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Module 6: Inelastic Seismic Response of Structures 
 
Exercise Problems:  

(Use any standard software like SAP2000, ABAQUS and MATLAB for solving the 

problems; you may use your own developed program based on the methods presented in 

the Chapter) 

6.8 A SDOF system has a nonlinear spring having the bilinear force-displacement 

characteristics as shown in Figure 6.29 Find the time histories of relative displacement and 

acceleration of the mass for El Centro earthquake. Also, find the ductility ratio. Take 

5%ξ =  and 10kgm = . 

6.9 A five storey frame as shown in Figure 6.30 is subjected to El Centro earthquake. The 

columns are weaker than the beams and have the nonlinear properties as shown in the 

figure. Find (i) the envelope of the peak relative displacements of the floors; (ii) the time 

history of the base shear; and (iii) the stiffness matrix of the system at time 6.2st = . 

Assume 5%ξ = . 

6.10 A three storey 3D frame with rigid diaphragms, shown in Figure 6.31, is subjected to El 

Centro earthquake acting along x-direction. The elasto-plastic force-deformation 

characteristics of the columns are also shown in the same figure. Find (i) the time histories 

of rotation and x-displacement of the top floor; (ii) the time histories of base shears of 

column A; (iii) the ductility demand of the column A at each floor level; and (iv) the 

stiffness matrix of the system at time 7st = . Assume 5%ξ = . For performing the analysis, 

the effect of bi-directional interaction on yielding of columns may be ignored. However, 

for computing the stiffness matrix at t=7s, this interaction effect should be included and the 

responses obtained from the no interaction analysis at t=7s may be used. 

6.11 For the frame shown in Figure 6.30, find the top floor response spectrum (for 5% 

damping), and compare it with that if the columns are assumed to be un-yielding. Also, 

find the ductility demand of each floor. [Hint: floor response spectrum is the plot of pseudo 

acceleration of a SDOF attached to the floor with its time period for a given value of ξ ]. 

6.12 A five storey strong column-weak beam frame shown in Figure 6.31 is subjected to El 

Centro earthquake. The mass at each floor level is m = 2500kg. The potential locations of 



the plastic hinges in the beams are shown in the same figure along with the moment-

rotation back bone curves. Obtain the time histories of (i) the top floor relative 

displacement; (ii) the base shear of the column A; (iii) the moment-rotation plot for section 

B; and (iv) ductility demand of each beam. 

6.13 Using the displacement control push over analysis, obtain the plots of base shear vs. top 

displacement of the frames shown in Figures 6.31 (with changed beams and columns cross 

sections) and 6.30. Changed cross sections are: all columns - 40 40× cm and all beams-

30 30× cm. Floor masses are not changed. Take the values of ,y yM θ and maxθ  from Table 

6.4. For the other problem (i.e., Figure 6.30), take the shear displacement capacity as 3 

times the yield value. Also, show the formation of hinges at different displacement stages. 

(NOTE: for push over analysis, flat portion of the elasto plastic curve is replaced by a line 

with  a very mild slope. 

Table 6.4: Properties of the frame 

Member Cross section 
(mm) 

yM (kNm) yθ (rad) maxθ (rad) 

Beam 300×300  168.9 9.025E-3 0.0271 
Column 400 ×400  153.88 8.397E-3 0.0252 

 

6.14 Construct an inelastic design response spectrum in tripartite plot for 2, 3 and 4μ =  for the 

idealized elastic response spectrum of El Centro earthquake (Figure 2.17; Chapter 2). 

Compare the inelastic design response spectrums with the actual inelastic response 

spectrums of El Centro earthquake for 2 and 4μ =  (for 5%ξ = ). 

 

 

Take the relevant figures from the slides or from the reference book 
 
 
 
 
 
 
 
 
 
 
 



Module 6: Inelastic Seismic Response of Structures 
 
Exercise Solution: 

 

 

 

 

 

6.8. Refer to the exercise problem 6.8. 

Initial stiffness of the spring = 0.15 100.1
0.0147

mg m=  

Frequency based on the initial stiffness = -1100.1 10radsm
m

≈  

2 2 0.05 10 10 10nc mξω= = × × × = Ns m-1 

The incremental equation of motion is 

( )10 10 10 gx x R t xΔ + Δ + = − Δ  

The incremental equation of motion is solved using the method outlined in section 6.2.2. Initial 

condition at 0t =  is taken as 0x x= =  . 

