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Module 5: Response Spectrum Method of Analysis 
 
Exercise Problems : 

5.8. For the stick model of a building shear frame shown in Figure 3.24, find the mean peak 

values of the base shear, base moment and top displacement. Take normalized response 

spectrum for pseudo rotational acceleration to be one fourth of that for translational one. 

5% response spectrum for El Centro earthquake is the basic input ground motion. Take 

response spectrum for rotational component of ground motion as 1/6th of the translational 

ground motion. 

5.9. For the shear frame, shown in Figure 3.29, find the mean peak values of base shear, top 

displacement, inter story drift between first and second floor, and column moments at the 

base considering contributions from 3 modes only and all six modes. Use SRSS, ABSSUM 

and CQC rules of combinations and compare the results. Use 5% response spectrum of El 

Centro earthquake as basic input ground motion. Also, compare the results with those of 

the time history analysis. 

5.10. For the 3D frame, shown in Figure 3.30, find the mean peak values of base shear, top floor 

displacement and moment at the base of column A. Take normalized design response 

spectrum given in IBC (2000) and assume that the angle of incidence of earthquake is 300 

with the x-axis. Compare the results with those obtained for zero angle of incidence. Use 

CQC rule of combination.  

5.11. For the simplified model of a cable stayed bridge, shown in Figure 3.28, obtain the mean 

peak values of the vertical displacement of the centre of the deck, base moments of the 

piers and the axial forces in the central cables. Assume the time lag between the supports as 

5s, El Centro earthquake spectrum ( )5%ξ =  as seismic input and correlation function 

given by Equation 2.94 to be valid. Compare the results with those of the time history 

analysis. 

5.12. For the pipeline, shown in Figure 3.15, find the mean peak values of displacements of the 

supports for the El Centro earthquake response spectrum. Assume time lag between 

supports as 5s and use Equation 2.94 as correlation function. Compare the results with 

those of the time history analysis. 



5.13. For the frame with a secondary system, shown in Figure 3.26, find the mean peak value of 

the displacement of the secondary system by cascaded analysis. Take El Centro earthquake 

response spectrum as input excitation with a time lag of 5s between two supports, and 5% 

and 2% dampings for primary and secondary systems, respectively. Compare the results 

with those of the time history analysis. 

5.14. For the same secondary system, as above, find the mean peak value of the displacement of 

the secondary system using an approximate modal response spectrum analysis. Use the El 

Centro earthquake response spectrum. Compare the results with those of the time history 

analysis. 

5.15. For the frame, shown in Figure 3.27, find the base shear, top storey displacement and 

storey drift between the second and first floor by seismic coefficient method of analysis 

using the recommendations of IBC (2000), NBCC (1995), IS1893 (2002) and NZ 4203 

(1992) and Euro 8. Take R=1, hard soil and PGA=0.2g. 

5.16. For the frame, shown in Figure 3.29, find the mean peak values of the base shear, top 

storey displacement and moments at the bottom of the second storey using the response 

spectrum method of analysis. Compare the results between those obtained by using the 

above five codes. Take R=1, hard soil and PGA=0.2g. Further, compare the results with 

those obtained by the seismic coefficient method. 

 

 

Take the relevant figures from the slides or from the reference book   



Module 5: Response Spectrum Method of Analysis 
 
Exercise Solution : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Refer to the exercise problem 5.8 and Figure 3.24. 

The mass, stiffness and damping matrices of the stick model are (exercise problem) 

1 0
0 2

m
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

M   
1 1
1 3

k
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
K  

[ ]1 1 0.5T = − −φ , -1
1 5 rad sω = , [ ]2 1 1T = −φ  , -1

2 10 rad sω =  

It is assumed that translational and rotational ground motions are perfectly correlated and are 

acting together. The influence coefficient vector on the RHS of the equation of motion is 

