1. A $\mathbf{1 0} \mathbf{~ m}$ deep braced excavation with $\mathbf{3 0} \mathbf{~ m ~ X ~} \mathbf{4 0} \mathbf{~ m}$ plan dimensions is to be made in a sandy soil with coefficient of hydraulic conductivity as 2×10^{-2} $\mathbf{c m} / \mathbf{s e c}$. The sandy soil layer is followed by hard rock at $\mathbf{2 0} \mathbf{m}$ depth and ground water table is located at 4 m depth below ground level. Determine the number of pumps required to bring the ground water table down to $\mathbf{1 m}$ below the excavation level for construction of foundation system. Consider that for the well point dewatering system, discharge capacity of each pump is $\mathbf{1 5 0 0 0}$ lt.hour.
2. A plate load test was conducted at the soil surface on a $\mathbf{3 0} \mathbf{~ c m ~ X ~} \mathbf{3 0} \mathbf{~ c m}$ square plate. The results obtained are as follows,

Load (kg)	500	1000	1500	2000	2500	3000
Settlement (mm)	1.25	2.50	3.75	5.00	7.50	15.00

Compute the following for a square footing of size $\mathbf{3} \mathbf{m} \mathbf{X} \mathbf{3} \mathbf{~ m}$ with a factor of safety3.0,
(a) Allowable bearing capacity if the deposit is deep sandy strata.
(b) Allowable bearing capacity if the deposit is deep clayey strata.
(c) Expected settlements with allowable bearing capacities from (a) and (b).
3. A cantilever sheet pile wall is required to be designed to retain 5.5 m deep cohesionless soil strata with unit weight $\gamma=\mathbf{1 7} \mathbf{k N} / \mathbf{m}^{\mathbf{3}}$ and friction angle $\phi=$ $\mathbf{3 0}^{\mathbf{0}}$. Determine the total depth of penetration required for complete anchorage and draw the net earth pressure diagram for the full height of the sheet pile wall.
4. A closed end tapered pile of $\mathbf{1 . 0} \mathbf{~ m}$ base diameter with $\mathbf{1}^{\mathbf{0}}$ taper angle has been driven into dense sand with uniform submerged weight of $\mathbf{1 1} \mathbf{~ k N} / \mathbf{m}^{3}$. The angle of shearing resistance of sand decreases from $\mathbf{4 0}$ to $\mathbf{3 5}^{\circ}$ at $\mathbf{2 0} \mathbf{~ m}$ depth. Calculate the ultimate capacity of pile of $\mathbf{2 0} \mathbf{~ m}$ length using IS code method.
5. For cyclic pile load test on a 300 mm diameter pile, the observed field test data is mentioned as follows,

Load (tons)	5.0	10.0	20.0	30.0	40.0	50.0	60.0
Total settlement (mm)	2.5	4.0	9.5	16.5	27.0	40.5	61.0
Net settlement (mm)	0.5	1.25	3.75	8.0	14.0	21.0	31.0

Calculate the allowable load for the pile using IS: 2911 (Part-IV)
6. A group of $\mathbf{3 6}$ piles are arranged in a square grid fashion. Diameter of each pile is 600 mm and the c/c distance of piles is 2.4 m and length of each pile is $\mathbf{1 5 ~ m}$. The entire pile-raft/cap is placed at $\mathbf{3} \mathbf{~ m}$ below ground level. Soil is stiff clay with unit cohesion $=105 \mathrm{kN} / \mathrm{m}^{2}$ from surface and then to $\mathbf{1 3} \mathbf{~ m}$ below ground surface and then unit cohesion $=145 \mathrm{kN} / \mathrm{m}^{2}$ from $\mathbf{1 3} \mathbf{~ m}$ to $\mathbf{2 8} \mathbf{~ m}$ below ground level which is followed by a hard rock strata. If working load on the whole group is $21000 \mathbf{k N}$, compute the factor of safety of the system. Calculate the consolidation settlement of the group. Given, $\boldsymbol{\alpha}=\mathbf{0 . 4}$ and $\mathbf{m v}=$ $8 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{kN}$.