The time histories of relative displacement and acceleration are shown in Figure 6.33 

Absolute maximum displacement = 0.055m 

Yield displacement = 0.0417m 

Ductility ratio = 3.7 

ERRATA FOR THE TEXT BOOK 

pp 273, Exercise problem 6.12: Take 5%ξ =  

pp 274, In Figure 6.32, section B is at the left end of the third beam from the bottom 



 

 
6.9. Refer to the exercise problem 6.9. 

The incremental equations of motion based on initial stiffness are 
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(b) 

Figure 6.33  Time histories of responses (a) relative acceleration (b) relative displacement 
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KΔ + Δ + Δ = − Δ gM x C x x MI x  
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For solving the problem using SAP2000, the following numerical values are used: 

 
8 -22.637 10 NmE = × ; 2500 kgm = ;  -1250000 Nmk = ; 5%ξ =  

3678.75NyF = ; Column size = 40cm 40cm×  

 

Beam is assumed flexurally rigid. 

E is computed from 3

12EI k
l

=  

 

The absolute peak values of the displacements are obtained from the time histories of 

displacements of each floor. From these peak values, the envelop of the peak displacements of 

the floors is shown in Table 6.4 

 

                          Table 6.4: Peak relative displacements of the floor 

Floor Peak floor displacement (m) 



 Max Min 

1st 0.042 -0.088 

2nd 0.053 -0.113 

3rd 0.061 -0.146 

4th 0.065 -0.162 

5th 0.066 -0.172 

 

(ii) The time history of base shear is shown in Figure 6.34 

 

 
Figure 6.34  Time history of base shear 

 
 (iii) At time t = 6.25 s, the shear forces in the columns are computed as: 

 

                                      Table 6.5: Shear forces in columns 

Columns in floor Shear force (N)

1 3678.75 

2 3678.75 

3 3678.75 

4 2764.44 
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5 1411.58 

                                                  
                                                                 3678.75 Nyf =  
 
Thus, first three columns from the bottom have undergone yielding and therefore, they do not 

contribute to the overall stiffness of the frame. The resulting stiffness matrix is given as 
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6.10. Refer to the exercise problem 6.10. 

The incremental equations of motion for the 3D frame based on the initial stiffness are given as 

 

gK xΔ + Δ + Δ = − ΔM x C x x MI  
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The problem is solved using, SAP 2000 (force-displacement plots or the moment rotation plots 

of the yield sections are to be specified). 

 

The time histories of the rotation and x displacement of the floor are shown in Figure 6.35. 

Absolute maximum values of displacement and rotation are 0.18m and 0.0124 rad. 

The time histories of base shears are shown in Figure 6.36 for column A. absolute maximum 

value of base shear = 700N. 



 

 

                   (a) 

 

           (b) 

Figure 6.35  Time histories of response of top floor (a) x-displacement (b) rotation 
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For obtaining the ductility demand of column A, the absolute peak displacement at each floor 

level in x and y directions are determined. From these displacements, the ductility ratio are 

computed as given in Table 6.6 

 

 

 

                 Table 6.6: Ductility demand of column A at different floors 

 

       (a) 

 

         (b) 

Figure 6.36  Time histories of base shears of column A (a) x-direction (b) y-direction 
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Columns at 

Floor 

Yield Dis. 

(m) 
xU  (m)

Ductility 

demand (x) 
yU  (m) 

Ductility 

demand (y) 

Ground 0.00981 0.11894 12.12 0.01101 1.122 

1st 0.00981 0.15577 15.88 0.020289 2.130 

2nd 0.00981 0.17631 17.97 0.02526 2.575 

 

With the help of the displacements, velocities and accelerations computed without considering 

the bidirectional interactions (i.e. SAP2000 results), the shears in each column are determined for 

t = 7s and then the φ  values (used for bidirectional interaction) are calculated for checking the 

yielding of columns. Based on this inform action, the stiffness matrix is constructed at t = 7s. 