[ ]6 31 1 1.6 1.3
10 10

T ⎡ ⎤= + + =⎢ ⎥⎣ ⎦
I  

Mode participation factors: 1 1.933λ = − ; 2 0.33λ = ; 1 0.242aS
g

= ; 2 0.176aS
g

=  

The lateral load vectors (using Equation 5.9) 

[ ]1 4.6175 4.6175T m=F   [ ]2 2.4107 4.8215T m= −F  

 

 

ERRATA FOR THE TEXT BOOK 

pp 216, Second para, last line 2s ≠ , but 3; 3n ≠ , but 2 

             Equation 5.14a: 2 21φ β  should be 2 12φ β  

pp 227, Figure 5.7 is wrong plots of Equations 5.46 and 5.47. The values of hc  and A
g

 

             should be obtained directly from the given Equations (Figure 5.7 should not 

be used) 

pp 228, In Equation 5.51b, replace U by v; U in Equation 5.51a is defined as a 

calibration 

             factor. 

pp 229, In Figure 5.9, top curve is for a vZ Z> ; middle one is for a vZ Z= ; last one is 

for 



SRSS rule is used to compute the mean peak values as: 

Top disp. (m) 0.1862 

Base shear 10.4178m 

Base moment 15.627m 

 

Refer to the exercise problem 5.9 and Figure 3.29. 

The mass, stiffness and damping matrices of the frame are (Exercise problem 3.20) 

1
1

1
1

1
1

m

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

M   

2 1 0 0 0 0
1 2 1 0 0 0

0 1 2 1 0 0
0 0 1 2 1 0
0 0 0 1 2 1
0 0 0 0 1 1

k

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −

= ⎢ ⎥− −⎢ ⎥
⎢ ⎥− −
⎢ ⎥

−⎣ ⎦

K  

1.442 0.664 0 0 0 0
0.664 1.442 0.664 0 0 0

0 0.664 1.442 0.664 0 0
0 0 0.664 1.442 0.664 0
0 0 0 0.664 1.442 0.664
0 0 0 0 0.664 0.778

m

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −

= ⎢ ⎥− −⎢ ⎥
⎢ ⎥− −
⎢ ⎥

−⎣ ⎦

C  

The mode shapes and frequencies are 

[ ]1 0.24 0.46 0.66 0.82 0.94 1T = − − − − − −φ  -1
1 1.525rad sω =  

[ ]2 0.66 1 0.82 0.24 0.46 0.94T = − −φ   -1
2 4.485rad sω =  

[ ]3 0.94 0.66 0.468 1 0.24 0.82T = − − −φ  -1
3 7.185rad sω =  

[ ]4 1 0.24 0.94 0.46 0.82 0.66T = − − −φ  -1
4 9.47 rad sω =  

[ ]5 0.82 0.94 0.24 0.66 1 0.46T = − −φ   -1
5 11.2 rad sω =  

[ ]6 0.46 0.82 1 0.94 0.66 0.24T = − − −φ  -1
6 12.28rad sω =  

Mode participation factor are: 

1 1.251λ = −   2 0.4017λ =   3 0.2212λ = −  

4 0.1353λ =   5 0.0804λ =   6 0.0376λ = −  

 1 0.103aS
g

= ; 2 0.181aS
g

= ; 3 0.57aS
g

= ; 4 0.662aS
g

= ; 5 0.9025aS
g

= ; 6 0.9054aS
g

=  



The lateral load vectors are 

[ ]1 0.195 0.379 0.5415 0.672 0.763 0.8106TF m=

 [ ]2 0.478 0.716 0.593 0.172 0.335 0.67TF m= − −  

[ ]3 1.175 0.833 0.584 1.248 0.3 1.035TF m= − − −  

[ ]4 0.812 0.2103 0.8217 0.4084 0.723 0.582TF m= − − −  

[ ]5 0.564 0.641 0.164 0.454 0.681 0.318TF m= − −  

[ ]6 0.154 0.273 0.33 0.31 0.22 0.0795TF m= − − −  

 

