frac{223.2 \times 1.15}{280}=475.5 \mathrm{~cm}^{4} \text { at } \mathrm{p}_{\mathrm{y}}=280 / 1.15 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

The effective section modulus is,

$$
\mathrm{Z}_{\mathrm{xr}}=\frac{475.5}{(109+0.15) / 10}=43.56 \mathrm{~cm}^{3}
$$

5.10.3 Two span design

Design a two span continuous beam of span 4.5 m subject to a UDL of $4 \mathrm{kN} / \mathrm{m}$ as shown in Fig.1.

Factored load on each span $=6.5 \times 4.5=29.3 \mathrm{kN}$

Bending Moment

Maximum hogging moment $=0.125 \times 29.3 \times 4.5=16.5 \mathrm{kNm}$
Maximum sagging moment $=0.096 \times 29.3 \times 4.5=12.7 \mathrm{kNm}$

Shear Force

Two spans loaded: $R_{A}=0.375 \times 29.3=11 \mathrm{kN}$
$R_{B}=1.25 \times 29.3=36.6 \mathrm{kN}$
One span loaded: $\mathrm{R}_{\mathrm{A}}=0.438 \times 29.3=12.8 \mathrm{kN}$
Maximum reaction at end support, $F_{w, \max }=12.8 \mathrm{kN}$
Maximum shear force, $\mathrm{F}_{\mathrm{v}, \max }=29.3-11=18.3 \mathrm{kN}$

Try $180 \times 50 \times 25 \times 4 \mathrm{~mm}$ Double section (placed back to back)
Material Properties: E = $205 \mathrm{kN} / \mathrm{mm}$
$p_{y}=240 / 1.15$

$$
=208.7 \mathrm{~N} / \mathrm{mm}^{2}
$$

Section Properties: $\mathrm{t}=4.0 \mathrm{~mm}$

$$
\begin{aligned}
& D=180 \mathrm{~mm} \\
& r_{y y}=17.8 \mathrm{~mm} \\
& I_{x x}=2 \times 518 \times 10^{4} \mathrm{~mm}^{4} \\
& Z_{x x}=115.1 \times 10^{3} \mathrm{~mm}^{3}
\end{aligned}
$$

Only the compression flange is subject to local buckling
Limiting stress for stiffened web in bending

$$
\mathrm{p}_{0}=\left\{1.13-0.0019 \frac{\mathrm{D}}{\mathrm{t}} \sqrt{\frac{\mathrm{f}_{\mathrm{y}}}{280}}\right\} \mathrm{p}_{\mathrm{y}}
$$

and $p_{y}=240 / 1.15=208.7 \mathrm{~N} / \mathrm{mm}^{2}$

$$
\mathrm{P}_{0}=\left\{1.13-0.0019 \times \frac{180}{4} \sqrt{\frac{240}{280}}\right\} \times 208.7
$$

$=219.3 \mathrm{~N} / \mathrm{mm}^{2}$
Which is equal to the maximum stress in the compression flange, i.e.,
$\mathrm{f}_{\mathrm{c}}=219.3 \mathrm{~N} / \mathrm{mm}^{2}$
Effective width of compression flange
$h=B_{2} / B_{1}=160 / 30=5.3$

$$
\begin{aligned}
\mathrm{K}_{1} & =5.4-\frac{1.4 \mathrm{~h}}{0.6+\mathrm{h}}-0.02 \mathrm{~h}^{3} \\
& =5.4-\frac{1.4 \times 3.8}{0.6+3.8}-0.02 \times 5.3^{3}
\end{aligned}
$$

$=1.1$ or $4($ minimum $)=4$

$$
\begin{aligned}
& \mathrm{p}_{\text {cr }}=185000 \times 4 \times\left(\frac{4}{30}\right)^{2}=13155 \mathrm{~N} / \mathrm{mm}^{2} \\
& \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{p}_{\mathrm{cr}}}=\frac{219.3}{13155}=0.017>0.123 \\
& \frac{\mathrm{~b}_{\text {eff }}}{\mathrm{b}}=1
\end{aligned}
$$

$$
b_{\text {eff }}=30 \mathrm{~mm}
$$

i.e. the full section is effective in bending.

