
Lesson 34 
 

 
1. How can orthogonal functions be generated? 

 
 
 
 
 
 
 

2. Does the “best approximation” always exist and is it unique? 
 
Given a set of orthogonal basis functions, the best approximation for that basis 
always exists and is unique. The coefficients 

jc  corresponding to the best 

approximation are given by: 
 
 
 
 
 
 

3. What are Bessel’s inequality and Parseval’s formula? 
 
 
 
 
 
 
 
 
 
 

4. What is the general recursion formula for orthogonal polynomials? 
 
 
 
 
 
 
 
 
The recursion formula allows construction of a series of orthogonal polynomials in 
unique fashion if the first two terms of the series are known. 
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5. How many zeros does an orthogonal polynomial of degree n have? Are the zeros 
simple zeros? 
 
 
 
 
 
 

6. What are Legendre polynomials? 
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