
Lesson 30 
 

 
1. How is the Laplacian operator for a regular triangular grid formed? 

 
For a regular triangular grid, the Laplacian at an arbitrary point x located within a 
triangle is the weighted sum of the five point Laplacian operators calculated at the 
three vertices of the triangle with the weights being the barycentric coordinates of 
the point x. 
 

2. How is the Laplacian operator in an irregular triangular grid calculated? 
 
The irregularity of the grid results in a modification to the expression for the 
Laplacian difference operator. The modified expression includes the expression for 
the five point Laplacian difference operator on a regular triangular grid together 
with some additional terms. These correction terms represent contributions from 

mixed derivatives i.e numerical approximations to 
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3. How is the error in the approximation of a function f(x) by a nth order polynomial 
defined? 
 
 
 
 
 
 
 
 
 

4. What is the Weirstrass approximation theorem? 
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5. How does the smoothness of the unknown function or the size of the interval over 
which the function is being approximated influence the behaviour of the error? 
 
 
 
 
 
 
 
 
 

6. How does the Weirstrass approximation theorem provide a justification for the 
quadratic convergence of Newton’s method near the root? 
 
 
 
 
 
 
 
 
 
 
 
 
 

7. Why is it hard to construct the optimum polynomial? 
 
 
 
 
 
 
 
 
 
 

8. What is Runge’s phenomenon? 
 
It is seen that if the choice of polynomial is not optimal, as the order of the 
approximating polynomial is increased, then for very high order polynomials (>10), 
the error in the infinite norm near the boundaries of the interval become very large 
while the error near the central portion of the interval is small. This is known as 
Runge’s phenomenon. 
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9. Why is the actual representation of the polynomial important? 
 
Identical choice of polynomial type and order may result in large or small numerical 
error, depending on the manner in which the polynomial is represented.  
 
 
 
 
 
 
 
 
 
 
 
 

10. What is the bound on the interpolation error? 
 
 
 
 
 
 
 
 
 
 
 
 

11. What is Newton’s interpolation formula? 
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