Table 5.5: Peak responses in each mode of vibration 

Responses 1st Mode 2nd Mode 3rd Mode 4th Mode 5th Mode 6th Mode 

Base shear 
(in terms of m) 3.36 0.95 0.91 0.39 0.180 0.041 

Top displacement (m) 0.3487 -0.0335 0.02 -0.0065 0.00254 -0.000527 
Inter storey drift (m) 0.0697 -0.00608 -0.027 -0.0068 0.0064 0.004 
Column base moment 

(in terms of m) 5.044 1.427 1.366 0.584 0.270 0.0614 

 

Table 5.6: Mean peak responses 

Response 
3 Mode results All mode results Absolute 

peak time 
history SRSS ABSSUM CQC SRSS ABSSUM CQC 

Base shear (in 
terms of m) 3.6115 5.225 3.6306 3.637 5.835 3.682 3.394 

Top displacement 
(m) 0.3509 0.4023 0.3506 0.3509 0.4118 0.3506 0.3245 

Drift (m) 0.075 0.1032 0.07519 0.0758 0.1205 0.0759 0.08242 
Column base 

moment (in terms 
of m) 

5.417 7.837 5.446 5.455 8.753 5.523 5.092 

 

Since the mode shapes are well separated, the results of SRSS and CQC are nearly the same. 

Further, results by considering all modes compare well with the time history analysis. 

 

Refer to the exercise problem 5.10 and Figure 3.30. 

The stiffness and mass matrices of the frame are (exercise problem 3.21): 



15
0 15

1.5 7.5 67.5
7.5 0 0.75 7.5
0 7.5 3.75 0 7.5

0.75 3.75 33.75 0.75 3.75 33.75

k

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥− −⎢ ⎥
⎢ ⎥− −
⎢ ⎥
− − −⎣ ⎦

K   

 

1
1

1.5
1

1
1.5

m

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

M  

 
-1

1 14.5 rad sω = ,  -1
2 15.14 rad sω =  

-1
3 26.58 rad sω = ,  -1

4 38 rad sω =  

-1
5 39.63rad sω =  -1

6 69.6 rad sω =  

 

[ ]1 0.12 0.618 0.1 0.2 1 0.16T = − −φ  

[ ]2 0.618 0.123 0 1 0.2 0T = − − −φ  

[ ]3 0.03 0.148 0.618 0.048 0.24 1T = − − − − − −φ  

[ ]4 0.2 1 0.166 0.124 0.618 0.1030T = − − −φ  

[ ]5 1 0.2 0 0.618 0.124 0T = − −φ  

[ ]6 0.05 0.24 1 0.029 0.148 0.618T = − − −φ  

T
i

i T
i i

MI
M

φλ
φ φ

=  

             in which [ ]TI c s o c s o= ; 0cos30c = ; 0sin 30s =  

            1 1.036λ = − , 2 0.369λ = − , 3 0.172λ = − 4 0.2446λ = − , 5 0.0953λ = , 6 0.0407λ =  

1 0.77aS
g

= , 2 0.74aS
g

= , 3 0.62aS
g

= , 4 0.69aS
g

= , 5 0.66aS
g

= , 6 0.54aS
g

=  



 

The equivalent load vectors are 

( ) [ ]1 986.63 4933.15 1231.39 1596.403 1982.016 1992.43TP N = − − − −  

( ) [ ]2 1817.37 373.47 2.0 2940.579 588.115 3.177TP N = − −

 ( ) [ ]3 32.019 160.096 1000.539 51.808 259.0412 1618.906TP N = − − − − − −  

( ) [ ]4 336.73 1683.68 420.274 208.115 1040.577 259.744TP N = − − −  

( ) [ ]5 618.596 123.719 2.222 382.313 76.462 1.438TP N = − − −  

( ) [ ]6 10.618 53.091 331.798 6.5624 32.812 205.062TP N = − − −  

Taking the contributions of the four modes and using CQC rule: 

               Table5.7: Response for different angles of incident of earthquake 

Responses 030θ =  00θ =  

xV  11041.3N  36140N 

yV  38175N  7588N 

( )x top
δ  0.0069 m 0.0226 m 

( )y top
δ  0.01907 m 0.0120 m 

topθ  0.00392 rad 0.000819  rad 

xAM  2760.28 Nm 9033.75Nm 

yAM  9543.8Nm 1897.21Nm 

  

The results of the analysis show that the direction of earthquake in asymmetric building should 

be carefully considered. The directions coinciding with principal axes do not necessarily provide 

the worst effect. 