END Sem Exam Solution

For well point dewatering system, steady pumping rate in unit time is calculated as,

$$
Q=\pi k \frac{H^{2}-h^{2}}{2 \cdot 3 \log _{10}\left(\frac{R}{r}\right)}
$$

Let $R=10 \mathrm{r}$ (influence area).
\& giver, $K=2 \times 10^{-2} \mathrm{~cm} / \mathrm{s}, H=(20-4)=16 \mathrm{~m}$

$$
\begin{array}{rl}
\text { giver, } K & K=(10-1)=9 \mathrm{~m} \\
\therefore Q & =\pi \times 2 \times 10^{-4} \frac{(16)^{2}-(9)^{2}}{2.3 \log _{10}(10)} \mathrm{m}^{3} / \mathrm{sec} . \\
Q & =0.047807 \mathrm{~m}^{3} / \mathrm{sec}=172105.2 \mathrm{\mu t} / \mathrm{hour} .
\end{array}
$$

\therefore Number of Pumps read. $=\frac{172105^{\circ} 2}{15000} \simeq 12$ Ans
2) From graph.

$$
Q_{\text {nut }}=2750 \mathrm{~kg} .
$$

for $S_{p}=6.5 \mathrm{~mm}$

$$
\begin{aligned}
\therefore q_{\text {ut t }} & =\frac{2750}{(0.3)^{2}} \mathrm{~kg} / \mathrm{m}^{2} \\
& =30555.56 \mathrm{~kg} / \mathrm{m}^{2}
\end{aligned}
$$

(a) For footing size $3 m \times 3 m$.
using F.S. $=3.0$,

$$
\begin{aligned}
q_{\text {all }} & =\frac{30555.56 \times(3)^{2} 030}{3 \times(3)^{2} 0.03 / \mathrm{kg} / \mathrm{m}^{2}} \\
& =10185 \times 20 \mathrm{~kg} / \mathrm{m}^{2}
\end{aligned}
$$

in sand
(b) $q_{\text {au l }}=10185.2 \mathrm{~kg} / \mathrm{m}^{2}$ in clay also.
(c) In sand,
foundation settlement.

$$
\begin{aligned}
S_{f} & =S_{p}\left[\frac{B\left(b_{p}+0.3\right)}{b_{p}(B+0.3)}\right]^{2} \\
& =6.5\left[\frac{3(0.3+0.3)}{0.3(3+0.3)}\right]^{2} \\
& =21.49 \mathrm{~mm}
\end{aligned}
$$

and in clay,

$$
\begin{aligned}
S_{f} & =S_{p} \times \frac{B}{b_{p}} \\
& =6.5 \times \frac{3}{0.3} \mathrm{~mm} \\
& =65 \mathrm{~mm} \quad \text { Ane... }
\end{aligned}
$$

$\xrightarrow{\text { Hence }}$ Quit $=2750 \mathrm{~kg}$
(using double-
for $S_{p}=6.5 \mathrm{nim}$ tangent method)

$$
\begin{aligned}
K_{a} & =\frac{1-\sin 30^{\circ}}{1+\sin 30^{\circ}}=\frac{1}{3} \\
K_{p} & =\frac{1}{K_{a}}=3 \\
p_{a} & =K_{a} \gamma(5.5) \\
& =\frac{1}{3} \times 17 \times 5.5 \mathrm{kN} / \mathrm{m}^{2} \\
& =31.17 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& Q=\frac{P_{a}}{\gamma\left(k_{p}-k_{a}\right)}=\frac{31.17}{17\left(3-\frac{1}{3}\right)}=0.69 \mathrm{~m} . \\
& \therefore \bar{y}=\left(0.69+\frac{5.5}{3}\right) \\
& P_{p}^{\prime}=\gamma(H+a) K_{p}-\gamma a K_{a} \quad 2.523 \mathrm{~m} \\
&=\left[17(5.5+0.6) 3-17 \times 0.69 \times \frac{1}{3}\right] \mathrm{KN} / \mathrm{m}^{2} \\
&=307.19 \mathrm{kN} / \mathrm{m}^{2} \\
& R_{a}=\frac{1}{2} \times p_{a} \times H=\frac{1}{2} \times 31.17 \times 5.5 \mathrm{KNN} / \mathrm{m} \\
& \overline{R_{p}}=\gamma\left(K_{p}-K_{a}\right) Y=85.72 \mathrm{KN} / \mathrm{m} \\
& \overline{\overline{P_{p}}}=17\left(3-\frac{1}{3}\right) Y=45.33 \mathrm{Y} \mathrm{KN} / \mathrm{m}^{2} \\
&=P_{p}^{\prime}+\gamma\left(K_{p}-K_{a}\right) Y \\
&=(307.19+45.33 \mathrm{Y}) \mathrm{KN} / \mathrm{m}^{2}
\end{aligned}
$$

