- 1. A 10 m deep braced excavation with 30 m X 40 m plan dimensions is to be made in a sandy soil with coefficient of hydraulic conductivity as $2x10^{-2}$ cm/sec. The sandy soil layer is followed by hard rock at 20 m depth and ground water table is located at 4 m depth below ground level. Determine the number of pumps required to bring the ground water table down to 1 m below the excavation level for construction of foundation system. Consider that for the well point dewatering system, discharge capacity of each pump is 15000 lt.hour.
- 2. A plate load test was conducted at the soil surface on a **30 cm X 30 cm** square plate. The results obtained are as follows,

Load (kg)	500	1000	1500	2000	2500	3000
Settlement (mm)	1.25	2.50	3.75	5.00	7.50	15.00

Compute the following for a square footing of size **3 m X 3 m** with a factor of safety**3.0**,

- (a) Allowable bearing capacity if the deposit is deep sandy strata.
- (b) Allowable bearing capacity if the deposit is deep clayey strata.
- (c) Expected settlements with allowable bearing capacities from (a) and (b).
- 3. A cantilever sheet pile wall is required to be designed to retain 5.5 m deep cohesionless soil strata with unit weight $\gamma = 17 \text{ kN/m}^3$ and friction angle $\phi = 30^{\circ}$. Determine the total depth of penetration required for complete anchorage and draw the net earth pressure diagram for the full height of the sheet pile wall.
- 4. A closed end tapered pile of **1.0 m** base diameter with **1**⁰ taper angle has been driven into dense sand with uniform submerged weight of **11 kN/m³**. The angle of shearing resistance of sand decreases from **40**⁰ to **35**⁰ at **20 m** depth. Calculate the ultimate capacity of pile of **20 m** length using IS code method.

5. For cyclic pile load test on a 300 mm diameter pile, the observed field test data is mentioned as follows,

Load (tons)	5.0	10.0	20.0	30.0	40.0	50.0	60.0
Total settlement (mm)	2.5	4.0	9.5	16.5	27.0	40.5	61.0
Net settlement (mm)	0.5	1.25	3.75	8.0	14.0	21.0	31.0

Calculate the allowable load for the pile using IS: 2911 (Part-IV)

6. A group of **36** piles are arranged in a square grid fashion. Diameter of each pile is 600 mm and the c/c distance of piles is **2.4 m** and length of each pile is **15 m**. The entire pile-raft/cap is placed at **3 m** below ground level. Soil is stiff clay with unit cohesion = **105 kN/m**² from surface and then to **13 m** below ground surface and then unit cohesion = **145 kN/m**² from **13 m** to **28 m** below ground level which is followed by a hard rock strata. If working load on the whole group is **21000 kN**, compute the factor of safety of the system. Calculate the consolidation settlement of the group. Given, $\alpha = 0.4$ and $\mathbf{mv} = \mathbf{8x10}^{-5} \mathbf{m}^2/\mathbf{kN}$.

******* END *******

2> From graph,

$$Q_{mut} = 2750 \text{ kg}.$$

for $S_p = 6.5 \text{ mm}$

$$\frac{1}{1000} = \frac{2750}{(0.3)^2} \frac{\text{kg/m^2}}{\text{kg/m^2}}$$
$$= 30555.56 \frac{\text{kg/m^2}}{\text{kg/m^2}}$$

(a) For footing size 3m × 3m. Using F.S. = 3'0, $q_{all} = \frac{30555\cdot 56\times(3)^{2}30}{3\times(3)^{2}03}q/m^{2}$ = 10185,20 Kg/m2 in sand

(b) que = 10185.2 kg/m² in clay also,

(c) In sand,
foundation settlement.

