
Lesson 36 
 

 
1. How can linearly independent basis functions used for the solution of linear partial 

differential equations? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. How can least squares minimization be used to solve pdes? 
 
 
 
 
 
 
 
 
 The coefficients nici 1 ,   are found by solving the system Ac = f  where 

 
 
  
 
 
 
 
 

3. What is the collocation method? 
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4. What is the Galerkin method? 
 
 
 
 
 
 
 
 
 
 

5 What is the best approximation property of Galerkin’s method? 
 
In order to understand the best approximation property of Galerkin’s method it is 
necessary to define a new norm and associated inner product in the space of 
functions Hn. The inner product of functions u and v in the new norm is given by: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6. What is weighted residual method? Is the Galerkin method a weighted residual 
method? 
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7. What is the finite element method? What is the Bubnov-Galerkin finite element 
method and the Petrov-Galerkin finite element method? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

8. What is the weak form? Why is it advantageous for the finite element method to 
solve the weak form? 
 
 
 
 
 
 
 
 
 

9. When is the Galerkin method equivalent to minimizing a functional? 
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