Now, $\sum F_{H}=0$.

$$
\therefore R_{a}+\left(\bar{p}_{p}+\overline{\bar{p}}_{p}\right) \frac{z}{2}-\bar{p}_{p} \cdot \frac{Y}{2}=0
$$

or, $Z=\frac{\bar{P}_{p} Y-2 R_{a}}{\bar{P}_{p}+\overline{\bar{p}}_{p}}$
or, $85 \cdot 72+(45 \cdot 33 Y+307 \cdot 19+45 \cdot 33 Y) \frac{Z}{2}-45 \cdot 33 \frac{Y^{2}}{2}=$ or, $85 \cdot 72+90.66 \frac{Y z}{2}+307 \cdot 19 \frac{z}{2}-45 \cdot 33 \frac{r^{2}}{2}=0$

And. Taking moment about bottom of sheet pile, $\sum M=0$,

$$
\therefore R_{a}(\bar{y}+\gamma)+\frac{z}{3}\left(\bar{p}_{p}+\bar{p}_{p}\right) \frac{z}{2}-\bar{p}_{p}\left(\frac{Y}{2}\right)\left(\frac{Y}{3}\right)=0
$$

or, $6 R_{a}(Y+\bar{y})+z^{2}\left(\bar{p}_{p}+\overline{\bar{p}}_{p}\right)-\bar{p}_{p} Y^{2}=0$
or, $6 \times 85.72(2.523+Y)+z^{2}(45.33 Y+307 \cdot 19+45.337$

$$
-45.33 \gamma^{3}=0
$$

or, $1297.63+514.32 \gamma+307.19 z^{2}$

$$
\begin{equation*}
+90.66 Y Z^{2}-45 \cdot 33 Y^{3}=0 \tag{2}
\end{equation*}
$$

Solving $Y=4.668 \mathrm{~m}$

$$
\therefore=1.12 \mathrm{~m}
$$

\therefore Total depth of embedment $=1.2(0.69+4.668)$

$$
=6.43 \mathrm{~m}
$$

4)

$$
Q_{u}=A_{P}\left(P_{i} \cdot N_{q}\right)+\sum_{i=1}^{n} K P_{D i} \tan \delta A_{s i}
$$

$$
\phi_{\text {avg }}=37.5^{\circ}
$$

using β-method.
 Pantos 1980)
As per Poulos (1980),
For driven pile, $\phi=0.75 \phi_{1}+10^{\circ}$
For design, $\phi_{1}=\phi_{\text {arg }}=37.5^{\circ}$ (say)

$$
\begin{gathered}
\therefore \phi=0.75(37.5)+10^{\circ} \\
=38.125^{\circ}=38^{\circ} \\
\therefore \frac{L_{c}}{d}=7+2.35\left(\phi-36.5^{\circ}\right) \\
=7+2.35(38-36.5)=10.5 \\
d_{\text {avg }}=\frac{1.7+1}{2}=1.35 \mathrm{~m} . \\
\therefore L_{c}=14.175 \simeq 14.2 \mathrm{~m} . \\
\therefore P_{0}=(11 \times 14.2)=156.2 \mathrm{kN} / \mathrm{m}^{2}
\end{gathered}
$$

$$
\begin{aligned}
\therefore \quad Q_{\text {tip }} & =\frac{\pi}{4}(1)^{2} \times 156.2 \times 57 \\
& =6992.7 \mathrm{kN}
\end{aligned}
$$

Now,

$$
\begin{aligned}
& Q_{f}=\left(1.6 A_{s i} \sum_{i=1}^{n} P_{D_{i}}\right) \quad \begin{array}{l}
\text { tapering } \\
\text { correction } \\
\text { factor } \\
\text { (asper }
\end{array} \\
& \text { For tapering }=1^{\circ} \\
& \text { Nordlund, } \\
& \text { 1963). } \\
& \text { \& } \phi_{\text {ard }}=37.5^{\circ} \\
& F_{\omega} \simeq 4.2 \\
& \text { - With } A_{s i}=\pi(1) \times 20 \mathrm{~m}^{2} \\
& =20 \pi \mathrm{~m}^{2} \\
& \therefore Q_{f}=1.6 \times 20 \pi \times 4.2 \sum_{i=1}^{n} P_{p i} \\
& =422 \cdot 23 \sum_{i=1}^{n} P_{D i} \\
& =422.23\left[\frac{(156.2 \times 5.8)+\left(\frac{1}{2} \times 14.2 \times 156.2\right)}{20}\right] \\
& =42539.25 \mathrm{kN} \\
& \therefore Q_{\text {ut }}=(6992 \cdot 7+42539 \cdot 25) \\
& \text { KN } \\
& =49532 \mathrm{kN} \\
& \text { Ae }
\end{aligned}
$$