 

Refer to the exercise problems 5.11, 3.19 and Figure 3.28. 

The acceleration response spectrum compatible PSDF of the Elcentro ground motion is shown in 

Figure 5.3. This PSDF and the correlation function given by Equation 2.93 are used to calculate 

the correlation matrices uul , uzl  and zzl . Following the steps 1-8 given in section 5.4.2, the 

quantities required for calculating the expected value of the responses are given below: 



0.2426 1 1
0.2426 1 1

1 0 0.162

−⎡ ⎤
⎢ ⎥= − − −⎢ ⎥
⎢ ⎥−⎣ ⎦

φ  

 

[ ]2387.2 9840 9840T
pier m= −φ  

[ ]2.048 13.01 13.01T
axial m= −φ  

 

0.719 0.1684 0.0046 0.1947
0.1947 0.0046 0.1684 0.719
0.0839 0.0277 0.0277 0.0839

r
−⎡ ⎤

⎢ ⎥= −⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

 
-1

1 3.05 rad sω = ; -1
2 5.38 rad sω = ; -1

3 5.45 rad sω =  

( ) [ ]verticaldisplacement 0.0839 0.0277 0.0277 0.0839Ta = − −  

( ) [ ]2base moment at the left pier 10 70.76 16.57 0.451 19.16Ta m= × −  

( ) [ ]axial force in the left central cable 8.24 1.89 0.08 2.74Ta m= × − − −  

[ ]
[ ]

verticaldisplacement of the centre of thedeck

0.1218 0.0401 0.0401 0.1218 0 0 0 0.038 0.0124 0.0124 0.038

T
βφ =

− − − −
 

[ ]
[ ]

Base moment at the left pier

290.7 394.6 394.6 290.7 4496 806.9 806.9 4496 2282.9 747.8 747.8 2282.9

T
βφ =

− − − −
 

[ ]
[ ]

axial force in the left central cable

0.249 0.082 0.082 0.249 5.94 1.07 1.07 5.94 3.02 0.997 0.997 3.02

T
βφ =

− − − − − − − −
 

0.1218 0.457 0.232
0.0401 0.082 0.0767
0.0401 0.082 0.0767
0.1218 0.457 0.232

β

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− − −
⎢ ⎥− − −⎣ ⎦

 ( kiβ 1 4k = ; 1 3i =  arranged in matrix form) 

 

[ ]
[ ]

verticaldisplacement of thecentreof thedeck

0.0108 0.0036 0.0036 0.0108 0 0 0 0 0.0037 0.0012 0.0012 0.0037

T
Dβ =

− − − −

φ
 



[ ]
[ ]

Base moment at the left pier

25.87 35.12 35.12 25.87 463.1 83.11 83.11 463.1 223.72 73.28 73.28 223.72

T
Dβ =

− − − −

φ

                                  

[ ]
[ ]

axial force in the cable

0.022 0.007 0.007 0.022 0.613 0.11 0.11 0.613 0.316 0.098 0.098 0.316

T
Dβ =

− − − − − − − −

φ

 

( )
( )

-1
11 21 31 41 1 2

0.0843.05rad s 0.089m
3.05

gD D D D D ω= = = = = = =

 ( )
( )

-1
12 22 32 42 2 2

0.335.6 rad s 0.103m
5.6

gD D D D D ω= = = = = = =  

( )
( )

-1
13 23 33 43 3 2

0.325.65rad s 0.098m
5.65

gD D D D D ω= = = = = = =  

( )

