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Instructional Objectives

After reading this chapter the student will be able to

1. Derive plane frame member stiffness matrix in local co-ordinate system.

2. Transform plane frame member stiffness matrix from local to global co-
ordinate system.

3. Assemble member stiffness matrices to obtain the global stiffness matrix of

the plane frame.

Write the global load-displacement relation for the plane frame.

Impose boundary conditions on the load-displacement relation.

Analyse plane frames by the direct stiffness matrix method.

o gk

30.1 Introduction

In the case of plane frame, all the members lie in the same plane and are
interconnected by rigid joints. The internal stress resultants at a cross-section of
a plane frame member consist of bending moment, shear force and an axial
force. The significant deformations in the plane frame are only flexural and axial.
In this lesson, the analysis of plane frame by direct stiffness matrix method is
discussed. Initially, the stiffness matrix of the plane frame member is derived in
its local co-ordinate axes and then it is transformed to global co-ordinate system.
In the case of plane frames, members are oriented in different directions and
hence before forming the global stiffness matrix it is necessary to refer all the
member stiffness matrices to the same set of axes. This is achieved by
transformation of forces and displacements to global co-ordinate system.

30.2 Member Stiffness Matrix

Consider a member of a plane frame as shown in Fig. 30.1a in the member co-
ordinate systemx'y'z'. The global orthogonal set of axes xyz is also shown in the

figure. The frame lies in the xy plane. The member is assumed to have uniform

flexural rigidity EI and uniform axial rigidity EA for sake of simplicity. The axial
deformation of member will be considered in the analysis. The possible
displacements at each node of the member are: translation in x'- and y'-

direction and rotation about z'- axis.
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( b ) Member forces

Fig. 30.1 Frame member in local co-ordinate system

Thus the frame members have six (6) degrees of freedom and are shown in
Fig.30.1a. The forces acting on the member at end j and k are shown in Fig.
30.1b. The relation between axial displacement and axial forces is derived in
chapter 24. Similarly the relation between shear force, bending moment with
translation along y' axis and rotation about z' axis are given in lesson 27.

Combining them, we could write the load-displacement relation in the local co-
ordinate axes for the plane frame as shown in Fig 30.1a, b as,
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This may be succinctly written as
o} =[kT{u'} (30.1b)

where [k'] is the member stiffness matrix. The member stiffness matrix can also

be generated by giving unit displacement along each possible displacement
degree of freedom one at a time and calculating resulting restraint actions.

30.3 Transformation from local to global co-ordinate system

30.3.1 Displacement transformation matrix

In plane frame the members are oriented in different directions and hence it is
necessary to transform stiffness matrix of individual members from local to global
co-ordinate system before formulating the global stiffness matrix by assembly. In
Fig. 30.2a the plane frame member is shown in local coordinate axes x'y'z’ and

in Fig. 30.2b, the plane frame is shown in global coordinate axes xyz. Two ends
of the plane frame member are identified by j andk. Let u',,u’,,u’; and
u',,u’s,u's be respectively displacements of ends j and k of the member in local
coordinate systemx'y'z'. Similarly u,,u,,u, and u,,u.,u, respectively are
displacements of ends j and k of the member in global co-ordinate system.
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(a)

Fig. 30.2 Plane frame member in
(a) Local co-ordinate system
(b) Global co-ordinate system.

Let & be the angle by which the member is inclined to global x-axis. From
Fig.30.2a and b, one could relate u',,u’, ,u'; to u,,u,,u, as,

u',=u,cosé+u,sind (30.2a)
u',=-u,sind+u, cosd (30.2b)
u'y = U (30.2¢)

This may be written as,
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Where, | =cos@andm =sind.
This may be written in compact form as,
'} =[THu} (30.3b)

In the above equation, [T] is defined as the displacement transformation matrix
and it transforms the six global displacement components to six displacement
components in local co-ordinate axes. Again, if the coordinate of node | is

(x,,y,) and coordinate of node k are (x,,Y,), then,

Yo=Y,

X, — X .
2 "1 and m=sm<9=T.

| =cos@ =

Where L = \/(xz —x ) +(y,-vy,) (30.4)
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30.3.2 Force displacement matrix

Fig. 30.3 Plane frame member in
(a) Local co-ordinate axes and
(b) In global co-ordinate system