Table 6.7 shows the φ  values for columns at t = 7s. Since no column undergoes plasticization, 

the stiffness matrix of the structure remains the same as the elastic stiffness matrix. 

 

Table 6.7: Values of φ  for different columns 

Columns Floor pV  xV  yV  φ  

A 

Ground 613 13.36 -237.9 0.151 

1st 613 -99.54 -88.89 0.047 

2nd 613 86.59 -74.12 0.035 

B 

Ground 919.5 17.39 -315.1 0.118 

1st 919.5 -210.06 -82.4 0.06 

2nd 919.5 -157.8 -82.55 0.038 

C 

Ground 1226 171 273.74 0.069 

1st 1226 -452.1 80.83 0.069 

2nd 1226 -351.5 66.6 0.085 

D 

Ground 919.5 164 224.36 0.091 

1st 919.5 115.84 83.69 0.024 

2nd 919.5 -40.8 64.79 0.007 

 

6.11. Refer to the exercise problem 6.11. 

The acceleration time history of the top floor for elasto-plastic columns are shown in Figure 

6.37. In the same figure, the time history of acceleration for the case of unyielding column i.e., 
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Figure 6.38  Floor response spectrum (a) inelastic analysis (b) elastic analysis 
6.12. Refer to the exercise problem 6.12. 

The mass, stiffness (condensed) and damping matrices for the frame for sway degrees of 

freedom are shown (for initial stiffness) 
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The problem is solved using SAP2000 (force displacement or moment rotation plots for the yield 

sections are specified). 

The time histories of the top relative displacement and the base shear for the column A are 

shown in Figure 6.39 



 
The moment rotation plot for the section B (which is the left end section of the third beam from 

the bottom, not shown in Figure 6.32) is shown in Figure 6.40. The elasto plastic hysteretic 

behavior of the yielding section is clearly observed from the figure. 

 

       (a) 

 

                 (b) 

Figure 6.39  Time histories of  (a) top floor displacement (b) base shear of column A 
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    The maximum rotations and the corresponding ductility demands of the beams are       

    shown in Table 6.9. 

 
                             Table 6.9: Ductility demand of different beams 

Beams at 

floor 

Yield rotation 

(rad) 

Maximum 

rotation (rad) 

Ductility 

demand 

1st 0.00109 0.003024 2.77 

2nd 0.00109 0.00418 3.83 

3rd 0.00109 0.003987 3.66 

4th 0.00109 0.003007 2.76 

5th 0.00109 0.002126 1.95 

 

 

 

6.13. Refer to the exercise problem 6.13.  

The push over analysis is carried out in SAP2000. The backbone curves for the moment-rotation 

of the cross sections of the beams and columns are provided. Whenever the plastic hinge is 

formed, the structure is unloaded and then reloaded. The results of the frame shown in Figure 

6.32 are shown in Figures 6.41 and 6.42. 

 

Figure 6.40  Plot of moment-rotation at section B 
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The results of the frame shown in Figure 6.30 are shown in Figures 6.43 and 6.44. It is seen from 

the Figure 6.44 that the plastic hinges are formed only at the ground floor columns. Note that 

while displaying the hinge formation, SAP2000 denotes the classification of the hinges based on 

 

Figure 6.41  Variation of base shear with roof displacement 
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Figure 6.42  Plastic hinge formations at different displacement stages (a) 0.15m (b) 0.224m 
(c) 0.37m (d) 0.6m 



the computed values of rotations, as immediate occupancy, collapse state etc. and differentiate 

them by different colors. 

 

6.14. Refer to the exercise problem 6.14. 

The inelastic design response spectrums for μ =  2, 3 and 4 are drawn following the procedure 

given in Example 6.7 and are shown in Figure 6.45. The inelastic design response spectrums for 

μ = 2,4 and the inelastic response spectrum for the same values of μ  for Elcentro earthquake 

(Figure 6.25) are compared in Figure 6.46. The similarity between the two can be seen from the 

figures. 

 

 
Figure 6.45  Inelastic design spectrum for μ = 2, 3, and 4 



 

 
  

 

 

(a) 

 

(b) 

Figure 6.46  Comparison of inelastic design spectrums with those of El Centro earthquake 
(a) μ = 2 (b) μ = 4 