1 2 3

1 1 2

2 1 1

3 2 1

1
1

,
1

1

coh i j

ρ ρ ρ
ρ ρ ρ
ρ ρ ρ
ρ ρ ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

; 

1

2

3

5exp
2
10exp
2
15exp
2

ωρ
π
ωρ
π
ωρ
π

−⎛ ⎞= ⎜ ⎟
⎝ ⎠
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
−⎛ ⎞= ⎜ ⎟

⎝ ⎠

 

 

up is the same for the all supports and is equal to 3.31 cm, since the value of the peak 

displacement of the El Centro record, for which the PSDF is given in Appendix 4A, is known. 

Therefore upi is not required to be calculated. Otherwise, it is to be calculated following the step 

6 given in section 5.4.2. 

 

( ) [ ]3for verticaldisplacement 10 2.77 0.91 0.91 2.77Tb −= × − −  

Tb  for base moment and axial force are similarly obtained 

ih  and PSDF of the generalized displacement kiZ  or ljZ  are obtained using the fundamental 

modal  Equation 5.18 by removing the summation sign. The area under the curve provides 
kizσ  

etc. Using Equations 5.28-5.30, the elements of the correlation matrices uu , uz  and zz  are 

determined. 

 

The calculation of these matrices is left to the readers (see example problem 5.4 and 5.5) 



Finally, use of Equation 5.26 provides mean peak values of the response quantities of interest: 

Mean peak (total) vertical displacement of the deck = 0.023m 

Mean peak bending moment at the left tower base = 592.7m 

Mean peak bending moment at the right tower base = 519.5m 

Mean peak tension in the left cable = -0.762m 

Mean peak tension in the right cable = -0.424m 

 

Refer to the exercise problems 5.12, example problem 3.10 and Figure 3.15. 

Like the previous example, the quantities required for the calculation of responses are: 

 

56 16 8
16 80 16
8 16 56

m
−⎡ ⎤

⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

K    
0.5 1 1
1 0 0.5

0.5 1 1

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

φ  

0.813 0.035 0.017
0.035 0.952 0.035

0.017 0.035 0.813
m

−⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

C    

11 1 1
12 6 12
1 2 1
6 3 6
1 1 11

12 6 12

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

r  

0.5
1

0.5
m

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

M  

-1
1 8.1rad sω = ; -1

2 9.8 rad sω = ; -1
3 12 rad sω =  

Ta r=  

 

0.3 0.5 0.267
0.6 0 0.133
0.3 0.5 0.267

β
−⎡ ⎤

⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 ( kiβ , 1 3; 1 3k i= =  in matrix form) 

 

( ) [ ]left support 0.15 0.3 0.15 0.5 0 0.5 0.267 0.133 0.267T
β = − −φ  

( ) [ ]centralsupport 0.3 0.6 0.3 0 0 0 0.134 0.067 0.134T
β = − −φ  



( ) [ ]centralsupport 0.0186 0.0372 0.0186 0 0 0 0.0073 0.0037 0.0073T
Dβ = − −φ  

( ) [ ]left support 0.0093 0.0186 0.0093 0.0303 0 0.0303 0.0146 0.0073 0.0146T
Dβ = − −φ  

( )11 21 31 1 8.1 0.0621mD D D D ω= = = = =  

( )12 22 32 2 9.8 0.0606mD D D D ω= = = = =  

( )13 23 33 3 9.8 12.2 0.0548mD D D D ω= = = = =  

( )
1

1 1

2 1

1 1
, 1

1
coh i j

ρ
ρ ρ
ρ ρ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

; 1
5exp

2
ωρ
π

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

; 2
10exp
2
ωρ
π

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

The computations of correlations matrices uu , uz  and zz are left to the readers 

0.03 0.0055 0.00275
0.0055 0.022 0.0055
0.00275 0.0055 0.03

T

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

b  

            in which 1 2 3 4 3.31p p p pu u u u= = = = cm 

Mean peak value of the displacements for the d.o.f are: 

0.043 (m) 

0.0412 (m) 

0.0461 (m) 

 

Refer to the exercise problem 5.13 and Figure 3.26. 

