Lesson 34

1. How can orthogonal functions be generated?

Given a linearly independent sequence of functions $\left\{\varphi_{j}\right\}$ it is always possible to construct an orthogonal sequence of functions from them - using the Gramm Schmidt procedure. Orthogonal functions are also generated by the eigen functions of a self adjoint system.
2. Does the "best approximation" always exist and is it unique?

Given a set of orthogonal basis functions, the best approximation for that basis always exists and is unique. The coefficients c_{j}^{*} corresponding to the best approximation are given by:

$$
c_{j}^{*}=\frac{\left(\phi_{j}, f\right)}{\left(\phi_{j}, \phi_{j}\right)}=\frac{\left(\phi_{j}, f\right)}{\left\|\phi_{j}\right\|^{2}}
$$

which exists since $\left\|\phi_{j}\right\|^{2} \neq 0$ if $\phi_{j} \neq 0$ (since the inner product is positive definite)
3. What are Bessel's inequality and Parseval's formula?

If $f^{*}=\sum_{j=0}^{n-1} c_{j}^{*} \phi_{j}$ is the best approximation to f, then Bessel's inequality states that

$$
\sum_{j=0}^{\infty}\left(c_{j}^{*}\right)^{2}\left\|\phi_{j}\right\|^{2} \leq\|f\|^{2}
$$

for an infinite number of basis functions. If the basis functions of the infinite series are bounded then $\sum_{j=0}^{\infty}\left(c_{j}^{*}\right)^{2}\left\|\phi_{j}\right\|^{2}=\|f\|^{2}$. This known as Parseval's formula.
4. What is the general recursion formula for orthogonal polynomials?

For $n \geq 1$ all families of orthogonal polynomials satisfy a three term recursion formula which allows a new member of the family, $\phi_{n+1}(x)$ to be generated from existing members $\phi_{n}(x)$ and $\phi_{n-1}(x)$. The recursion formula enables $\phi_{n+1}(x)$ to be determined uniquely, up to an arbitrary constant α_{n} which relates the leading coefficient of $\phi_{n+1}(x), \gamma_{n+1}$ to the leading coefficient of $\phi_{n}(x), \gamma_{n}$

The recursion formula allows construction of a series of orthogonal polynomials in unique fashion if the first two terms of the series are known.
5. How many zeros does an orthogonal polynomial of degree n have? Are the zeros simple zeros?

By construction the $n^{\text {th }}$ order polynomial has n zeros. However, in addition, a $n^{\text {th }}$ degree polynomial in a family of orthogonal polynomials with weight function w on an interval $[a, b]$ has n simple zeros, all of which lie in $[a, b]$
6. What are Legendre polynomials?

The Legendre polynomials are a series of orthogonal polynomials which are all roots of Legendre's equation. They are defined by the formula :

$$
P_{0}(x)=1 \quad P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left[\left(x^{2}-1\right)^{n}\right], \quad(n=1,2, \ldots)
$$

The inner product, defined over $[-1,1]$, has weight factor 1 .
Thus: $\left(P_{n}, P_{j}\right)=\int_{-1}^{1} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n} \frac{d^{j}}{d x^{j}}\left(x^{2}-1\right)^{j} d x=0$ if $n \neq j$.

$$
=\frac{2}{2 n+1} \text { if } n=j
$$

The Legendre polynomials also satisfy symmetry: $P_{n}(x)=(-1)^{n} P_{n}(x)$ similar to Chebyshev polynomials.

