Examples

1. Design a bolted end plate connection between an ISMB 400 beam and an ISHB 200 @ 40 kg/m column so as to transfer a hogging factored bending moment of 150 KN-m and a vertical factored shear of 150 KN. Use HSFG bolts of diameter 22 mm.

Assume 6 HSFG 8.8 grade bolts of 22mm dia and 180 × 600-mm end plate as shown in figure.

1) Bolt forces

Taking moment about the center of the bottom flange and neglecting the contribution of bottom bolts and denoting the force in the top bolts by F

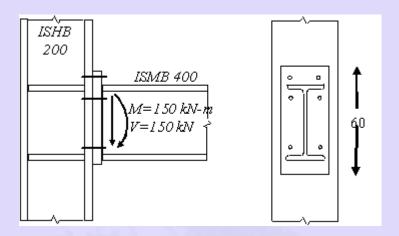
$$4F \times 384 = 150 \times 10^3$$

F = 97.6 kN

Tension Resistance of the bolt $T_f = T_{nf} / \gamma_{mb}$

$$T_{nf} = 0.9 x f_{ub} x A_n \le f_{yb} x A_{sb} x \gamma_{m1} x \gamma_{m0}$$

$$A_{sb} = \pi / 4 \pm 22^2 = 380.13 \text{ mm}^2$$


$$A_n = 0.8 \times A_{sb} = 304.1 \text{ mm}^2$$

$$T_{nf} = 0.9 \times 800 \times 304.11 = 218.96 \text{ KN} < 276.458 \text{ KN} (f_{yb} \times A_{sb} \times \gamma_{m1} / \gamma_{m0})$$

$$T_f = 218.96 / 1.25 = 175.168 \text{ KN}$$

Design tension capacity of bolt = 175.168 kN

Allowable prying force Q = 175.168 - 97.6 = 77.568 kN

2) Thickness of end plate assuming 10 mm fillet weld to connect the beam with end plate, distance from center line of bolt to toe of fillet weld b = 60-10 = 50 mm; end plate width be = 180 mm effective width of end plate per bolt w = be/2 = 180/2 = 90 mm

$$M_p$$
 = F x b /2 = 97.6 x 10 3 x 50 / 2 = 2440 N-m
 t_{min} = $\sqrt{(1.15 \text{ x 4 x M}_p/p_y \text{ x w})}$ = 22.33 mm
provide (T) 30 mm thick end plate

3) Design for prying action distance from the centre line of bolt to prying force n is the minimum of edge distance or 1.1 T $\sqrt{\beta}$ Po/Py = 1.1 x 30 $\sqrt{(2 \text{ x } 512/250)}$ = 55.66 mm

so, n = 40 mm moment at the toe of the weld = Fb - Qn =
$$97.6 \times 50 - 77.568 \times 40 = 2412$$
 N-m moment capacity = $(py/1.15) \times (wT^2/4)$ = $(250/1.15)(90 \times 30^2/4) = 4402$ N-m > 2412 N-m Safe!

Prying force
$$Q = \frac{b}{2n} \left[F - \frac{\beta \gamma P_0 w T^4}{27 n b^2} \right]$$

 β =2 (non-preloaded)

 γ =1.5 (for factored load)

$$Q = \frac{50}{2 \times 40} \left[97.6 - \frac{2 \times 1.5 \times 0.560 \times 90 \times 30^4}{27 \times 40 \times 50^2} \right]$$

= 32.65 KN < allowable prying force

Hence Safe!

4) Check for combined shear and tension

Shear capacity of 22 dia HSFG bolt V_{sdf} = 68.2 KN

Shear per bolt V = 150/6 = 25 KN

Applied tensile load on bolt = 97.6 + 32.65 = 130.25 KN

Design tension capacity = 175.168 KN

$$(V/V_{sdf})^2 + (T_e/T_{ndf})^2 = (25.0 / 68.2)^2 + (130.25 / 175.168)^2 = 0.687 < 1.0$$

Hence Safe!