The mass, stiffness and damping matrices of the frame without the secondary system are: 

 

1 0
0 1.25

m
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

M   
4 2
2 2

k
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
K  

 

C is assumed to be classically damped with 5%ξ = . The mode shapes and frequencies are 

[ ]1 0.596 1Tφ = − − ;  -1
1 6.225rad sω =  

[ ]2 1 0.477Tφ = − ;  -1
2 17.2407 rad sω =  

 

α  and β  are calculated as 

 0.45739α = ; 0.0042614β =  



1.48 0.5114
0.5114 1.083

mα β
−⎡ ⎤

= + = ⎢ ⎥−⎣ ⎦
C M K  

[ ]1 1r =  

For a time lag of 5 sec between the two supports, the time histories of excitations (
1gx  and 

2gx ) 

of duration 35s are constructed for the two supports as explained in Example problem 3.8. The 

time history of absolute acceleration of the top floor of the frame is determined by direct 

integration of the equation of motion. The time history of the absolute acceleration is shown in 

Figure 5.16. 

The pseudo acceleration response spectrum for 2%ξ =  for the time history of acceleration is 

obtained using the method described in Chapter2. The acceleration spectrum is shown in Figure 

5.17. 

 

 
Figure 5.16  Time history of absolute acceleration of top floor 
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The time period of the secondary system is obtained as 

-160 7.746radss
K
m

ω = = =   2 0.811s
s

T sπ
ω

= =  

For 2%ξ = , spectral acceleration ( )aS  for 0.811sT s=  is 0.4407g 

The mean peak value of the displacement of the secondary system is therefore, 

( )3 22

0.4407 9.81 0.0720m
7.746

a
peak

s

Sx
ω

×
= = =  

3 0.068m
peak

x =  (from time history analysis) 

 

Refer to the exercise problem 5.14. 

The stiffness and mass matrices for the three degree of freedom problem are: 

 

4 2 0
2 2.25 0.25

0 0.25 0.25
k

−⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

K   
1

1
0.25

m
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

M  

 

 

Figure 5.17  Top floor acceleration response spectrum (ψ = 2%) 
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Undamped mode shapes and frequencies of the system are 

 

[ ]1 0.2638 0.4558 1T = − − −φ ; -1
1 5.71rad sω =  

[ ]2 0.2904 0.38035 1T = −φ ; -1
2 9.1rad sω =  

[ ]3 1 0.6627 0.1532T = − −φ ; -1
3 17.87 rad sω =  

 

The damping matrix of the three degree of freedom system is constructed as 

 

1.48 0.511 00
0.511 1.083 00

0 0 0.0775

P

s
m

−⎡ ⎤
⎡ ⎤ ⎢ ⎥= = −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥⎣ ⎦

C
C C  

in which PC  is the 2x2 damping matrix obtained in the previous problem and 

2 0.0775s s smξω= =C . The coupling terms of the damping matrix between the primary and 

secondary systems are assumed as zero (like problems of soil structure interaction discussed in 

Chapter 7). 

0.282
0.104 0.246
0.068 0.048 2.635

T

⎡ ⎤
⎢ ⎥= = −⎢ ⎥
⎢ ⎥− −⎣ ⎦

C Cφ φ  

After ignoring the off diagonal terms of the C  matrix, approximate modal damping for the 

primary - secondary system is 

1 0.047ξ = ; 2 0.028ξ = ; 3 0.051ξ =  

Damping modifier (of 1.29) for aS
g

 value is used to find aS
g

 value for 0.028ξ =  as given in IS 

Code 2000. For 1 0.047ξ =  and 2 0.051ξ = , the values for  5% damping are used. 