After plotting the above field test data for cyclic pile load test,
The allowable load on pile of 300 media as per IS: 2911 (ParIV) will be least of the follow
(i) $\frac{2}{3} \times$ load corresponding to 12 mm total settlement

$$
=\frac{2}{3} \times 23=15.33 \text { tons. }
$$

(ii) 50% of the load corresponding to the total settlenent 10% of pile diameter (i,e. 30 mm)

$$
=\frac{1}{2} \times 42=21 \text { tons. }
$$

(iii) $\frac{2}{3} \times$ load corresponding to 6 mm net settlement $=\frac{2}{3} \times 25=16.67$ tons.
(iv) Structural capacity of pile in direct compression (Assuming M20 concrete was used)

$$
\begin{aligned}
\sigma_{c c}=5 \mathrm{~N} / \mathrm{mm}^{2} \therefore \text { capacity } & =5 \times \frac{\pi}{4}(300)^{2} \mathrm{~N} \\
& =353429.17 \mathrm{~N} \\
& =35.343 \text { tons }
\end{aligned}
$$

\therefore Allowable load on the pile $=15 \cdot 33$ tons.
Ane
6)

$$
\begin{aligned}
& S=2.4 \mathrm{~m} \\
& d=0.6 \mathrm{~m} \\
& \therefore S=4 d>3 d
\end{aligned}
$$

Group efficiency $E_{g}=1-\theta \cdot \frac{(n-1)_{m}+(m-1) n}{90 m n}$
here, $\theta=\tan ^{-1}\left(\frac{d}{s}\right)=\tan ^{-1}\left(\frac{1}{4}\right)=14.036^{\circ}$

$$
n=m=6 \quad \therefore E_{g}=0.74
$$

For single pile capacity

$$
\begin{aligned}
q_{b} & =c N_{c}=145 \times 9=1305 \mathrm{kN} / \mathrm{m}^{2} \\
f_{s} & =\alpha C_{\text {avg }}=0.4\left[\frac{105 \times 10+145 \times 5}{15}\right]=47.33 \mathrm{kN} / \mathrm{m}^{2} \\
\therefore Q_{\text {mut }} & =A_{b} q_{b}+A_{s} f_{s} \\
& =\left\{\frac{\pi}{4}(0.6)^{2} \times 1305\right\}+\{\pi(0.6) 15 \times 47.33\} \\
& =369+1338.2 \\
& =1707.2 \mathrm{kN}
\end{aligned}
$$

For pile group capacity

$$
\begin{aligned}
Q_{\text {mut }} & =\left\{(12.6)^{2} \times 1305\right\}+\{4 \times 12.6 \times 15 \times 47.33\} \\
& =207181.8+35781.48 \\
& =242963.28 \mathrm{kN}
\end{aligned}
$$

Now, group efficiency, $E_{g}=0.74$

$$
\begin{aligned}
\therefore Q_{\text {mut group }} & =0.74 \times 36 \times 1707.2 \mathrm{kN} \\
= & 45480 \mathrm{kN}<242963.28 \mathrm{kN} \\
\therefore Q_{\text {nt group }} & =45480 \mathrm{kN}
\end{aligned}
$$

\& Given, working load $=21000 \mathrm{kN}$

$$
\therefore \text { Factor of safety }=\frac{45480}{21000}=2.166
$$

Ans (i)

Consolidation settlement of the group
Eq. load on eq. raft $=\frac{21000}{(12.6)^{2}}=132.275 \mathrm{kN} / \mathrm{m}^{2}$

Now, P.W.P. Correction

$$
\begin{aligned}
\mu & \approx 0.58 \quad \text { for } \frac{H}{B}=\frac{15}{12.6} \\
\therefore \quad S_{\text {consolidation }} & =\mu S_{\text {oed }} \\
& =0.58 \times 71.90 \\
& =41.70<75 \mathrm{~mm} \\
& \therefore 0 . \mathrm{K}
\end{aligned}
$$

Ans

