
Lesson 33 
 

 
1. Should Chebyshev interpolation be always used in preference to equidistant 

interpolation? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. When is an interpolant ill-conditioned? 
 
 
 
 

3. Why are orthogonal polymials useful? 
 
 
 
 
 
 
Because of this functions are often written as expansions in terms of orthogonal 
polynomials. 
 

4. What is meant by the basis functions being linearly independent? 
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5. What is the inner product between two functions? 
 
 
 
 
 
 
 
 
 
 
 
 
 

6. What are the rules followed by the inner product between two functions? 
 
 
 
 
 
 
 
 
 
 

7. When is the representation of a function in terms of orthogonal basis functions the 
“best approximation” to the function? 
 
 
 
 
 
 
 
 
 
 
 
 
 

8. What is the Pythagorean theorem for orthogonal functions? 
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