Let q,,9',,9';and q',,q';,q9'sbe respectively the forces in member at nodes j
and k as shown in Fig. 30.3a in local coordinate system. p,,p,,p; and
P., Ps, Ps are the forces in members at node j and k respectively as shown in
Fig. 30.3b in the global coordinate system. Now from Fig 30.3a and b,

p, =q',cosé—q',sind (30.5a)

p, =q',sind+q', coséd (30.5b)
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Ps =05 (30.5¢)

Thus the forces in global coordinate system can be related to forces in local
coordinate system by

p,] [I -m O i 0 0 0](qy
o,| Im 1 olo o ollg,
P, 0 0 1 i 0 0 0}|qd,
R Ao (30.6a)
P, 0 0 0 Il -m 0||q,
o8 0 0 O i m | 0f]|q;
i
Ps) 1O O 0;0 O 1]|(d§
Where, | =cosf@and m=siné.
This may be compactly written as,
=] {a} (30.6b)

30.3.3 Member global stiffness matrix

From equation (30.1b), we have

{pp=[r] [k} (30.7)
Making use of equation (30.3b), the above equation may be written as

tp}=[TT' k[T Jiu} (30.8)

or

{p}=[k]iu} (30.9)

The equation (30.9) represents the member load-displacement relation in global
coordinate system. The global member stiffness matrix [k] is given by,

k]=[TT [k][r] (30.10)
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After transformation, the assembly of member stiffness matrices is carried out in
a similar procedure as discussed for truss. Finally the global load-displacement
eqguation is written as in the case of continuous beam. Few numerical problems
are solved by direct stiffness method to illustrate the procedure discussed.

Example 30.1

Analyze the rigid frame shown in Fig 30.4a by direct stiffness matrix method.
Assume E =200GPa ; I,, =1.33x10*m* and A=0.04m*. The flexural rigidity
El and axial rigidity EA are the same for both the beams.

48 kN
2m L 2m

e
e

B \

5
| ’

5

Y
>4

24 kN

Fig. 30.4a Rigid Frame.

Solution:

The plane frame is divided in to two beam elements as shown in Fig. 30.4b. The
numbering of joints and members are also shown in Fig. 30.3b. Each node has
three degrees of freedom. Degrees of freedom at all nodes are also shown in the
figure. Also the local degrees of freedom of beam element are shown in the
figure as inset.
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Fig. 30.4b Node and member numbering.

Formulate the element stiffness matrix in local co-ordinate system and then
transform it to global co-ordinate system. The origin of the global co-ordinate
system is taken at node 1. Here the element stiffness matrix in global co-

ordinates is only given.

Member 1:L=6 m ; & =90° node points 1-2; | =0andm =1.
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[ ]=[TT [k ] [T]

1 2 3
[1.48x10° 0 4.44x10°
0 1.333x10° 0
)= 4.44x10° 0 17.78x10°
1.48x10° 0 4.44x10°
0 ~1.333x10° 0
| 4.44x10° 0 8.88x10°

4

1.48x10°
0
4.44%10°
1.48x10°
0
4.44%10°

5 6
0 4.44x10° |
~1.333x10° 0
0 8.88x10°
0 4.44x10°
1.333x10° 0
0 17.78x10° |
1)

Member 2: L=4m ; §=0°; node points 2-3 ; | =1and m=0.

k*]=[T lklir]

4 5 6
2.0x10° 0 0
0 5x10°  10x10°
0 10x10°  26.66x10°
T|—20x100 0 0
0 ~5x10° -10x10°
0 10x10°  8.88x10°
(2)

7
—-2.0x10°

0
0

2.0x10°

0
0

8 9
0 0 4
-5x10° 10x10° 5
-10x10° 8.88x10° | 6
0 0 7
5x10° -10x10° | 8
—-10x10° 26.66x10° | 9