$$S_{f} = S_{p} \left[\frac{B(b_{p} + 0.3)}{b_{p}(B + 0.3)} \right]^{2}$$

 $= 6.5 \left[\frac{3(0.3 + 0.3)}{0.3(3 + 0.3)} \right]^{2}$
 $= 21.49 \text{ mm.}$

and in clay, $S_{f} = S_{p} \times \frac{B}{b_{p}}$ or f = und $= 6.5 \times \frac{3}{0.3} mm$ = 65 mm (20) Ane will () In sand. $S_{f} = S_{p} \left[\frac{B(b_{p} + 0.3)}{b_{p}(B + 0.3)} \right]^{2}$

$$\begin{aligned} \mathcal{A} &= \frac{\dot{P}_{a}}{\gamma(\kappa_{p} - \kappa_{a})} = \frac{31'17}{17(3-\frac{1}{3})} = 0'69 \text{ m.}, \\ \dot{\gamma} &= (0'69 + \frac{5'5}{3}) \\ \dot{P}_{p}' &= \vartheta(H+a)\kappa_{p} - \vartheta a \kappa_{a} \qquad \vdots \quad y = (0'69 + \frac{5'5}{3}) \\ &= 2'523 \text{ m.} \\ &= \left[17(5'5+0'6)3 - 17 \times 0'69 \times \frac{1}{3}\right] \text{ KN/m}^{2} \\ &= 307'19 \text{ KN/m}^{2} \\ &R_{a} &= \frac{1}{2} \times \dot{P}_{a} \times H = \frac{1}{2} \times 31'17 \times 5'5 \text{ KN/m} \\ &= 85'72 \text{ KN/m} \\ \hline \dot{P}_{p} &= \vartheta(\kappa_{p} - \kappa_{a})Y = 17(3-\frac{1}{3})Y = 45'33Y \text{ KN/m}^{2} \\ \hline \ddot{P}_{p} &= \dot{P}_{p}' + \vartheta(\kappa_{p} - \kappa_{a})Y \\ &= (307'19 + 45'33Y) \text{ KN/m}^{2} \end{aligned}$$

(0101 depth of embedment = 12 (0.69+ A.668)

Now, $\Sigma F_{\mu} = 0$. $R_a + \left(\overline{p}_p + \overline{p}_p\right) \frac{z}{2} - \overline{p}_p \cdot \frac{Y}{2} = 0$ or, $Z = \frac{\overline{p}_{p}Y - 2R_{a}}{\overline{p}_{p} + \overline{p}_{p}}$ or, $85.72 + (45.33Y + 307.19 + 45.33Y) = -45.33Y^{2}$ or, $85.72 + 90.66\frac{YZ}{2} + 307.19\frac{Z}{2} - 45.33\frac{Y^2}{2} = 0$ And, Taking moment about bottom of sheet pile, ZM=0, $(I_{A}(\overline{y}+Y) + \frac{Z}{3}(\overline{p}_{P} + \overline{p}_{P}) = -\overline{p}_{P}(\frac{Y}{2})(\frac{Y}{3}) = 0$ or, $6R_a(Y+\overline{y}) + z^2(\overline{p}_P + \overline{p}_P) - \overline{p}_P Y^2 = 0$ or, $6 \times 85'72(2'523+T) + Z^{2}(45'33T + 307'19 + 45'33T)$ $-45.33\gamma^3 = 0$ or, 50000 1297.63 + 514'327 + 307.1922 $+90.66YZ^{2} - 45.33Y^{3} = 0 - 2$

Solving Y= 4.668 m

= 2 = 1.12m

: Total depth of embedment = 12 (0.69+4.668) = 6.43 m (102 3 File (2 523+7)) + 25 (45 337 + 3 g + 19 + 1 5 (2 5 3 x 3 , m Sel. Fog (+Krss.) 12 + 83 (Fes) (****** () = - 0 p= + " (= x + 5 x 3 3 g" + = q 0 = - = () (307-13+45-33?) 201/380. +=Y privia

$$f_{24,0}^{(1+2,0)34,9(1)} = 1177720^{1} \frac{1}{2} = 117720^{1} \frac{1}{2} = 117720^{1} \frac{1}{2} = 117720^{1} \frac{1}{2} = 117720^{1} \frac{1}{2} = 11720^{1} \frac{1}{2} = 11$$

N.B.

$$Rep = T_{4}(1)^{2} \times 1562 \times 57$$

$$= 6992.7 \text{ KN}$$
Now, $P = (1.6A_{51} \stackrel{\circ}{\leq} P_{21}) \stackrel{\circ}{}_{121} \stackrel{\circ}{}_$