Assuming no time lag, the response spectrum analysis is performed which results in the 

following quantities 

1 0.613λ = − ; 2 0.27λ = − ; 3 0.487λ = −  

1 0.353aS
g

= ; 2 0.59aS
g

= ; 3 0.773aS
g

=  



[ ]1 0.584 1.0 0.553TF m= ;  [ ]2 0.5868 0.768 0.5TF m= − ;

 [ ]3 3.67 2.43 0.14TF m= −  

Using SRSS rule of combination, mean peak value of the top mass (secondary system) = 

0.0721m 

 

Refer to the exercise problem 5.15 and Figure 3.27. 

In order to maintain uniformity, all multiplying factors are taken as unity. Further, the maximum 

value of the seismic co-efficient/spectral acceleration normalized with respect to g is taken as 

unity for different codes. This provides a uniform PGA 0f 0.4g for all codes except the Canadian 

code whose PGA turns out to be 0.65g. 

The frame under consideration has a time period of 2.475s which corresponds to a flexible 

system (like tall buildings). In this range of time period, the seismic coefficient values differ 

significantly from code to code. Thus, this exercise problem illustrates the difference of base 

shear and hence, the lateral load computed by different codes for flexible systems. 

 

The results are obtained for medium soil (not for the hard soil, as specified in the problem), PGA 

= 0.2g and 5%ξ =  

 

IBC (2000) 

0.162
2hC = ; 8 0.162 6.357

2b
mgV m×

= =  

Assuming a story height of 3m and using Equation 5.49 with k = 2 

[ ]3.39 1.91 0.847 0.212TF m=  

 

NBCC (1995) with (U = 1) 

0.4 0.2 0.102
1.2 0.65h

gC
g

= × = ; 8.205bV m=  

Using Equations 5.54 and 5.55 

( )
[ ]

2.715 1.418 2.03 1.357 0.678

4.133 2.03 1.357 0.678

TF m

m

⎡ ⎤= +⎣ ⎦
=

 

 

Euro 8 (1995) 



Using Equations 5.56 and 5.57 (with 1q = ) or Figure 5.11 

0.389 0.4 0.0778
2s hC C ×

= = = ;  6.105bV m=  

Using Equation 5.60 

[ ]2.442 1.832 1.221 0.611TF m=  

 

New Zealand (NZ4203:1992) 

Using Figure 5.12 (category 2; 1μ = ; z factor such that PGA = 0.2g) 

0.2 0.1
2b hC C= = = ; 7.848bV m=  

Using Equation 5.60 and multiplying by the factor 0.92 

[ ]2.89 2.167 1.44 0.722TF m=  

 

IS (1893:2002) 

Using Equation 5.62 (z factor is taken such that PGA = 0.2g) 

0.55 0.4 0.11
2e hC C ×

= = = ; 8.633bV m=  

Using Equation 5.65, 

[ ]4.604 2.59 1.151 0.288TF m=  

 

 

Table 5.8: Values of response quantities of interest 

Codes Base Shear in terms of m 
Top story 

displacement (m) 
Drift (m) 

IBC 6.359 0.24196 0.0512 

NBCC 8.198 0.2942 0.0627 

NZ 7.219 0.2347 0.0541 

Euro 6.106 0.1984 0.0458 

IS 8.633 0.3285 0.0695 

 

From the table it is seen that there are some variations of responses as determined by different 

codes. IS code provides the maximum values of responses, while Euro code provides the 



minimum values. The difference is primarily due to the difference in the values of hC  at higher 

time periods. 

 

Refer to the exercise problem 5.16 and Figure 3.39. 