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{xr}}=2 \times 518 \times 10^{4} \mathrm{~mm}^{4} \\
& \mathrm{Z}_{\mathrm{xr}}=115.1 \times 10^{3} \mathrm{~mm}^{3}
\end{aligned}
$$

Moment Resistance

The compression flange is fully restrained over the sagging moment region but it is unrestrained over the hogging moment region, that is, over the internal support.

However unrestrained length is very short and lateral torsional buckling is not critical.

The moment resistance of the restrained beam is:

$$
M_{c x}=Z_{x r} p_{y}
$$

$$
=115.1 \times 103 \times(240 / 1.15) 10^{-6}=24 \mathrm{kNm}>16.5 \mathrm{kNm}
$$

O.K

Shear Resistance

Shear yield strength,

$$
p_{v}=0.6 p_{y}=0.6 \times 240 / 1.15=125.2 \mathrm{~N} / \mathrm{mm}^{2}
$$

Shear buckling strength, $q_{c r}=\left(\frac{1000 \mathrm{t}}{\mathrm{D}}\right)^{2}=\left(\frac{1000 \times 4}{180}\right)^{2}=493.8 \mathrm{~N} / \mathrm{mm}^{2}$
Maximum shear force, $\mathrm{F}_{\mathrm{v}, \text { max }}=18.3 \mathrm{kN}$

Shear area $=180 \times 4=720 \mathrm{~mm}^{2}$
Average shear stress $\mathrm{f}_{\mathrm{v}}=\frac{18.3 \times 10^{3}}{720}=25.4 \mathrm{~N} / \mathrm{mm}^{2}<\mathrm{qcr}$
O.K

Web crushing at end supports
Check the limits of the formulae.

$$
\begin{aligned}
& \frac{\mathrm{D}}{\mathrm{t}}=\frac{180}{4}=45 \leq 200 \quad \therefore \text { O.K } \\
& \frac{\mathrm{r}}{\mathrm{t}}=\frac{6}{4}=1.5 \leq 6 \quad \therefore \text { O.K }
\end{aligned}
$$

At the end supports, the bearing length, N is 50 mm (taking conservatively as the flange width of a single section)

For $\mathrm{c}=0, \mathrm{~N} / \mathrm{t}=50 / 4=12.5$ and restrained section.
C is the distance from the end of the beam to the load or reaction.
Use

$$
\begin{aligned}
\mathrm{P}_{\mathrm{w}} & =2 \mathrm{xt}^{2} \mathrm{C}_{\mathrm{r}} \frac{\mathrm{f}_{\mathrm{y}}}{\gamma_{\mathrm{m}}}\{8.8+1.11 \sqrt{\mathrm{~N} / \mathrm{t}}\} \\
\mathrm{C}_{\mathrm{r}} & =1+\frac{\mathrm{D} / \mathrm{t}}{750} \\
& =1+\frac{45}{750}=1.06 \\
\mathrm{P}_{\mathrm{w}} & =2 \times 4^{2} \times 1.06 \times \frac{240}{1.15}\{8.8+1.11 \sqrt{12.5}\} 10^{-3}
\end{aligned}
$$

Web Crushing at internal support
t the internal support, the bearing length, N , is 100 mm (taken as the flange width of a double section)

For $\mathrm{c}>1.5 \mathrm{D}, \mathrm{N} / \mathrm{t}=100 / 4=25$ and restrained section.

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{w}}=\mathrm{t}^{2} \mathrm{C}_{5} \mathrm{C}_{6} \frac{\mathrm{f}_{\mathrm{y}}}{\gamma_{\mathrm{m}}}\{13.2+1.63 \sqrt{\mathrm{~N} / \mathrm{t}}\} \\
& \mathrm{k}=\frac{\mathrm{f}_{\mathrm{y}}}{228 \mathrm{x} \gamma_{\mathrm{m}}}=\frac{240}{1.15 \times 228}=0.9
\end{aligned}
$$

$$
C_{5}=(1.49-0.53 \mathrm{k})=1.49-0.53 \times 0.92=1.0>0.6
$$

$$
C_{6}=(0.88-0.12 m)
$$

$$
m=t / 1.9=4 / 1.9=2.1
$$

$\mathrm{C}_{6}=0.88-0.12 \times 2.1=0.63$

$$
\begin{gathered}
\therefore P_{w}=2 \times 4^{2} \times 1 \times 0.63 \times \frac{240}{1.15}\{13.2+1.63 \sqrt{25}\} 10^{-3} \\
=89.8 \mathrm{kN}>R_{B}(=36 \mathrm{kN})
\end{gathered}
$$

