Lesson 14

1. What is a system of nonlinear equations?

A system of nonlinear equations in n unknowns $x_{1}, x_{2}, x_{3} \ldots . . x_{n}$ is a series of n equations:

$$
f_{i}\left(x_{1}, x_{2}, \ldots x_{n}\right)=0, \quad i=1,2, \ldots n
$$

A one point iteration method for this equation can be constructed by rewriting the system as:

$$
x_{i}=\phi_{i}\left(x_{1}, x_{2}, \ldots x_{n}\right), i=1,2 \ldots n
$$

2. Can a system of nonlinear equations be solved iteratively?

A system of nonlinear equations can be solved iteratively. For example the one point scheme described above can be solved iteratively as:

$$
x_{i}^{(k+1)}=\phi_{i}\left(x_{1}^{(k)}, x_{2}^{(k)}, \ldots x_{n}^{(k)}\right), i=1,2 \ldots n
$$

This can be restated in vector notation as:

$$
\begin{gathered}
\mathbf{x}=\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots \mathbf{x}_{n}\right), \quad \boldsymbol{\varphi}(\mathbf{x})=\left(\phi_{1}(\mathbf{x}), \phi_{2}(\mathbf{x}), \ldots \phi_{n}(\mathbf{x})\right) \\
\mathbf{x}^{(k+1)}=\boldsymbol{\varphi}\left(\mathbf{x}^{(k)}\right), \quad k=0,1,2, \ldots n
\end{gathered}
$$

3. What is the convergence criteria for systems of nonlinear equations?

In order to define the convergence criteria for a system of nonlinear equations it is necessary to consider the Jacobian of the system. For example, for the one point iterative scheme, the Jacobian is given by:

$$
\mathbf{J}=\left[\begin{array}{ccc}
\frac{\partial \phi_{1}}{\partial x_{1}} & \frac{\partial \phi_{1}}{\partial x_{2}} & \cdots \cdots \cdot \frac{\partial \phi_{1}}{\partial x_{n}} \\
\frac{\partial \phi_{2}}{\partial x_{1}} & \frac{\partial \phi_{2}}{\partial x_{2}} & \cdots \cdots \cdot \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
\cdots \cdots x_{n} \\
\frac{\partial \phi_{n}}{\partial x_{1}} & \frac{\partial \phi_{n}}{\partial x_{2}} & \cdots \cdots \cdot \\
\hline \frac{\partial \phi_{n}}{\partial x_{n}}
\end{array}\right]
$$

Each of the partial derivatives must exist in the region $x \in \mathfrak{R}$ where $\mathfrak{R}=\{\mathbf{x}:\|\mathbf{x}-\boldsymbol{\alpha}\|<\rho\}$ α being the root of the system of nonlinear equations. The iteration will converge if for any value of the starting iterate $\mathbf{x}_{0} \in \mathfrak{R}$, the following condition is satisfied in some matrix norm:

$$
\|\mathbf{J}\| \leq m<1, \forall \mathbf{x} \in \mathfrak{R}
$$

A necessary condition for this to happen is that the spectral radius of J be less than for
all $\mathbf{x} \in \mathfrak{R}$
4. Why is it necessary to obtain numerical estimates of the partial derivatives in multidimensions?

For finding the roots of a system of nonlinear equations it is necessary to obtain the components of the Jacobian matrix, which involves evaluating partial derivatives of the function $\varphi(\mathbf{x})=\left(\phi_{1}(\mathbf{x}), \phi_{2}(\mathbf{x}), \ldots \phi_{n}(\mathbf{x})\right)$ This can be done by estimating the derivative by a difference quotient, e.g.

$$
\frac{\partial \phi_{i}(\mathbf{x})}{\partial x_{j}} \approx \frac{\phi_{i}\left(\mathbf{x}+h_{\mathbf{j}_{j}}\right)-\phi_{i}(\mathbf{x})}{h_{j}}
$$

where e_{j} is the $j^{\text {th }}$ unit vector and h_{j} is the $j^{\text {th }}$ component of a n-dimensional parameter vector with components $h_{j} \neq 0$ for $j=1,2 \ldots$. n.