The results are obtained for medium soil, PGA = 0.2g and 5%ξ =  

The frequencies and mode shapes are taken from Exercise problem 3.20 
-1

1 1.525rad sω = ( )1 4.125T s= ;  -1
2 4.48rad sω =  ( )2 1.4T s=  

-1
3 7.18 rad sω =  ( )3 0.87T s= ;  -1

4 9.47 rad sω =  ( )4 0.66T s=  

-1
5 11.2 rad sω =  ( )5 0.565T s= ;  -1

6 12.28rad sω =  ( )6 0.51T s=  

[ ]1 0.24 0.47 0.67 0.83 0.94 1T = − − − − − −φ  

[ ]2 0.66 1 0.83 0.24 0.47 0.94T = − −φ  

[ ]3 0.94 0.67 0.47 1 0.24 0.83T = − − −φ  

[ ]4 1 0.24 0.94 0.47 0.83 0.67T = − − −φ  

[ ]5 0.83 0.94 0.24 0.67 1 0.47T = − −φ  

[ ]6 0.47 0.33 1 0.94 0.67 0.24T = − − −φ  

 

Table 5.9: Spectral accelerations obtained from different codes 

Period IBC NBCC Euro NZ IS 

1T  (4.12sec) 0.048g 0.0317g 0.053g 0.075g 0.066g 

2T  (1.4sec) 0.143g 0.093g 0.214g 0.175g 0.194g 

3T  (0.87sec) 0.229g 0.15g 0.344g 0.26g 0.312g 

4T  (0.66sec) 0.303g 0.198g 0.454g 0.325g 0.412g 

5T  (0.56sec) 0.357g 0.233g 0.5g 0.35g 0.485g 

6T  (0.51sec) 0.392g 0.256g 0.5g 0.37g 0.5g 

 

Table 5.10: Comparison of response quantities as obtained by different codes using different 
combination rules 

 Base shear in Top displacement Bending moment 



terms of m (m) in terms of m 

IBC 

SRSS 2.6016 0.256 3.149 

CQC 2.619 0.256 3.1511 

ABSSUM 3.841 0.293 4.452 

NBCC 

SRSS 1.715 0.169 2.078 

CQC 1.727 0.169 2.079 

ABSSUM 2.525 0.193 2.93 

Euro 

SRSS 2.99 0.284 3.56 

CQC 3.03 0.284 3.566 

ABSSUM 4.77 0.339 5.429 

NZ 

SRSS 3.973 0.399 4.852 

CQC 3.99 0.3992 4.852 

ABSSUM 5.45 0.443 6.328 

IS 

SRSS 3.572 0.352 4.327 

CQC 3.596 0.352 4.329 

ABSSUM 5.257 0.402 6.092 

 

Table 5.11: Contributions of different modes to responses for IS code. 

 1st 2nd 3rd 4th 5th 6th 

Top displacement (m) 0.3503 -0.036 0.0108 -0.004 0.0014 -0.000295

Base shear in terms of m 3.378 1.018 0.494 0.244 0.1008 0.02292 

 

The same problem is solved using the Seismic coefficient method. 

Assume the storey height as 3m 

 

Table 5.12: Calculated force and base shears 

Variables IBC NBCC Euro NZ IS 

hC  

in terms of g 
0.0485 0.0897 0.055 0.075 0.068 

Base shear 

in terms of m 
2.851 5.28 3.257 4.414 4 



6F  

in terms of m 
1.11 2.452 0.9315 1.2624 1.56 

5F  

in terms of m 
0.784 0.9425 0.775 1.0505 1.1 

4F  

in terms of m 
0.501 0.7524 0.6188 0.8386 0.704 

3F  

in terms of m 
0.282 0.5623 0.4625 0.6268 0.396 

2F  

in terms of m 
0.125 0.3762 0.3094 0.4193 0.176 

1F  

in terms of m 
0.031 0.18612 0.153 0.2074 0.044 

 

 

 

Table 5.13: Response quantities of interest 

Response IBC NBCC Euro NZ IS 

Top displacement 

(m) 
0.3427 0.6265 0.3524 0.47769 0.4815 

Bending moment 

in terms of m 
4.0155 7.0638 4.1819 5.6674 5.64 

 

 

It is seen from the tables that there is again a significant variation in the responses determined by 

different codes. NZ and IS codes provide comparable results (higher values), while NBCC code 

provides the minimum values. Further, the results show that the seismic coefficient method 

estimates higher values of the responses compared to the response spectrum method. 

 