Deflection Check
A coefficient of $\frac{3}{384}$ is used to take in account of unequal loading on a double span. Total unfactored imposed load is used for deflection calculation.

$$
\begin{aligned}
& \delta_{\max }=\frac{3}{384} \frac{\mathrm{WL}^{3}}{\mathrm{EI}_{\mathrm{av}}} \\
& \mathrm{I}_{\mathrm{av}}=\frac{\mathrm{I}_{\mathrm{xx}}+\mathrm{I}_{\mathrm{xy}}}{2}=\frac{1036+1036}{2}=1036 \times 10^{4} \mathrm{~mm}^{4}
\end{aligned}
$$

$W=29.3 / 1.5=19.5 \mathrm{kN}$

$$
\delta_{\max }=\frac{3}{384} \frac{19.5 \times 10^{3} \times 4500^{3}}{205 \times 10^{3} \times 1036 \times 10^{4}}=6.53 \mathrm{~mm}
$$

Deflection limit $=L / 360$ for imposed load

$$
=4500 / 360=12.5 \mathrm{~mm}>6.53 \mathrm{~mm} \quad \text { O.K }
$$

In the double span construction: Use double section $180 \times 50 \times 25 \times 4.0$ mm lipped channel placed back to back.

5.10.4 Column design

Design a column of length 2.7 m for an axial load of 550 kN .
Axial load $P=550 \mathrm{kN}$
Length of the column, $L=2.7 \mathrm{~m}$
Effective length, le $=0.85 \mathrm{~L}=0.85 \times 2.7=2.3 \mathrm{~m}$
Try $200 \times 80 \times 25 \times 4.0 \mathrm{~mm}$ Lipped Channel section
Material Properties: $\mathrm{E}=205 \mathrm{kN} / \mathrm{mm}^{2}$
$\mathrm{f}_{\mathrm{y}}=240 \mathrm{~N} / \mathrm{mm}^{2}$
$p_{y}=240 / 1.15=208.7 \mathrm{~N} / \mathrm{mm}^{2}$
Section Properties: $A=2 \times 1576=3152 \mathrm{~mm}^{2}$

$$
\begin{aligned}
\mathrm{I}_{x x} & =2 \times 903 \times 10^{4} \mathrm{~mm}^{4} \\
\mathrm{I}_{\mathrm{yy}} & =2\left[124 \times 10^{4}+1576 \times 24.8^{2}\right] \\
& =442 \times 10^{4} \mathrm{~mm}^{4}
\end{aligned}
$$

$r_{\text {min }}=\sqrt{\frac{442 \times 10^{4}}{2 \times 1576}}=37.4 \mathrm{~mm}$
Load factor $Q=0.95$ (from worked example 1)
The short strut resistance, $\mathrm{P}_{\mathrm{cs}}=0.95$? 2 ? 1576 ? 240/ $1.15=625 \mathrm{kN}$

$$
P=550 \mathrm{kN}<625 \mathrm{kN}
$$

Axial buckling resistance
Check for maximum allowable slenderness

$$
\frac{\mathrm{l}_{\mathrm{e}}}{\mathrm{r}_{\mathrm{y}}}=\frac{2.3 \times 10^{3}}{37.4}=61.5<180 \quad \text { O.K }
$$

In a double section, torsional flexural buckling is not critical and thus $\alpha=1$
Modified slenderness ratio,

$$
\begin{aligned}
& \bar{\lambda}=\frac{\alpha \frac{\mathrm{l}_{\mathrm{e}}}{\mathrm{r}_{\mathrm{y}}}}{\lambda_{\mathrm{y}}} \\
& \lambda_{\mathrm{y}}=\pi \sqrt{\frac{\mathrm{E}}{\mathrm{P}_{\mathrm{y}}}=\pi \sqrt{\frac{2.05 \times 10^{5}}{208.7}}=98.5} \\
& \therefore \bar{\lambda}=\frac{1 \mathrm{x} 61.5}{98.5}=0.62 \\
& \frac{\mathrm{P}_{\mathrm{c}}}{\mathrm{P}_{\mathrm{cs}}}=0.91
\end{aligned}
$$

$P_{c}=0.91 \times 625=569 \mathrm{kN}>P$
O. K