The assembled global stiffness matrix [K] is of the order9x9. Carrying out

assembly in the usual manner, we get,
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[ 1.48 0 -444)-148 0  -444] 0 0 o0
0O 13333 0 | 0 -13833 0 | 0 0 0
—444 0 1777§ 4.44 0 8.88 i 0 0 0
148 0 444 [20005 O 444 |-2000 0 O
[K]=] 0 -13333 0 i 0 13383 10 i 0 -5 10 |(3)
_444 0 888 EL 444 10 444445 0 -10 1333
0 0 0 '-200 0 0 1200 0 0
0 0 0 i 0 -5 -10 i 0 5 10
0 0 o | o 10 1333] 0 -10 26.66
48 kN
] 1 ¢
18 kNm @ @24 kNm
m 24 kNm
LU —— 45 4y
T24 kN 7 T24 kN
246N 1~\

m777‘> €—— 12kN

Fig. 30.4c Fixed end action due to external load in element (1) and (2)
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Fig. 30.4d Equivalent joint loads.
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Fig. 30.4e Support Reactions.

The load vector corresponding to unconstrained degrees of freedom is (vide
30.4d),

P, 12
P }=1pst=1-24 (4)
ps -6

In the given frame constraint degrees of freedom areu,,u,,u;,u,,ug,U,.

Eliminating rows and columns corresponding to constrained degrees of freedom
from global stiffness matrix and writing load-displacement relationship for only
unconstrained degree of freedom,
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12 20015 0 4447 (u,
~241=10°] 0 13383 10 |{u, (5)
-6 444 10 4444 |u,

Solving we get,

u, 6.28x10°
Ug p =1-1.695x10° (6)
Ug -0.13x10°

u, =6.28x10°m., u;=-1.695x10"

Let R,,R,,R;,R,,Rs,Rybe the support reactions along degrees of freedom
1,2,3,7,8,9 respectively (vide Fig. 30.4e). Support reactions are calculated by

4 5 6
R [pf 148 0 —4.44]
R,| |p,f - ®3o0
R _Jnn| [ 44 0 ses u4
R,| |pF ~2000 0 0 u5
Ry| |p, 0 5 10 |
R |p.f 0 10 1333
R (-12] [ 057 ) [-1142
R,| | 0| |2250| | 2259
Ry| |18 |-114| | 1685
- - @)
R,| | o |-1257| |-1257
Ry| |24| | 140 25.40
Ry |-24) |-192] |-2592
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Example 30.2

Analyse the rigid frame shown in Fig 30.5a by direct stiffness matrix method.
Assume E =200 GPa ; 1,,=133x10° m* andA=0.01m?’. The flexural

rigidity El and axial rigidity EA are the same for all beams.

48 kN
10 kN . B 2m v 2m C
> BT T
4m
. S
e Ve
A D

Fig. 30.5a Rigid Frame of Example 30.2

Solution:
The plane frame is divided in to three beam elements as shown in Fig. 30.5b.

The numbering of joints and members are also shown in Fig. 30.5b. The possible
degrees of freedom at nodes are also shown in the figure. The origin of the
global co- ordinate system is taken at A (node 1).
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Fig. 30.5b Node and Member numbering.

Now formulate the element stiffness matrix in local co-ordinate system and then
transform it to global co-ordinate system. In the present case three degrees of
freedom are considered at each node.

Member 1: L=4m; §=90°; node points 1-2 ; I:XZEX1:0and

m=Y2"%_q

L
The following terms are common for all elements.

A—LE =5x10° KN/m; % =9.998x10°KkN

12El =4.999x10% kN/m: 4—5'22.666x103kN.m

3
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[k]= [T kT

1 2 3 4 5 6

[ 0.50x10° 0 ~1x10®° -0.50x10° 0 ~1x10° | 1
0 5x10° 0 0 ~5x10° 0 2
—1x10° 0 2.66x10° 1x10° 0 1.33x10% | 3
—~0.50x10° 0 1x10° 0.50x10° 0 1x10° 4
0 —-5x10° 0 0 5x10° 0 5
| —1x10° 0 1.33x10°  1x10° 0 2.66x10° | 6
(1)
Member 2:L=4m ; 8 =0° node points 2-3; | =1landm=0.
k2 ]=[rT k]0r]
4 5 6 7 8 9
5.0x10° 0 0 —5.0x10° 0 0 4
0 0.5x10° 1x10° 0 -05x10°  1x10° 5
0 1x10°  2.666x10° 0 -1x10° 1.33x10° | 6
—~5.0x10° 0 0 5.0x10° 0 0 7
0 -05x10®° —1x10° 0 0.5x10° ~1x10° | 8
.0 1x10°  1.33x10° 0 —-1x10°  2.666x10°| 9
(2)
Member 3: L=4m; 6=270°; node points 3-4 o Xixi =0and
m=Y2=%_ g

