
Lesson 26 
 

 
1. Can Green’s third identity be directly used to find a solution to Laplace’s equation? 

 
 
 
 
 
 
 

2. If   is a solution to Laplace’s equation, why is  1, nn  also a solution? 
 
 
 
 
 
  

3. What is Green’s function? Write down the solution of Laplace’s equation in terms 
of Green’s function? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The function G  in the above equation is a Green’s function. 
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4. How can the Green’s function be used to find solutions of Laplace’s equation? 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. What are spherical harmonics and why are they useful in finding solutions to 
Laplace’s equation? 
 
In certain physical problems, the solution to Laplace’s equation is best expressed in 
terms of a series solution. For example, for the case of a spherical inclusion moving 
with a velocity u in an infinite fluid medium which is otherwise motionless, and the 
fluid is incompressible as well as irrotational, the resultant motion of the fluid can 
be found by solving Laplace’s equation.  
 
 
 
 
 
 
 
 
 
 
 
 
 

6. What is Lengendre’s equation and when does it arise? 
 
The solution to Laplace’s equation in a spherical domain can also be obtained by 
seeking a solution in the separated form: 
 
 
This gives rise to Legendre’s equation and yields a series expansion in terms of 
spherical harmonics that involves Legendre’s polynomials. 
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