5> Load (tons)	5.0	10.0	20.0	30'0	40.0	50'0	60'0	
Total (mm) Settlement	2.5	4.0	9.5	16.5	27.0	40.5	61.0	
Net (mm) Settlement	0'5	1'25	3'75	8.9	14.0	21.0	31'0	
Elastic (mm) Settlement	2.0	2.75	5.75	8.5	13.0	19'5	30'0	
After plottin	After plotting the above field test data							
for cyclic pile load test, The allowable load on pile of 300 mmdia as per IS: 2911 (ParIX) will be least of the following								
(i) 2 x load corresponding to 12mm total settlement								
$= \frac{2}{3} \times 23 = 15.33 \text{ tons}.$ (ii) 50% of the load corresponding to the total settlement 10% of pile diameter (i.e. 30 mm) $= \frac{1}{2} \times 42 = 21 \text{ tons}.$								
(iii) $\frac{2}{3} \times \log d$ corresponding to 6 mm net settlement = $\frac{2}{3} \times 25 = 16.67$ tons.								
(iv) Structural capacity of pile in direct compression (Assuming M20 concrete was used)								
$Compression (mm^2): capacity = 5 \times \frac{T}{4} (300)^2 N$ $T_{cc} = 5 N/mm^2$: capacity = $5 \times \frac{T}{4} (300)^2 N$ = $353429.17 N$								
			1	1 (1	= 35	· 343 ·	tons,	
". Allowable load on the pile = 15:33 tons								

Ang

0

Hard Rock Group efficiency $E_g = 1 - \Theta \cdot \frac{(n-1)m + (m-1)n}{90 mn}$ here, $\Theta = \tan^{-1}(\frac{d}{5}) = \tan^{-1}(\frac{1}{4}) = 14.036^{\circ}$ n = m = 6 $\therefore E_g = 0.74$

For single pile capacity

$$Q_b = CN_c = 145 \times 9 = 1305 \text{ KN/m}^2$$

 $f_s = \alpha Cu_{avg} = 0.4 \left[\frac{105 \times 10 + 145 \times 5}{15} \right] = 47.33 \text{ KN/m}^2$
 $\therefore Q_{uvt} = A_b Q_b + A_s f_s$
 $= \left\{ \frac{TT}{4} \left(0.6 \right)^2 \times 1305 \right\} + \left\{ TT \left(0.6 \right) 15 \times 47.33 \right\}$
 $= 369 + 1338.2$
 $= 1707.2 \text{ KN}$
For pile group capacity
 $Q_{uvt} = \left\{ (12.6)^2 \times 1305 \right\} + \left\{ 4 \times 12.6 \times 15 \times 6.47.33 \right\}$
 $= 207181.8 + 35781.48$
 $= 242963.28 \text{ KN}$
Now, group efficiency, $E_3 = 0.74$
 $\therefore Q_{uvtgroup} = 0.74 \times 36 \times 1707.2 \text{ KN}$
 $= 45480 \text{ KN} < 242963.28 \text{ KN}$
 $\therefore Q_{uvtgroup} = 45480 \text{ KN}$
 $\therefore Q_{uvtgroup} = 45480 \text{ KN}$
 $\therefore G_{uvtgroup} = 45480 \text{ KN}$
 $\therefore G_{uvtgroup} = 21000 \text{ KN}$
 $\therefore Factor of gabety = \frac{45480}{21000} = 2.166$
 Am_civ

Consolidation settlement of the group

Eq. load	on	eq. raft =	21000	= 1	120:075	
r		r	$(12.6)^2$	=	132 275	KN/m2

					و
tayer	z(m)	H (m)	$A(m^2)$	$\Delta \sigma = \frac{21000}{A} \text{KN/m}^2$	Soed = m, ATH (mm)
1	1.5	3	(12.6+1.5)	105.63	8×10 ⁻⁵ ×105.63×3000 = 25.35
2	4.5	3	(12'6+4'5)	71'82	17.24
3	7.5	3	12.6+7.5	51.98	12.47
4	10'5	3	(12:6+10.5)2	39'35	9.44
5	13'5	3	(12.6+13.5)	30.83	7.40
	SIEN	(115) (115)	× 31 ×	2053 + Strails	7 40
				Total =	71'90

Now, P.W.P. Correction

 $\mathcal{M} \simeq 0.58$ for $\frac{H}{B} = \frac{15}{12.6}$ 1 F.O = 0.7

- O.K.

Ang

= 0'58 × 71.90

= 41'70 < 75 mm