L
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=T kTir]

7 8 9 10 11 12

| 0.50x10° 0 1x10°  —-0.50x10° 0 1x10° | 7
0 5x10° 0 0 —5x10° 0 8

1x10° 0 2.66x10°  —1x10° 0 1.33x10° | 9

| ~0.50x10° 0 ~1x10°  0.50x10° 0 ~1x10° | 10
0 —5x10° 0 0 5x10° 0 11

| 1x10° 0 1.33x10°  -1x10° 0 2.66x10° | 12
3)

The assembled global stiffness matrix [K] is of the order12 x12. Carrying out
assembly in the usual manner, we get,

05 0 -10/-050 0 -10 0 0 0} 0 0 0
0O 50 01! 0 -5 0 0 0 0!0 0 O
10 0 266§ 10 0 13 0 0 0 i 0 0 0
05 0 10505 0 10 -50 0 0,0 0 0
0 -50 0 i 0 5005 10 0 —050 1o§ 0 0 0

K10 10 0 1.335 10 10 533 0 -10 1.335 0o o0 0
0 0 0 1!-50 0 O 5005 0 10!-05 0 10

0o 0 0 i 0 -05 -10 0 5005 —105 0 -500 0
00 0 0 10 1® 10 10 5% 10 0 1%

| |

0o 0 0} 0 0 0 -05 0 -10/05 0 -1

o o0 01! 0 0O 0 0O -50 0! 0 50 O

0 0 0 0 0 0o 10 o0 133] -1 o0 2.66)

(4)
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Fig . 30.5¢c Fixed end action due to external load.

24 kN

24 kN
T 24 kN m 24 kN mT

-
'

10 kN

7777777 7777777

Fig. 30.5d Equivalent joint loads.
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The load vector corresponding to unconstrained degrees of freedom is,

P, 10
Ps —24
Pe - 24
P )= 171 o (5)
7
Pg - 24
Py 24

In the given frame, constraint (known) degrees of freedom are
u,,u,,us, Uy, Uy, U, . Eliminating rows and columns corresponding to constrained

degrees of freedom from global stiffness matrix and writing load displacement
relationship,

10 500.5 0 1.0 -500 0 0 u,

- 24 0 5005 1.0 0 -05 1.0 Usg

—24 1.0 1.0 5.33 0 -1.0 133 |ug
-10° (6)

0 -500 0 0 5005 0 1 u,

—24 0 -05 -1 0 5005 -1 Ug

24 0 1 133 1 -1 533y

Solving we get,

u, 1.43x107
U, -3.84x10°
Us| |-8.14x10°
u, ) 1.43x107? @

Ug -5.65x10°

Ug 3.85x10°*
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Let R,R,,R;,R,,R;;,R,,be the support reactions along degrees of freedom
1,2,3,10,11,12 respectively. Support reactions are calculated by

4 5 6 7 8 9

R, p, -05 0 -10 © 0 0 ] (u,
R, D, 0 -50 0 0 0 0 | |ug

F
R, P 10 0 133 0 0 0 | |ug
Ro| [Py 0 0 0 -05 0 -10/]|y,
Rul |py" 0 0 0 0 -500 0 ||u
Ro| [py," |0 0 0 10 0 133]|u,

R,] [0 0.99 0.99

R,| [0 |1971 19.71

R,| 1[0 3.43 3.43

=9+ = (8)

Ro| [0 [-10.99| |-10.99

R,| |0] | 2828 28.28

R,| (0] |19.42 19.42

Summary

In this lesson, the analysis of plane frame by the direct stiffness matrix method is
discussed. Initially, the stiffness matrix of the plane frame member is derived in
its local co-ordinate axes and then it is transformed to global co-ordinate system.
In the case of plane frames, members are oriented in different directions and
hence before forming the global stiffness matrix it is necessary to refer all the
member stiffness matrices to the same set of axes. This is achieved by
transformation of forces and displacements to global co-ordinate system. In the
end, a few problems are solved to illustrate the methodology.
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